
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Evgeny Tsymbal Publications Research Papers in Physics and Astronomy

4-20-2016

On the Structural Origin of the Single-ion
Magnetic Anisotropy in LuFeO3
Shi Cao
University of Nebraska-Lincoln, caoshi86@gmail.com

Xiaozhe Zhang
University of Nebraska - Lincoln

Tula R. Paudel
University of Nebraska-Lincoln, tula.paudel@gmail.com

Kishan Sinha
University of Nebraska-Lincoln, kksinha.physics@gmail.com

Xiao Wang
Bryn Mawr College, xwang07@brynmawr.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicstsymbal

Part of the Condensed Matter Physics Commons

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Evgeny Tsymbal Publications by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Cao, Shi; Zhang, Xiaozhe; Paudel, Tula R.; Sinha, Kishan; Wang, Xiao; Jiang, Xuanyuan; Wang, Wenbin; Brutsche, Stuart; Wang, Jian;
Ryan, Philip J.; Kim, Jong-Woo; Cheng, Xuemei; Tsymbal, Evgeny Y.; Dowben, Peter A.; and Xu, Xiaoshan, "On the Structural Origin
of the Single-ion Magnetic Anisotropy in LuFeO3" (2016). Evgeny Tsymbal Publications. 68.
http://digitalcommons.unl.edu/physicstsymbal/68

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fphysicstsymbal%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicstsymbal?utm_source=digitalcommons.unl.edu%2Fphysicstsymbal%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsresearch?utm_source=digitalcommons.unl.edu%2Fphysicstsymbal%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicstsymbal?utm_source=digitalcommons.unl.edu%2Fphysicstsymbal%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=digitalcommons.unl.edu%2Fphysicstsymbal%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicstsymbal/68?utm_source=digitalcommons.unl.edu%2Fphysicstsymbal%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Shi Cao, Xiaozhe Zhang, Tula R. Paudel, Kishan Sinha, Xiao Wang, Xuanyuan Jiang, Wenbin Wang, Stuart
Brutsche, Jian Wang, Philip J. Ryan, Jong-Woo Kim, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben,
and Xiaoshan Xu

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/physicstsymbal/68

http://digitalcommons.unl.edu/physicstsymbal/68?utm_source=digitalcommons.unl.edu%2Fphysicstsymbal%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages


1 

 

On the Structural Origin of the Single-ion Magnetic Anisotropy in LuFeO3 

 

Shi Cao1, Xiaozhe Zhang2,1, Tula R. Paudel1, Kishan Sinha1, Xiao Wang3, Xuanyuan Jiang1, 

Wenbin Wang4, Stuart Brutsche1, Jian Wang5, Philip J. Ryan6, Jong-Woo Kim6, Xuemei Cheng3, 

Evgeny Y. Tsymbal1, Peter A. Dowben1 and Xiaoshan Xu1 

1Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience,  

University of Nebraska, Lincoln, Nebraska 68588, USA, 

2Department of Physics, Xi’an Jiaotong University, Xi’an 710049, China 

3Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA  

4Department of Physics, Fudan University, Shanghai 200433, China 

5Canadian Light Source, Saskatoon, SK S7N 2V3, Canada 

6Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA 

  



2 

 

Abstract 
Electronic structures for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin 

films have been measured using x-ray absorption spectroscopy at oxygen K (O K) edge. 

Dramatic differences in both the spectra shape and the linear dichroism are observed. These 

differences in the spectra can be explained using the differences in crystal field splitting of the 

metal (Fe and Lu) electronic states and the differences in O 2p-Fe 3d and O 2p-Lu 5d 

hybridizations. While the oxidation states has not changed, the spectra are sensitive to the 

changes in the local environments of the Fe3+ and Lu3+ sites in the hexagonal and orthorhombic 

structures. Using the crystal-field splitting and the hybridizations that are extracted from the 

measured electronic structures and the structural distortion information, we derived the 

occupancies of the spin minority states in Fe3+, which are non-zero and uneven. The single ion 

anisotropy on Fe3+ sites is found to originate from these uneven occupancies of the spin minority 

states via spin-orbit coupling in LuFeO3. 

