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Anomalous and spin Hall effects are investigated theoretically for a magnetic tunnel junction 

where the applied voltage produces a Rashba spin-orbit coupling within the tunneling barrier 

layer. The ferromagnetic electrodes are the source of the spin-polarized current. The tunneling 

electrons experience a spin-orbit coupling inside the barrier due to the applied electrical field. 

Charge and spin Hall currents are calculated as functions of the position inside the barrier and the 

angle between the magnetizations of the electrodes. We find that both charge and spin Hall 

currents are located inside the barrier near the interfaces. The dependence of the currents on 

magnetic configuration of the magnetic tunnel junction makes possible the manipulation by the 

Hall currents via rotation of the magnetization of the electrodes.  

 

 

I. Introduction  

 

Spin-orbit interaction (SOI) allows the manipulation of spin-polarized currents in thin-film 

heterostructures [1]. Such heterostructures attract great interest due to potential applications in 

spintronics [2]. A number of spintronic devices have been proposed which rely on the SOI. 

Among them are spin field-effect-transistors [3], spin-interference devices [4], and spin filters [5]. 

SOI is responsible for many physical properties and phenomena which are subjects of intensive 

investigations, including the topological insulators, [6] the Anomalous Hall effect (AHE) [7], the 

Spin-Hall effect (SHE) [8], electrically controlled interface magnetocrystalline anisotropy [9], and 

tunneling anisotropic magnetoresistance [10 – 12].  
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There are several mechanisms of SOI in layered structures. The Dresselhaus SOI [13] 

originates from the broken inversion symmetry of a crystal. The Rashba SOI [14] is proportional 

to the gradient of electrical potential which can be either intrinsic or extrinsic. The intrinsic 

Rashba effect is well known for surfaces and interfaces [15 – 20] and originates from the electric 

potential gradient across the interface (surface). The extrinsic contribution allows tuning the 

Rashba spin-orbit coupling by the applied voltage [21, 22]. Therefore, the Rashba SOI may serve 

as an important control parameter for the devices based on manipulation of the electron spin.   

So far, the AHE and SHE have been studied in metallic or semiconducting systems where 

the current flows in the plane of the layers. In this work we analyze a different situation. We 

consider a magnetic tunnel junction (MTJ) where the voltage drop takes place across a tunneling 

barrier and the electric current flows perpendicular to the plane. The Rashba SOI is produced by 

the electric field in the insulating barrier layer. Due to the Rashba SOI, the tunneling electrons 

with the opposite spin projection scatter in the opposite directions. Therefore, charge and spin 

Hall currents are generated in the direction perpendicular to the driving electric field in the barrier 

due to the spin-polarized current across the MTJ. We find that, due to the evanescent states being 

responsible for the tunneling current, the amplitudes of the charge and spin Hall currents are 

largest near metal/insulator interfaces and decay exponentially into the barrier. The magnitude and 

direction of the charge and spin Hall currents can be controlled by the orientation of the 

electrode’s magnetizations. A related effect was investigated in ref. [23], where spin-orbit 

scattering was assumed to be caused by the electron scattering on impurities inside the barrier in a 

MTJ.  

 

I I.  A model for MTJ   

 

We consider a MTJ which consists of two identical semi-infinite ferromagnetic electrodes 

separated by an insulating barrier layer, as shown in Fig. 1. The MTJ is assumed to be infinite in 

x-z plane. The electronic structure of the MTJ is described using a free-electron model with the 

exchange splitting of the conducting band. We assume that direct quantum-mechanical tunneling 

of electrons is the dominant transport mechanism in the system. To take into account the SOI in 

the barrier, we adopt formal approach which has been previously applied in refs. [24, 25] to 

describe AHE in the disordered ferromagnets. The Hamiltonians describing the ferromagnetic 

electrodes )( FH  and the barrier )( B
H  are as follows:   
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where λ  is the SOI constant, h  is the Planck constant, m  is the electron mass, τ
r

are the Pauli 

matrices, exchJ  is the exchange splitting of the conducting band, eVEE
R
c

L
c −== ,0  

determine the position of the conducting band in the left )(L  and right )(R  electrodes. We 

approximate the electric potential by a constant in the electrodes and by a linear function inside 

the barrier. This electric potential is overlapped with a rectangular tunneling potential of height U0 

so that the total potential takes a trapezoidal form, eEyUyU −= 0)( . The applied bias is 

described by the constant electric field E  inside the insulating spacer. The SOI term is 

proportional to the gradient of the electric potential V inside the barrier. We assume that the 

magnetizations of the ferromagnetic electrodes lie in the plane of the MTJ and use angle θ  to 

describe the relative orientation of the magnetizations RL MM
rr

,  in the left and right electrodes. 

