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a  b  s  t  r  a  c  t

Quantifying  spatial  and temporal  patterns  of  carbon  sources  and  sinks  and  their  uncertainties  across
agriculture-dominated  areas  remains  challenging  for understanding  regional  carbon  cycles.  Character-
istics  of local  land  cover  inputs  could  impact  the  regional  carbon  estimates  but  the  effect  has  not  been
fully  evaluated  in  the  past.  Within  the  North  American  Carbon  Program  Mid-Continent  Intensive  (MCI)
Campaign,  three  models  were  developed  to estimate  carbon  fluxes  on  croplands:  an  inventory-based
model,  the  Environmental  Policy  Integrated  Climate  (EPIC)  model,  and the General  Ensemble  biogeo-
chemical  Modeling  System  (GEMS)  model.  They  all provided  estimates  of  three  major  carbon  fluxes  on
cropland:  net  primary  production  (NPP),  net ecosystem  production  (NEP),  and  soil  organic  carbon  (SOC)
change.  Using  data  mining  and  spatial  statistics,  we  studied  the  spatial  distribution  of  the  carbon  fluxes
uncertainties  and  the relationships  between  the  uncertainties  and the  land  cover  characteristics.  Results
indicated  that  uncertainties  for all  three  carbon  fluxes  were  not  randomly  distributed,  but  instead  formed
multiple  clusters  within  the  MCI  region.  We  investigated  the  impacts  of  three  land  cover  characteristics
on  the  fluxes  uncertainties:  cropland  percentage,  cropland  richness  and  cropland  diversity.  The  results
indicated  that  cropland  percentage  significantly  influenced  the  uncertainties  of  NPP  and  NEP,  but  not
on the  uncertainties  of  SOC  change.  Greater  uncertainties  of  NPP  and  NEP  were  found  in counties  with
small  cropland  percentage  than  the  counties  with  large  cropland  percentage.  Cropland  species  richness
and diversity  also  showed  negative  correlations  with  the  model  uncertainties.  Our study  demonstrated
that  the land  cover  characteristics  contributed  to the  uncertainties  of  regional  carbon  fluxes  estimates.
The  approaches  we  used  in this  study  can  be applied  to other  ecosystem  models  to  identify  the  areas
with  high  uncertainties  and  where  models  can  be improved  to  reduce  overall  uncertainties  for  regional
carbon  flux  estimates.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Understanding carbon sources and sinks is important for carbon
management (Michalak et al., 2011). However, estimates of carbon
dynamics in large regions still have large uncertainties among dif-
ferent methods (Ciais et al., 2010; Huntzinger et al., 2012; Ito, 2011).
Intercomparisons between model estimates can help to identify the
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E-mail address: zli2807@jacks.sdstate.edu (Z. Li).

limitations of the models and suggest future research priorities.
The North American Carbon Program (NACP) conducted a series
of comparisons between model estimates and observations from
local to continental scales (Huntzinger et al., 2012). For example,
a comparison of 21 terrestrial biosphere models at multiple NACP
tower sites showed that Net Ecosystem Exchange (NEE) simulation
results were better in forest sites than in non-forest sites (Schwalm
et al., 2010). Another study compared Gross Primary Production
(GPP) between 26 terrestrial biosphere models and observations
at flux tower sites (Schaefer et al., 2012).That study found that
overall the model performance was  poor in GPP estimates and
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was possibly caused by inadequate representation of observed light
use efficiency. The results also suggested that model improvement
should focus on improving leaf-to-canopy scaling and obtaining
better estimates of the model parameters that control the light use
efficiency. At the continental scale, a comparison of 19 terrestrial
biosphere models found that ecosystem Net Ecosystem Produc-
tivity (NEP) for North America varied from −0.7 to + 2.2 PgC yr−1,
which was much narrower than estimates of GPP and respira-
tion (Huntzinger et al., 2012). Another study on the North America
carbon balance compared the NEE estimates between inventory-
based estimates, atmospheric inversion models and terrestrial
biosphere models (Hayes et al., 2012). The inventory-based esti-
mate (−327 TgC yr−1) was significantly different from the mean
values of the atmospheric inversion models ((−931 TgC yr−1) and
the terrestrial biosphere models (−511 TgC yr−1). For the terres-
trial biosphere models, the estimated NEE values ranged from
+29 TgC yr−1 to −3210 TgC yr−1. Such large uncertainties in the
model estimates could be driven by poorly simulated processes
and input data (Hayes et al., 2012).

For regional simulations, land cover information usually is
required as an important input to process-based models (Ahl et al.,
2005). Different land cover inputs could bring different physical
parameters to the biosphere model and create large differences in
simulated outputs (Sellers et al., 1996). The comparison between
multiple terrestrial biosphere models at flux tower sites found the
biome classification was the most important factor controlling the
model-data mismatch (Schwalm et al., 2010). Another comparison
of global NPP estimates from multiple biosphere models also found
that different vegetation inputs partially caused higher NPP dif-
ferences at the borders of vegetation types (Cramer et al., 1999).
However, the assessment of how land cover impacts the model
uncertainties was informal, and so there is still a need for more
research to better quantify the effects of land cover inputs on model
uncertainty.