Introduction 
The structure of a crystalline material plays a determinant role in its physical properties. By fine-

tuning the crystal structure, physical properties of a material may be modified and this offers 

great opportunities in engineering functional materials. [1–3] Particularly interesting is the effect 

of the crystal structure on the magnetic structure, including the relative alignment between the 

spins and the preferred overall orientation of the spins (magnetocrystalline anisotropy). While 

the exchange interactions determine the relative alignment of the spins, their effect on the 

magnetocrystalline anisotropy is indirect, because the exchange interactions are isotropic. Single-

ion magnetic anisotropy is a critical factor for the overall magnetocrystalline anisotropy, 

although the latter is also affected by the topological arrangements of the spins. [4] The crystal 

structure, particularly the local environments of the magnetic ions, is expected to decide the 

single-ion magnetic anisotropy, by changing their orbital states and affecting spin orientations 

via the spin-orbit coupling. [5–7] 

Here we are concerned with the effect of the crystal structure on the magnetic anisotropy in 

antiferromagnetic LuFeO3. LuFeO3 is a rare example of a material that exists in both 

orthorhombic and stabilized hexagonal structures [3,8–15], which are different both in symmetry 

of the lattice and in the symmetry of the local environment of the metal (Fe and Lu) sites [Fig. 1 

(a) and (b)]. [16] These differences in structure, give rise to the dramatic differences in properties 

such as ferroelectricity and magnetism. [8,10,11,13,14] In hexagonal LuFeO3 (h-LuFeO3), the 

inversion symmetry of the lattice structure is broken by the rotation of the FeO5 trigonal 

bipyramids, generating ferroelectricity below 1050 K with a polarization on the order of 10 

μC/cm2.  [3,9,10,13,17] The spins on the Fe sites in h-LuFeO3 order in a 120-degree 

antiferromagnetic fashion in the 𝑎 − 𝑏 plane [Fig. 1(a)]; a canting of the spins out of the 𝑎 − 𝑏 

plane results in a weak ferromagnetism below 130 K. [8,9,11,13,18] In orthorhombic LuFeO3 (o-

LuFeO3), ferroelectricity is unexpected due to the symmetric arrangement of the atoms. The 

spins on the Fe sites in o-LuFeO3 order antiferromagnetically in a chain-like fashion in the 𝑎 − 𝑏 

plane below 620 K [Fig. 1(b)]; a canting toward the 𝑐 axis generates a weak 

ferromagnetism. [19] The single-ion magnetic anisotropy is critical for the magnetic orders in 
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LuFeO3:  In o-LuFeO3, it is the prerequisite for the magnetocrystalline anisotropy; in h-LuFeO3, 

the weak ferromagnetism is not allowed unless the spins are along the 𝑎 axis. [13,14,20] 

Therefore, elucidating the origin of the single-ion magnetic anisotropy is important to 

understanding and tuning the magnetism in LuFeO3; this is especially true in h-LuFeO3, a 

promising magnetoelectric material that exhibits ferromagnetism and ferroelectricity 

simultaneously [21]. 

In this work, we attempt to understand the single-ion magnetic anisotropy in LuFeO3, by 

studying the effect of the crystal structure on the orbital states, and the consequential effect on 

the spin states according to the spin-orbit coupling. To investigate the orbital states of Fe, we 

measured the electronic structures of LuFeO3 using x-ray absorption spectroscopy; the results are 

consistent with the D3h and Oh local symmetry of Fe sites in the hexagonal and orthorhombic 