Both vectors RL MM
rr

,  are parallel to the interfaces. We set 0=θ  for the left electrode and 

arbitrary value of θ  for the right electrode. The SOI constant λ  in the simplest case equals to [1] 

22

2 1

)( acm

h
=λ                                                                                                                    (2) 

where a  is the lattice constant and c  is the speed of light.   

To calculate the current we need to find the wave function Ψ  of the system. The exact 

wave functions in the presence of SOI can be calculated according to refs.  [26, 27]. However, in 

our calculations we adopt a simpler approach. We consider the SOI as a perturbation, and use the 

wave function in the barrier without SOI for the calculation of charge and spin currents. The wave 

function of the system can be found exactly, as well as in the WKB approximation [28]. Here, for 

simplicity, we employ the latter approach.  

 

I I I.  Calculation of charge and spin Hall currents 

 

Due to the Rashba SOI in the barrier, electrons acquire velocity components perpendicular 

to the direction of the driving field. Without spin-orbit coupling the current would flow strictly in 
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the y-direction (in our notation of the coordinate system, Fig. 1). To calculate the charge current 

we use the quantum-mechanical expression for the velocity operator as follows:  
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where Î  is two-by-two identity matrix in the spin space, || VE ∇=
r

 is the electric field inside the 

barrier directed along the y-direction, e  is the electron charge. To calculate the Hall current, we 

keep only the second term in Eq. (3).  

 

 

Fig. 1. Schematic illustration of a magnetic tunnel junction. RL MM
rr

,  are the  (non-collinear) 

magnetizations of the left and right ferromagnetic electrodes.   

 

The total charge current is given by    

↓↑↓↑ +++= RRLLe JJJJJ   ,                                                                                     (4) 

where indices RL,  specify the boundary conditions for the wave function, to distinguish the 

contributions to the current from the electrons with spin =σ ↑  or ↓  arriving from the left and 

right electrodes. Since we consider the non-collinear magnetization of the MTJ, both components 

of the wave function are non-zero. The partial α - component ( zx,=α ) of the current is 

calculated by the summation over all filled states. The charge Hall current originating from 

electrons coming from the left electrode is as follows:   
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where ])/)exp[(1/(1)( TEf F−+= εε  is the Fermi distribution function, FE  is the Fermi 

energy, T  is temperature, and the wave function σ,LΨ  is a two-component spinor. The 

integration in Eq. (5) is performed over the electron energy and the in-plane momentum q
r

. The 

wave function in Eq. (5) is taken in “q-y” representation so that it depends on coordinate y . 

Also, the wave function depends on the mutual orientation of the ferromagnetic electrodes’ 

magnetizations. The current due to the electrons incoming from the right electrode, σ
RJ , is 

calculated using the same formula as Eq. (5) with the replacement σσ ,, RL Ψ→Ψ  and 

)()( eVff −→ εε .  

           

     

      

Fig. 2. Charge Hall current xJ  as a function of the position inside the barrier (a) for different 

angles θ  and partial contributions to the Hall current from the “spin-up” and “spin-down” 

electrons coming from the left (b). The calculations are performed using the following parameters: 

barrier thickness =d 10 Å, the Fermi energy =FE 2.0 eV, the exchange splitting 
exch

J = 1.0 eV, 

the applied bias =V 1.0 V, the barrier height =U 2.0 eV.  

 

 

We calculate the charge Hall current as a function of the position inside the barrier and the 

angle θ  between the magnetization of the electrodes. The calculations are performed using 

representative parameters typical for experiments: barrier thickness 10=d  Å, the applied 

voltage =V 1.0 V and the barrier height =U 2.0 eV.  Fig. 2a displays the dependence of charge 

Hall current on y ,  dy <<0 , for three different values of θ . Our calculations reveal that the 

charge Hall current is non-zero inside the barrier. This is due to the evanescent states that provide 
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a non-zero contribution to the current. As seen from Fig. 2a, the magnitude the charge Hall current 

is much higher near the interfaces and decays exponentially into the barrier region. We also see 

that the sign of the current near the right interface depends on the orientation of the right electrode 

magnetization. Fig. 2b displays the partial contributions of the currents corresponding to the 

waves coming from the left with “up” and “down” z-projection of the spin. As expected, the 

dominant contribution to the charge Hall current near the left interface comes from the region near 

the left interface and the contributions from the electrons with opposite spin orientations have an 

opposite sign with the majority-spin (“up”) electron contribution dominating.    