The Mid-Continent Intensive Campaign (MCI) was a project that
focused on reducing the uncertainties in estimating carbon fluxes
between the terrestrial surface and atmosphere (Ogle et al., 2006).
Multiple methods have been applied in the MCI  region to quantify
ecosystem carbon fluxes (Li et al., 2014; Ogle et al., 2003; Schuh
et al., 2013; West et al., 2010; Zhang et al., 2015). In these studies,
land cover characteristics, such as the crop species and crop rota-
tions, were found to impact the estimates of the carbon fluxes, such
as NPP and soil organic carbon change (Li et al., 2014; Zhang et al.,
2015). Based on these findings, it is possible to make further inves-
tigation into the influences of land cover on model uncertainties.

In this study, we investigated whether the observed patterns of
the carbon fluxes uncertainties were related to the distribution of
land cover. We  made a null hypothesis: the spatial distribution of
model uncertainties is random in the MCI  region. This null hypoth-
esis was tested on the uncertainties of three major carbon fluxes:
net primary production (NPP), net ecosystem production (NEP) and
change in soil organic carbon (SOC). The uncertainties of these
carbon fluxes were calculated based on the estimates from three
models: a crop inventory model; the Environmental Policy Inte-
grated Climate (EPIC) model through the geospatial agricultural
modeling system (GCAM) framework; and the General Ensemble
biogeochemical Modeling System (GEMS). In situations where the
null hypothesis was proved to be false, we further investigated the
influences of three land cover characteristics with the uncertain-
ties: cropland percentage, cropland richness and diversity.

2. Materials and methods

2.1. Study area

The research area is the Mid-Continent Intensive Campaign
(MCI) region (Ogle et al., 2006). The MCI  encompasses 678 counties

from 11 states in the northern Great Plains and Western Corn Belt
of the United States (Fig. 1). The land area in the MCI  is about 124
million hectare (Mha) and more than 40% of the land area is used
for agriculture. Corn, soybean, spring wheat, and winter wheat are
the four major planted crops in the MCI  region and occupy more
than 90% of the planted area. The crop inventory data showed over
30 Mha  of cropland area was used to plant corn and soybean, and
about 10 Mha  was planted with small grains and other crops in this
region (West et al., 2008). The mean annual precipitation varies
from 355 to 535 mm  and the mean annual air temperature varies
from 5 to 7 ◦C.

The spatial details of crop species in the MCI  region are pro-
vided by the U.S. Department of Agriculture (USDA) crop land data
layer (CDL) product (Boryan et al., 2011). The CDL program used
remote sensing data from multiple satellite sensors and ancillary
data to classify the crop types since the 1990s (Boryan et al., 2011).
The two major satellite sensors used are the Advanced Wide Field
Sensor (AWiFS) and Landsat Thematic Mapper (TM), both of which
have high spatial resolution (56 m for AWiFS and 30 m for TM). The
CDL map  provided wall-to-wall mapping across the states with the
spatial resolution at 30 m before 2005, and at 56 m between 2006
and 2010. The accuracies of the CDL products for major crop types
are generally from 85% to 95% at the state level (Boryan et al., 2011).
These high resolution crop maps have been widely used in biogeo-
chemical models and with inventory data to estimate the carbon
dynamics at regional and national scales (Li et al., 2014; West et al.,
2010; West et al., 2008; Zhang et al., 2015). In the MCI  region, CDL
maps are available for all the states in 2007 and 2008.

2.2. Inventory

The inventory method estimates the carbon fluxes of crops
based on county-scale crop yield data (NASS, 2013). The county-
scale crop yield data include the reported crop planted and
harvested area, crop production and crop yield estimates on an
annual basis from 2001 to 2008. Yield data are reported for har-
vested crop commodities, therefore cover crops are not included.
Generally the crop harvested area is about 1–3% smaller than the
crop planted area at the state level, due to crop failures.

The inventory method calculated NPP for each crop from crop
yield data using crop-specific parameters such as harvest indices,
root:shoot ratio and estimated dry weight values (West et al.,
2011; West et al., 2010). The SOC change is estimated by using
empirical relationships between land management and soil carbon
change based on crop species, land management, soil attributes and
regional mean climate regimes (West et al., 2008). The annual esti-
mates of NEE include the sum of net soil carbon change, uptake of
crop carbon, and decomposition of above- and below-crop carbon.
The spatial distribution of the NEE was calculated using weighted
distribution and remote sensing land cover data (West et al., 2010).
For this comparison, the NEP is estimated as the negative of NEE
and the estimates are aggregated to county level.

2.3. EPIC

The Environmental Policy Integrated Climate (EPIC) model was
originally developed based on site-level observations and has been
extensively tested for many agricultural cropping systems land-
scapes (Causarano et al., 2008; Zhang et al., 2014, 2015). A recent
development of the EPIC model used a geospatial agricultural
modeling system (GAMS) to integrate the EPIC model with the
spatially-explicit climate, land use, soil and management data for
assessing regional carbon fluxes (Zhang et al., 2015, 2014).