LuFeO3 respectively. More details of the orbital states are calculated according to the low 

temperature structure of LuFeO3 (CS and D2h local symmetry for Fe sites in the hexagonal and 

orthorhombic structures respectively) using the multiplets theory. [22] The low temperature 

structure of h-LuFeO3 was measured in this work using single-crystal x-ray diffractions, since it 

has not been reported. We found that the low local symmetry split the orbital states, generating 

preferred spin orientations of these states via spin-orbit coupling. The magnetic anisotropy for 

the whole Fe3+ ion is then caused by the non-zero and uneven occupancies of the spin-minority 

states due to the uneven hybridizations of these states to O 2p states. For orthorhombic LuFeO3, 

the predicted easy axis for the spins is the shortest axis (𝑎 axis) after the D2h distortion. For 

hexagonal LuFeO3, the preferred spin orientation are in the intersection between the basal plane 

and the mirror plane of the CS symmetry. Both predictions are consistent with the experimental 

observations. [13,18,19] 

Methods 

Experimental 

Hexagonal and orthorhombic LuFeO3 films (~50 nm) have been grown on Al2O3 (0001) and 

SrTiO3 (001) substrates respectively using pulsed laser deposition at 750 oC with 5 mtorr oxygen 

environment. [13] The surfaces of the film samples are (0001) for h-LuFeO3 and (001) for o-

LuFeO3. X-ray absorption spectroscopy (XAS) studies via the X-ray Photoemission Electron 

Microscope (X-PEEM) have been carried out at the SM beamline of the Canadian Light Source 

with a linearly polarized x-rays at room temperature in ultrahigh vacuum; the incident angle is 16 

degree (See S1) [23]. Structural refinement using x-ray diffraction has been carried out at 6-ID-B 

beam line of the Advanced Photon Source by measuring 43 diffraction peaks at 7 temperatures. 

Theoretical Methods 

Theoretical modeling of the bulk h-LuFeO3 and o-LuFeO3 was performed using density 

functional theory, the projected augmented wave method [21], and Perdew-Burke-Ernzerhof 

pseudopotentials [22], as implemented in Vienna ab initio simulation package [22]. We fully 

relaxed the structure with the force convergence limit of 0.01 eV/atom. Correlation effects 

beyond generalized gradient approximation (GGA) were treated at a semi-empirical GGA+U 

level within a rotationally invariant formalism [24] with a U = 5 eV chosen for the Fe 3d-

orbitals [15]. In k-edge XAS spectroscopy, an electron is excited from the O 1s core level to the 
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conduction band. In the semiconductor like LuFeO3, the resulting core hole is only partially 

screened affecting the orbital energy. In order to take into account the effect of the core hole on 

measured XAS spectra, we introduce a frozen ½ hole  [25] in apex (6c Wyckoff’s position, see 

S9 for definition) [23] oxygen site in a 221 supercell for h-LuFeO3, and a 222 supercell for 

o-LuFeO3. The supercell is necessary to minimize the interaction between the core holes 

introduced to the periodic boundary conditions. 

Results and discussion 

Energy and spatial distribution of the orbital states measured using XAS 

As the first step, we investigate the effect of the crystal structure on the orbital states of the metal 

ions (Fe and Lu), because the crystal structure affect the spin states of the magnetic ions by first 

changing their orbital states. X-ray absorption spectroscopy was employed to study the 

unoccupied orbital states (conduction band). The measured energy distribution (spectra shape) 

and spatial distribution (linear dichroism) of these orbital states are compared with the crystal 

field splitting and hybridization (with O 2p states) analyzed according to the crystal structure. 

As shown in Fig. 2, absorption spectra as functions of x-ray energy with linearly polarized x-ray 

have been collected in the energy range 525 eV to 560 eV; the energy range corresponds to the 

excitation of O 1s orbital to O 2p orbital (O K edge). The fact that the O 1s  O 2p excitations 

are clearly observed indicates significant hybridization between the metal (Fe and Lu) states and 

the oxygen states, making the effective occupation of the O 2p orbital different from the full 2p6 

occupation. The presence of the O 1s  O 2p excitations also means that the electronic 

occupancy for the metal (Fe and Lu) sites is more complex than suggested by their nominal 

valence. Hence, the energies of the unoccupied oxygen orbitals actually correspond to the 

energies of the metal (Fe and Lu) states, as illustrated in Fig. 1(c). Therefore, using the O K edge 

absorption spectra, one can infer the properties of the states that include metal (Fe and Lu) 

atomic contributions through hybridization. [24,26] In the case of LuFeO3, the conduction 

(unoccupied) states include Fe 3d, Fe 4s, Lu 6s and Lu 5d. Among these states, Fe 3d and Lu 5d 

are expected to be more localized and the energy distributions are narrow enough to be resolved 

in the x-ray absorption spectra. 