 

      

 

Fig. 3. The charge Hall current as a function of angle θ  between magnetization of the electrodes 

for different positions inside the barrier. (a) xJ (solid line) and zJ  (dashed line) for =y 9Å (1 Å 

from the right interface) are shown; (b) xJ  for =y 8 Å (solid line), =y 6 Å (dashed line) and 

=y 2 Å (dotted line). 

 

 

Fig. 3 shows the θ  dependence of the x- and z- components of the charge Hall current for 

a fixed position inside the barrier. The total Hall current near the right interface is perpendicular to 

the magnetization of the right electrode. The direction of the Hall current rotates with the 

electrode’s magnetization. Although the magnitude of the current strongly depends on the position 

in the barrier, all the curves follow the θcos  dependence. This angular dependence resembles 

that of the resistance of the magnetic valve [29, 30]. However, due to the charge Hall current in 

the barrier being a sum of the currents from the two electrodes (see Eq. (4)) and each contribution 

decreasing exponentially with the distance from the respective electrode, the local angular 

dependence is largely determined by the contribution from the electrode which is closer. 

Therefore, the observed θcos  dependence does not reflect the spin valve effect, but rather the 
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magnetization projection in the closest electrode. Correspondingly, the z-component of the Hall 

current near the right interface obeys θsin  dependence, as is seen from Fig. 3a (dashed curve). 

This is also evident from the fact that at positions close to the right electrode (y = 9Å, Fig. 3a, and 

y = 8Å and 6Å, Fig. 3b) the direction (sign) of the charge Hall current changes when the right 

electrode magnetization is rotated, whereas close to the left electrode (y = 2Å, Fig. 3b) the sign 

does not change, reflecting the dominant contribution to the current from the left electrode whose 

magnetization orientation is assumed to be fixed.  

Next, we calculate the spin Hall current according to the standard approach (see, e.g., ref. 

[31]).  The spin current is a tensor, βαJ , where the first index refers to the spin component and 

the second index refers to the electron velocity component. As in case of the charge Hall current, 

we hold only the second term in the expression for the velocity (3) when calculate the spin Hall 

current. The total spin current consists of four contributions which are distinguished by the 

boundary conditions:  
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The y-component of the second term in Eq. 3 for the velocity operator is equal to zero, and 

hence there are six components of the spin current tensor which can be non-vanishing, namely 

zzxxzyxyzxxz JJJJJJ =−= ,,, . In fact, in our geometry, when the current flows in the y-

direction and the magnetization is constrained to the x-z plane, only zxxz JJ −=   and  zyJ  are 

non-zero. Fig. 4 shows the calculated zxxz JJ −=  and zyJ  components of the spin current as a 

function of position in the barrier for 0=θ , 2/πθ =  and πθ = . It is seen from Fig. 4a that 

zxxz JJ −=  does not depend on the angle of the magnetization in the electrode (in Fig. 4a all the 

three curves coincide). Normally, these components are referred to as the “spin Hall current”. In 

our case, we find that the zyJ  component of the spin current tensor is also non-zero. As seen 
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from Fig. 4b, it is both position and angle dependent, and resembles the corresponding 

dependences for the charge current (Fig. 2).   

 

      

 
Fig 4: zxxz JJ −=  (a) and zyJ  (b) components of the spin Hall current as a function of 

position in the barrier for different angles θ .  
 

We note that the anomalous charge and spin Hall currents at the metal/insulator interfaces 

inside the metal have been investigated previously, in particularly, in ref. [32]. Those currents are 

due to the SOI produced by the intrinsic fields at the metal/insulator interfaces which can be very 

high. Yet, in ref. [32] the charge and spin currents associated with these fields flow along the 

interfaces in the metal layers.  

                      
I V.  Conclusions   

 

We have investigated theoretically the anomalous and spin Hall effects for a magnetic 

tunnel junction under non-zero bias. The charge and spin Hall currents originate from the Rashba 

spin-orbit coupling of the tunneling electrons due to an applied electrical field. The distribution of 

the charge and spin Hall currents across the barrier were calculated. We found that the currents are 

largest at the barrier/ferromagnet interfaces and decay exponentially with distance from the 

interfaces, following the evanescent character of the states in the barrier. The directions of the 

charge Hall current and the zyJ  component of the spin current near the interface depend on the 

magnetization orientation in the adjacent ferromagnetic electrode. Therefore, one can control the 

charge and spin Hall currents in the barrier via the electrodes’ magnetization rotation. Finally, it is 

worth noting that the current density flowing through the barrier decreases exponentially as the 
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barrier width increases, whereas the density of the charge and spin Hall currents considered here 

decreases as the inverse thickness of the barrier. Therefore, the density of the Hall current can 

exceed the density of the current through the barrier.     
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