Multi-year CDL maps (2007–2011) were processed by GAMS
to provide crop rotation information for the regional simulation
(Zhang et al., 2015). For each state, major crop rotations were
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Fig. 1. The Mid-Continent Intensive Campaign (MCI) region boundary and land cover classes from the Cropland Data Layer land cover in 2008.

extracted from CDL maps and used to simulate land cover change
in cropland areas. The soil data from the Natural Resources Con-
servation Service SSURGO were used for initializing soil carbon
contents, and the climate inputs to the model were obtained from
the North-American Land Data Assimilation System 2 (NASA, 2014).
Crop management information such as tillage, conservation type,
and fertilizer application rate was also used as inputs to the model.
GAMS processed all the information into homogeneous spatial
modeling units and performed EPIC simulations from 1991 to 2008
(Zhang et al., 2015).

In the EPIC model, NPP is computed a part of the plant canopy’s
interception of daily photosynthetically-active solar radiation. The
NPP is affected by vapor pressure deficits, atmospheric CO2 con-
centrations, nutrient availability, and other environmental controls
and stresses. SOC dynamics is computed by considering many fac-
tors and processes, such as soil texture, pH, crop yields, atmospheric
N input, fertilizer and manure, and tillage for the decomposition
and transformation of soil C and nitrogen (N) from the model inputs.
NEE was calculated as heterotrophic soil respiration minus the net
C sequestration from the atmosphere into plant biomass (i.e. NPP)
and is opposite in sign to NEP (Zhang et al., 2015). NEP is computed
as the negative of NEE for the comparison.

2.4. GEMS

GEMS is a modeling framework developed to quantify the
regional ecosystem carbon sequestration and its uncertainties (Liu,

2009; Liu et al., 2004). GEMS used an ensemble approach to apply
land-cover/use data, along with information on soils, terrain, and
management factors, to provide geospatially explicit inputs data
to the ecosystem-level biogeochemical model. The uncertainty of
model simulations can be quantified by a Monte Carlo based ensem-
ble approach and multiple modeling runs in the region.

Spatial information about crop types was obtained from the
CDL. The original crop types were regrouped into 6 representa-
tive crops (corn, soybean, spring wheat, winter wheat, other grains
crops, other crops) for this study. The GEMS model was  run for the
MCI  region using an equal distance (5 km)  sampling approach and
results were aggregated to the county level for comparison.

Meteorological inputs to the model were monthly mini-
mum  temperature, maximum temperature and precipitation from
Oregon State University’s Parameter-elevation Regressions on
Independent Slopes Model (PRISM, 2004). The soil data were
extracted from State Soil Geographic Data Base (STATSGO) (NRCS,
1994). The major crop growth parameters were calibrated using
state-level crop yield data by GEMS internal subroutines (Li et al.,
2014).

The biogeochemical model, EDCM, was used in GEMS to sim-
ulate carbon dynamics on agricultural land (Liu et al., 2003).
EDCM is an ecosystem-level model that simulates soil carbon and
nitrogen dynamics, vegetation primary productivity and water
balance at monthly time steps. EDCM computes NPP based on veg-
etation potential production and environmental factors such as
temperature, water and nitrogen. SOC dynamics are modeled as a
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Table  1
Major inputs to the three models.

Method Soil LandCover Crop rotation Climate Managements

Inventory SSURGO County reported harvest cropland area Survey reported harvest data Climate zone Tillage
EPIC  SSURGO NASS (56m) NASS NLDAS 2 Tillage, N fertilization
GEMS  STATSGO NASS (5 km)  NASS PRISM Tillage, N fertilization

combination of soil movement (including the addition of manure)
and decomposition. Decomposition of carbon is a function of soil
carbon pool size and soil carbon decomposition rates, which are
calculated based on the availability of temperature, water and
nitrogen in each soil pool. The NEP on the cropland is calculated
as the change of total ecosystem carbon plus the harvested carbon
(grain and residue removal).

2.5. Model uncertainties and land cover characteristics

The major inputs for each model are presented in Table 1. To
compare the model results and calculate the uncertainties, we
aggregated the three carbon fluxes (NPP, NEP and SOC change) at
the county level. For each county, the total cropland fluxes were cal-
culated by adding the fluxes of all the crops. Then the mean value
of the flux was  calculated by dividing the total cropland fluxes by
the total cropland area in the county.

The uncertainties of NPP and NEP fluxes were evaluated with
the Coefficient of Variation (CV):

CV =

√√√√ 1
N

N∑
i=1

(xi − x)2

1
N

N∑
i=1

xi

(1)

where N is the total number of estimated variables in each county
(N = 3). xi is the estimated variable from each method and x is the
mean value of the three estimates (inventory, EPIC and GEMS). For
SOC changes, which have a large portion of negative values, we used
standard deviation (STDEV) instead of CV.