By comparing the observed spectra in this work to the previous studies on YMnO3 and LuFe2O4 

(see S2)  [23,24,27] one can divide the absorption spectra into two parts that correspond to the 

contribution from Fe 3d and Lu 5d respectively, as shown in Fig. 2. 

For the spectra related to Fe 3d unoccupied states (conduction band), the differences between h-

LuFeO3 and o-LuFeO3 are huge, not only in the spectra shape, but also in the dichroism. These 

differences appear to be correlated with the local environments of the Fe centers. As shown in 

Fig. 1 (b), in o-LuFeO3, the local environment of the Fe centers are the FeO6 octahedra; no 

strong anisotropy or optical dichroism is expected due to the Oh local symmetry of the Fe-site. In 

contrast, as shown in Fig. 1(a), the local environment of the Fe centers in h-LuFeO3 is the FeO5 

trigonal bipyramid; the D3h local symmetry suggests strong anisotropy and optical dichroism 

between the 𝑎 − 𝑏 plane and the 𝑐 axis. Below, we try to understand the spectra shape (energy 
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distribution) in terms of the crystal field splitting, and to understand the dichroism (spatial 

distribution) in terms of the hybridization between the Fe 3d and O 2p states. 

In h-LuFeO3, the degeneracy of the Fe 3d states are broken by the crystal field from the 5 

neighboring oxygen sites in the trigonal bipyramid FeO5. Applying group theory analysis (see 

S5), [23,28,29] the D3h local symmetry splits the 5 Fe 3d states into 𝑎1
′  (2𝑧2 − 𝑥2 − 𝑦2), 

𝑒′(𝑥2 − 𝑦2, 𝑥𝑦), and 𝑒′′(𝑥𝑧, 𝑦𝑧); the z direction is approximately parallel to the three fold 

rotational axis of FeO5 and the 𝑐 axis of the h-LuFeO3 unit cell. Analysis using the multiplets 

model (see S6) [22,23] provides the order of these states in energy as 𝐸𝑎1
′ > 𝐸𝑒′ > 𝐸𝑒′′ (see 

S6). [12,23] One can roughly understand this lifting of degeneracies, using the electrostatic 

energy between the oxygen sites and the Fe 3d electrons in the FeO5 bipyramid: The 𝑎1
′  state is 

very close to the apex oxygen sites, while the 𝑒′′ state is far away from all the oxygen sites. 

However, our first-principles calculations show that 𝑒′ states to lie below 𝑒′′ states. The 

calculated density of states that are resolved in cubic harmonics (Fig 3(a)), shows that bottom of 

conduction band is dominated by the Fe- 𝑒′ states.  This is in part supported by the shorter Fe-O 

bond length (~1.95 Å) along apex (𝑧) direction compared to slightly longer bond (~1.99 Å) along 

equator direction. In additions we found slight variations on in-plane bonds as well indicating 

symmetry lowering during relaxations, leading to somewhat different density of states than that 

calculated using full potential approximation [12]. An additional calculation performed for an 

FeO5 cluster with the in-plane ∠O-Fe-O =120° also shows that in the conduction band 𝑒′ to lies 

below 𝑒′′(see S10) [23]. However, when the angle is rotated to 135°, 𝑒′′ states becomes lower in 

energy than 𝑒′ states (see S10) [23]. We argue that in XAS spectra, the core hole that is created 

by the incoming x-ray beam may not be completely screened in semiconductor or near dielectric 

like LuFeO3. When such a hole is present in oxygen at the apex site, the 𝑒′′ and 𝑎1
′  state are 

affected by larger electrostatic attraction compared to other orbitals that lowers their energy.  As 

a result, these states may appear below the 𝑒′ states. To test this hypothesis, we constructed an 80 

atom supercell, including the core hole in the apex site, and calculated the orbital-dependent 

density of electronic states. Fig 3(b) shows the density of states projected on the Fe site bonded 

to the oxygen at the apex site, indicating that the 𝑒′′ states lie lower in energy than the 𝑒′ states. 