The cropland percentage in each county equals the planted crop-
land area divided by the total land area in the county. The planted
cropland area is calculated using the number of cropland pixels
in the annual CDL map  multiplied by the pixel size. However, this
planted cropland area is different from the cropland area inputs
into the models. Each model uses its own approach to estimate
the cropland area input: the inventory model used reported har-
vested cropland area; GEMS used 5 km sampling method and EPIC
used 56 m CDL cropland area directly. Such input uncertainty can
be propagated into the outputs. To evaluate the input uncertainty,
we calculated the cropland area CVs using the cropland area inputs
from three models:

CV =

√√√√ 1
N

N∑
i=1

(xi − x)2

1
N

N∑
i=1

xi

(2)

where N is the number of cropland area used in each county (N = 3).
xi is the input cropland area from each method and x is the mean
value of the three cropland area (inventory, EPIC and GEMS).

We used two indices to describe the land cover characteristics:
land cover richness and land cover diversity. The land cover rich-
ness is defined as the number of unique land cover types inside
each county. The land cover diversity is indicated by the Shannon

equitability index. The Shannon equitability index is an index that
is widely used in landscape ecology to describe the biodiversity. It
is the Shannon diversity index divided by the maximum diversity
and calculated as:

SI =
−

M∑
i=1

p(i) ln p(i)

ln(M)
(3)

where, i is the land cover type in a county, p(i) is the proportion of
the value i to the total of the values, and M is the total number of
values. For a well-sampled region, we  can estimate this proportion
as p(i) = area(i)/total area, where area(i) is the area for each land
cover within a county and total area is the area of all the land covers
in the county. The Shannon equitability index takes values between
0 and 1, where lower values indicate more diversity and higher
values indicate less diversity.

We designed a two-steps approach in this study: exploratory
analysis and statistical analysis. The exploratory analysis methods
include k-mean clustering and visual analyses, and the statistical
analyses aim to detect spatial autocorrelation and to determine the
linear relationship between variables.

The design of the statistic experiment is described in details in
the Appendix. Both 2007 and 2008 data were used in the statistical
analysis. The statistics and data mining method were implemented
with R software and the spatial patterns were displayed using
ArcGIS software.

3. Results

3.1. Model estimates on carbon fluxes

Fig. 2 shows the estimates of cropland area, NPP, NEP and
SOC change in 2007 and 2008 at the county level for the MCI
region. The total cropland area estimated from the three mod-
els was  53.0 ± 3.0 Mha  in 2007 and 54.3 ± 3.1 Mha  in 2008. The
cropland area showed similar spatial distributions in both years
(Fig. 2A, B). About 15% of the counties have cropland area smaller
than 25,000 ha and about 30% of the counties have cropland area
larger than 100,000 ha in the MCI  region. Large cropland areas exist
mainly in Illinois, Iowa, Nebraska, North Dakota, and South Dakota.
The counties with small cropland area are in northern Minnesota,
Missouri, Michigan and Wisconsin.

The total NPP estimated from the three models was
344.5 ± 5.8 TgC yr−1 in 2007 and 366.4 ± 38.4 TgC yr−1 in 2008.
About 90% of the counties had NPP values between 250
and 850 gC m−2 yr−1 and 7% had NPP values greater than
850 gC m−2 yr−1 in 2007. In 2008, cropland NPP increased in most
counties and 19% of the counties had NPP values higher than
850 gC m−2 yr−1. These highest NPP values were mainly in Iowa
and Illinois. Lower NPPs were in northern Minnesota, northern
Wisconsin, and central Missouri (Fig. 2C, D).

The total NEP on croplands was 159.7 ± 7.7 TgC yr−1 in 2007
and 183.3± 47.8 TgC yr−1 in 2008 based on the three models. The
county-level NEP had a smaller range than NPP. About 92% of the
counties had NEP values between 250 and 450 gC m−2 yr−1 and
2% had NEP values greater than 450 gC m−2 yr−1 in 2007. In 2008,
78% of the counties had NEP between 250 and 450 gC m−2 yr−1,
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and about 16% of the counties had NEP values higher than
450 gC m−2 yr−1. The spatial distributions of NEP showed similar
patterns as NPP, with high values in Iowa and Illinois, and low
values in northern Minnesota, northern Wisconsin, and central
Missouri (Fig. 2E, F).

The total SOC change was 4.0 ± 4.9 TgC yr−1 in 2007 and
8.0 ± 10.5 TgC yr−1 in 2008. About 43% of the counties showed rel-
atively small SOC changes (−4.9–5.0 gC m−2 yr−1) in 2007. About
10% of the counties showed SOC change less than −5.0 gC m−2 yr−1

and these counties were located mainly in southern Minnesota and
northern Iowa. In 2008, only 4% of the counties showed SOC change
less than −5.0 gC m−2 yr−1 and about 60% of the counties showed
SOC change higher than 5.0 gC m−2 yr−1. The spatial distribution of
SOC changes was quite different from the spatial distribution of
NPP and NEP (Fig. 2G, H).

3.2. Model uncertainties

Fig. 3 shows the uncertainty of the estimates in cropland area,
NPP, NEP and SOC change in 2007 and 2008. For cropland area, most
counties had small CVs but some high CVs were found in northern
Minnesota, northern Wisconsin, and central Missouri (Fig. 3A, B).
The CVs of cropland area showed similar results in 2007 and 2008.

The three models agreed well on the NPP estimates in the MCI
region. The CVs of NPP estimates showed that more counties had
smaller CVs in 2007 than in 2008 (Fig. 3C, D). About 64% of the coun-
ties had CVs less than 0.2 in 2007 and only about 45% of the counties
had CVs less than 0.2 in 2008. Higher CVs in 2008 were mainly
located in Iowa and Illinois. It also seems that NPP CVs showed
similar spatial patterns as the cropland area CVs. The highest NPP
CVs tended to occur at counties with high cropland area CVs such
as the northern Minnesota, northern Wisconsin and central Mis-
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souri. The CVs of NEP showed similar spatial patterns as those for
NPP but with higher values (Fig. 3E, F). Only 45% of the counties had
NEP CVs less than 0.2 in 2007 and 15% of the counties had CVs less
than 0.2 in 2008. This result indicates that NEP estimates from the
three models had higher uncertainties than NPP. One noticeable
difference between 2007 and 2008 was that NEP CVs were higher
in Iowa and Illinois in 2008, similar as the CV changes in NPP.

The STDEVs of SOC changes showed different spatial patterns
from the CV maps of NEP and NPP. High uncertainties indicated the
model estimates diverged in the SOC changes in Iowa, Minnesota,
and North Dakota. Low uncertainties were in Nebraska and Illinois
(Fig. 3G, H). Based on these uncertainties, we are more confident
that the cropland was a weak soil carbon sink in Nebraska and Illi-
nois but less confident about the soil carbon loss in Iowa and south
Minnesota where larger STDEVs were found.

We computed the correlation coefficients and p-values between
the model uncertainties and the input land cover characteristics for

all the counties (Table 2). For both 2007 and 2008, the CVs of crop-
land area showed significant positive correlations with the CVs of
NPP and NEP. Meanwhile, there were significant negative corre-
lations between the cropland percentage and the CVs of NPP and
NEP. This indicated that in the counties with large cropland per-
centage, the cropland area CVs were small, as well as the CVs of the
NPP and NEP. But in the counties with small cropland percentage,
the CVs of cropland area, as well as the CVs of NPP and NEP, were
large. In contrast, the STDEVs of SOC change did not show signifi-
cant correlation with the CVs of cropland area, and less significant
correlations with the cropland percentages than the CVs of NPP and
NEP (Table 2).

Both cropland richness and Shannon equitability index showed
negative correlations with the CVs of NPP and NEP (Table 2). That
is, the uncertainties of the NPP and NEP were smaller in the county
with higher richness or lower diversity. However, the p-values
showed their correlations were less significant than cropland per-
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Table 2
Correlation coefficient and p-value between the cropland area CVs, cropland percentage, richness and Shannon equitability index and model uncertainties in 2007 and 2008.

NPP CV NEP CV SOC STDEV

Correlation coefficient p-value Correlation coefficient p-value Correlation coefficient p-value

Cropland area 0.780 <2.2 e−16 0.700 <2.2 e−16 −0.087 0.0258
CVs  (0.812)a (<2.2 e−16) (0.668) (−0.038) (0.324)
Cropland −0.589 <2.2 e−16 −0.607 (<2.2 e−16) −0.098 0.0107
percentage (−0.534) (<2.2 e−16) (−0.404) (−0.175) (2.55 e−10)
Cropland −0.122 0.00145 −0.022 0.562 0.132 0.00059
richness (−0.255) (1.86 e−15) (−0.312) (<2.2 e−16) (0.146) (0.00134)
Shannon −0.241 2.14 e−10 −0.182 1.88 e−6 −0.029 0.445
equitability (−0.216) (5.87 e−13) (−0.171) (<1.03 e−5) (−0.069) (0.105)

a The data in the parentheses are in 2008.

Table 3
Moran I’s analysis results in 2007 and 2008.

Variable Moran’s I index z-score p-value Number of clustersb

NPP CV 0.457 26.420 0.000 6
(0.475)a (30.142) (0.000) (6)

NEP CV 0.374 26.118 0.000 7
(0.373) (24.887) (0.000) (7)

SOC  change STDEV 0.193 13.224 0.000 6
(0.198) (12.914) (0.000) (6)

a The data in the parentheses are in 2008.
b From the k-means analysis.

centage. The STDEVs of the SOC changes did not show significant
correlations with cropland richness and the Shannon equitability.
These results indicated that the distribution of crop types had less
impact on the uncertainties of SOC changes than the uncertainties
of NPP and NEP.

3.3. Spatial patterns of model uncertainties

We  performed the Moran’s I analysis on the uncertainties and
the results are listed in Table 3. Distributions of the model uncer-
tainties exhibited statistically significant spatial patterns instead
of being randomly distributed. With high Z-scores and low p-
values all the results indicate that the model uncertainties (CVs
and STDEVs) are positively spatially autocorrelated (i.e., similar CVs
are clustered near one another). The uncertainties of NPP and NEP
showed stronger spatial autocorrelation than the uncertainties of
SOC in both years. Interestingly, the Moran’s I values are similar
for each type of uncertainty (NPP, NEP, SOC) between 2007 and
2008, indicating the spatial patterns of the model uncertainties are
temporally stable.

The data mining method, k-means cluster analysis, was used to
identify multiple clusters for the model uncertainties in both 2007
and 2008 (Fig. 4). The number of clusters for each fluxes uncertain-
ties is given in Table 3. The clusters were not the same between
the two years but showed some similarities. For example, a clus-
ter with small NPP CVs was  in Nebraska, Iowa and Illinois in 2007
and this cluster extended its range with larger CV values in 2008.
This finding agrees with the NPP CV map  of 2008, where larger
CVs were shown in Iowa and Illinois. The cluster of NEP CVs also
showed that the counties in Iowa were in one cluster in both 2007
and 2008. Generally for NPP and NEP, the clusters with small uncer-
tainties are in cropland-dominated areas, such as Iowa and Illinois,
and clusters with large uncertainties are in the counties with small
cropland areas, such as northern Minnesota and northern Wiscon-
sin. The clusters of SOC changes showed different spatial patterns
than NPP and NEP. Clusters with high STDEV values were in Iowa,
Minnesota, and North Dakota. Low uncertainties were in Nebraska
and Illinois (Fig. 4E, F).

3.4. Hot spots and cold spots analysis

An analysis of hot/cold spots for cropland percentage, cropland
cover richness and cropland Shannon equitability index within
counties was  conducted (Fig. 5). The hot spots of cropland per-
centage were located in corn and soybean dominated areas, such
as central Iowa, southern Minnesota, eastern South Dakota, east-
ern Nebraska, and Illinois (Fig. 5A, B). The cold spots were mainly
located in the northwestern MCI  region (northern Minnesota, Wis-
consin and Michigan) and northern Missouri, where cropland is
not the major land cover type. The hot and cold spots of cropland
richness showed different spatial patterns from the cropland per-
centage (Fig. 5C, D). The hot spots with a high number of crops
planted in the county were in North Dakota, Minnesota and Wis-
consin. The cold spots with a low number of crop types were
mainly located in Iowa, eastern Nebraska and northern Missouri.
The cropland richness hot/cold spots showed slightly different spa-
tial patterns in 2007 and 2008 (Fig. 5C, D). Cold spots showed
less coverage in 2008 than in 2007, while hot spots showed more
coverage. The hot/cold spots of the Shannon equitability index
showed more scattered results than cropland percentage and crop-
land richness (Fig. 5E, F). The hot spots were in North Dakota, central
Minnesota, Wisconsin and southern Illinois in both 2007 and 2008.
More hot spots were shown in southeastern Iowa and fewer hot
spots were in North Dakota and Minnesota in 2008. The cold spots
were in central Nebraska, northwestern Iowa, central Missouri and
parts of Kansas.

The hot/cold spots of NPP CVs, NEP CVs and SOC  change STDEVs
are shown in Fig. 6. The NPP CVs showed similar patterns in both
2007 and 2008 (Fig. 6A, B). The hot spots were in northern Wiscon-
sin, northern Minnesota and Missouri. The cold spots were in Iowa,
parts of Nebraska and northern Illinois. The NEP CVs had a similar
hot/cold spots pattern as the NPP CVs, except there were fewer cold
spots in Nebraska and Kansas (Fig. 6C, D). The SOC change STDEVs
showed more scattered results than NPP and NEP (Fig. 6E, F). The hot
spots were in North Dakota, Kansas and along the border between
Iowa and Missouri. The cold spots were in parts of Nebraska and
Illinois.

The comparison between the cropland percentage hot/cold
spots and the uncertainties hot/cold spots showed that in northern
Wisconsin, western Michigan and Missouri, the cold spots of crop-
land percentages corresponded to the hot spots of NPP and NEP CVs,
while the hot spots of cropland percentages corresponded to cold
spots of CVs in Nebraska and southern Minnesota (Figs.Fig. 55A,
B and Fig. 66A–D). Such correlations between cold and hot spots
indicated that higher cropland percentages may lead to smaller
difference in uncertainties for NPP and NEP. One interesting obser-
vation was that the counties in Iowa and Illinois had large cropland
percentages but not low CVs.

The cropland richness and Shannon equitability index hot/cold
spots showed quite different patterns from the hot/cold spots of the
three carbon fluxes uncertainties. These differences may  explain
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the weak relationships between both characteristics and the uncer-
tainties in the correlation analysis (Table 2).

4. Discussions

The evaluation of process-based models at the regional scale
is necessary to assess the credibility of these models for large-
scale carbon budget estimates (Zhang et al., 2015). In our study,
we focused on analyzing the influence of land cover characteristics
on the uncertainties of estimated cropland carbon fluxes.

The land cover characteristics impact the cropland inputs into
the models. Each model used its own approach to estimate the crop-
land area input and resulting uncertainties could be propagated
into the model results. The inventory method used the reported
harvested cropland area to estimate the carbon fluxes and the har-
vest area usually is smaller than the planted cropland area. The

EPIC model used the representative crop rotations instead of the
observed CDL data (Sahajpal et al., 2014; Zhang et al., 2015). This
approach reduced the redundancy and computation time but may
have introduced some inaccuracies from year to year. For exam-
ple, corn area in EPIC increased from 26.3 Mha  in 2007–31.1 Mha
in 2008, while in NASS the reported corn area decreased from
30.1 Mha  in 2007–26.9 Mha  in 2008. GEMS used a sampling method
based on CDL data to simulate the annual crop rotations. This
approach could result in large inaccuracies if the cropland area is
smaller than the sampling size of the model. If the input data are not
consistent between years at the pixel level, this sampling method
may  also bring uncertainties in the land cover inputs. Though our
objective was  not trying to evaluate the accuracy of CDL map, we did
find some disagreement between years of CDL products, which may
be caused by inconsistent classification algorithms applied among
years. For example, the annual CDL map  showed large amount of
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grassland in 2006 transferred to forest land in 2007, and a large
amount of forest land transferred back to grassland in 2008. In real-
ity, this magnitude of change is unlikely within a single year. We
did not find any support for this kind of transition in the literature
so it is likely that the change is the result of classification error.
Similar classification errors may  occur in crop rotations. The land
cover inputs differences is large in the county with small cropland
percentage due to misclassification and representation of cropland.
When cropland area is large, such differences will be small and have
less impact on the model uncertainties.

The three models have different classification schemes for the
crop types and this may  bring uncertainties in model parameter-
ization. The inventory method listed 19 crop types in the factor
table to compute the NPP (West et al., 2011). EPIC used over 10
crop types and calibrated the model parameters for each crop using

Fluxnet data (Zhang et al., 2015). GEMS used a more simplified
approach and classified the crops into 6 categories (Li et al., 2014).
These differences in representing the crop types may  lead to greater
uncertainties when there are more crop types in a single county.
Both cropland richness and Shannon equitability index showed
less significant correlations with the uncertainties of NPP and NEP
in this study. Such differences may be caused by other cropland
management practices in addition to crop types, such as cropland
irrigation. Irrigation generally changes the water availability and
plant growth in the cropland as well as the cropland carbon fluxes.
Zhang et al. (2015) found that lack of spatial representation of irri-
gated cropland in CDL data could explain the discrepancies between
the EPIC simulation and inventory estimates. Adding such informa-
tion into the model inputs may  reduce the uncertainties between
the models.



Z. Li et al. / Ecological Modelling 337 (2016) 176–187 185

Omaha

Pierre

Topeka

Chicago

Madison

Lincoln

Wichita

St. Paul

Bismarck

St. Louis

Des Moines

Springfield

Omaha

Pierre

Topeka

Chicago

Madison

Lincoln

Wichita

St. Paul

Bismarck

St. Louis

Des Moines

Springfield

Omaha

Pierre

Topeka

Chicago

Madison

Lincoln

Wichita

St. Paul

Bismarck

St. Louis

Des Moines

Springfield

Omaha

Pierre

Topeka

Chicago

Madison

Lincoln

Wichita

St. Paul

Bismarck

St. Louis

Des Moines

Springfield

Omaha

Pierre

Topeka

Chicago

Madison

Lincoln

Wichita

St. Paul

Bismarck

St. Louis

Des Moines

Springfield

Omaha

Pierre

Topeka

Chicago

Madison

Lincoln

Wichita

St. Paul

Bismarck

St. Louis

Des Moines

Springfield

2007 2008

A B

C D

E F

Cold Spot - 99%

Cold Spot - 95%

Cold Spot - 90%

Not Significant

Hot Spot - 90%

Hot Spot - 95%

Hot Spot - 99%

0 250 500125

Kilometers

Fig. 6. Hot and cold spots analysis on model uncertainties for NPP CVs in 2007 (A) and 2008(B); NEP CVs in 2007 (C) and 2008 (D); SOC change STDEVs in 2007 (E) and 2008
(F).  Note: the percentages (99%, 95%, 90%) represent the areas with statistically significant clusters at alpha-levels of 0.01, 0.05, and 0.1.

Another possible source of uncertainty related to crop types is
from the model parameters. In the site-level intercomparison of the
NACP models, Schwalm et al. (2010) pointed out that model param-
eter sets showed clear impact on model skill. The EPIC model used
flux tower based measurements to calibrate the model parameters
and then applied the same parameters in the MCI  region. The GEMS
model used the state-level crop inventory data to calibrate the crop
growth parameters and used a different set of parameters in each
state. When there are more cropland types in a county, the differ-
ences in the model parameters may  bring higher uncertainties to
the model results.

The NACP multi-scale synthesis and terrestrial model inter-
comparison project pointed to the need for evaluating model
performances and better addressing the model differences

(Huntzinger et al., 2013). Though our study compared only three
model estimates, the data mining and spatial analysis techniques
we used in this study could be easily applied to other model ensem-
bles and their driving variables for different regions. Both Moran’s
I analysis and hot/cold spot statistics can help to find the areas
with high uncertainties, which leads to identifying the sources
of the uncertainties in both model inputs and structures. More
research is needed to reduce the uncertainties and improve the
model performance. Based on our study, we suggested that using
high quality land cover inputs with crop species information is crit-
ical to reducing the uncertainties between the models. Integrating
other cropland management information such as irrigation may
also bring more accurate estimates for cropland fluxes estimates.
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5. Conclusions

We  used data mining and spatial statistics methods to study
the relationships between land cover inputs and the uncertainty
of carbon fluxes estimates in the MCI  region. Our null hypothe-
sis was proven to be false. The Moran’s I’s analysis showed the
uncertainties have significant positive autocorrelation in neigh-
boring counties in the MCI  region. The k-mean clustering analysis
showed that the uncertainties in flux estimates are not distributed
randomly but are instead formed into multiple clusters. For both
NPP and NEP, the uncertainty of the estimates showed significant
negative correlations with the cropland percentage in the county.
But the uncertainty of the SOC change estimates showed no sig-
nificant correlation with the cropland percentage. The cropland
richness and Shannon equitability index showed a significant neg-
ative relationship with the uncertainties of NPP and NEP but not
the uncertainties of SOC changes. Our results demonstrated that
land cover inputs clearly had impacts on NPP and NEP estimates,
but not on the SOC changes. Spatial analysis techniques are pow-
erful tools for revealing the patterns and drivers of uncertainties in
regional-scale carbon estimates.
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Appendix. Design of the statistic experiment

In this study, we formulated a null hypothesis: the spatial dis-
tribution of the uncertainty is random. To test this hypothesis, we
computed the spatial autocorrelation index, Moran’s I, which mea-
sures the degree of association of uncertainty (e.g., the CVs of the
three method results) between neighboring observations (Getis
and Ord, 1992; Getis and Ord, 2010). Therefore, Moran’s I can detect
whether one or more spatial cluster of similar CV values exists in
the study area. With a range of values between −1 and 1, Moran’s I
is positive when neighboring counties have more similar CVs, and
Moran’s I is 0 if the spatial distribution of CVs is random.

I =

n ×
n∑

i=1

n∑
j=1

[wi,j × (zi − Z) × (zj − Z)]

(
n∑

i=1

n∑
j=1

wi,j) × (
n∑

i=1

(zi − Z)

2
(A.1)

In the formula, n is the number of counties, zi is the CV value in
county i, zj is the CV value in county j. Z is the mean CV of all the
counties, and wi,j is the spatial weight. The spatial weight wi,j is
computed as the inverse distance between county i and j.

We applied a data mining method (k-means clustering) to iden-
tify similar patterns of model estimates. For each county, all the
estimates from the three models were treated as one vector, then all
the counties were clustered into groups of vectors. The cluster size

of each group was determined with the elbow method (Ketchen
and Shook, 1996; Thorndike, 1953). First, we  calculated the sum of
square errors for different number of clusters using three estimates
in the county:

Var =
k∑

n=1

3∑
i=1

√
(xi − ci)

2 (A.2)

In the formula, xi is the flux value estimated by the method
and ci is the flux value of the center county of the cluster. K is the
number of clusters. As the number of cluster increases, the vari-
ance decrease. The cluster size is chosen by finding a point when
adding another cluster does not reduce much variance (Ketchen
and Shook, 1996). The mean vector of each group is computed
based on the cluster size. The cluster groups then were drawn to
the maps (Fig. 4). The distribution of the clusters showed strong
spatial pattern and we made further analysis to find out what land
cover characteristics can contribute to such spatial patterns.

First we used linearly regression to compute the relationships
between land cover characteristics and the uncertainties. The
results were presented in. We  also used the hot spot and cold spot
statistics (Getis-Ord Gi* statistic) to analysis the spatial patterns
of the uncertainties. For each feature i (county in this study), Gi*
will calculate the weighted sum of the variable (e.g., CV of cropland
percentage) for the feature’s local neighbors then compare the local
sum with the global sum for the variable (Getis and Ord, 1992).

Gi∗ =

n∑
j=1

wi,jzj − Z

n∑
j=1

wi,j

S

√√√√√ n

n∑
j=1

w2
i,j

−(

n∑
j=1

wi,j)

2

n−1

(A.3)

where, n is the number of counties, zj is the CV value of county
j. Z is the mean of the CV values of all counties, and wi,j is the spa-
tial weight calculated as the inverse distance between county i and
j without row standardization. We  used this analysis to test the
hypothesis that the CVs of the estimates are impacted by the crop-
land percentage. For cropland percentage (with each county the
total area of cropland divided by the total area), if a county is spa-
tially surrounded by counties with high cropland percentage, the
county is a hot spot of cropland percentage. Similarly, for the CVs
of the three models, if a county is surrounded by counties with low
CV values, the county is a cold spot of CVs. By comparing the hot
and cold spots of the cropland percentage and the CVs, the spatial
correlation between cropland percentage and the model CVs can
be visually discovered.
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