On the other hand, as shown below, the energy ordering of the 𝑒′′ and 𝑒′ states does not play 

important role for the single-ion magnetic anisotropy in h-LuFeO3. Instead, the significant 

hybridization of the 𝑎1
′  states and the splitting of the 𝑒′′ and 𝑒′ states due to the lattice distortion 

are the key. 

Due to the different spatial distribution of these crystal field states, their hybridizations with O 2p 

orbitals are different, which is schematically shown in Fig. 4. For h-LuFeO3, one needs to 

consider two inequivalent O sites: the apex O and the equator O, as shown in Fig. 1(a). The O 2p 

states are divided into p (along the 𝑐-axis) and s (in the 𝑎 − 𝑏 plane) to match the linearly 

polarized x-ray. By calculating the hybridization using Harrison’s method (see S8), [23,30] five 

non-zero scenarios can be identified, as depicted in Fig. 4 using boxes. The hybridization can be 

appreciated by looking at the overlap of the wave function between the Fe 3d and O 2p orbitals. 

With linearly s (in plane) and p (out of plane) polarized x-ray, the excitation from O 1s to s and p 

branches of the O 2p states can be chosen respectively using their spatial distribution according 
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to the optical selection rules [29]. As shown in Fig. 4, one expects two peaks in the XAS of p 

polarization and three peaks in the XAS of s polarization, which matches the experimental 

observation in Fig. 2 (a) closely. The calculated hybridization strength using the Harrison’s 

method is also displayed in Fig. 2(a), which qualitatively agrees with the observed spectra 

intensity (see S8). [12,23,26] From the experimentally obtained XAS peak positions, one can 

extract the energy separations between the Fe 3d 𝑎1
′ , 𝑒′, and 𝑒′′ states, as well as the energy 

difference 𝛿1𝑠 between the O 1s states in the apex and equator sites. The results are 𝐸𝑎1
′ − 𝐸𝑒′ =

1.1 eV, 𝐸𝑎1
′ − 𝐸𝑒′′ = 1.4 eV, and 𝛿1𝑠 = 0.6 eV, in fair agreement with the values we found in 

our previous work. [12] 

The analysis is more straightforward in o-LuFeO3. The Fe 3d states are split into the well-known 

𝑡2𝑔 (𝑥𝑧, 𝑦𝑧, 𝑥𝑦) and 𝑒𝑔 (2𝑧2 − 𝑥2 − 𝑦2, 𝑥2 − 𝑦2) states [31], in which the 𝑡2𝑔 states have lower 

energy consistent with calculated density of state as shown in Fig 3(c). From the spectra in Fig. 

2(b), one finds that 𝐸𝑒𝑔
− 𝐸𝑡2𝑔

= 1.4 eV. Again, no dichroism is expected due to the Oh local 

symmetry. Additionally, we found that presence of core hole does not change the ordering of the 

states.  

The electronic structure of the Lu 5d states may also be inferred from the corresponding spectra. 

Figure 2(c) and (d) display the XAS related to the Lu 5d states in h-LuFeO3 and o-LuFeO3. The 

local environments of Lu correspond to C3v symmetry in both h-LuFeO3 and o-LuFeO3. 

According to the group theory analysis (see S5), [23,28,29] the five Lu 5d states are split into 

two doubly degenerate 𝑒 states and one 𝑎1(2𝑧
2 − 𝑥2 − 𝑦2) state. Using multiplet model (see 

S6) [22,23], one can gain more insight of the symmetry of the two 𝑒 states: they are 𝑒𝜎 = [(𝑥2 −

𝑦2) + 2𝑥𝑧, 𝑥𝑦 + 𝑦𝑧] and 𝑒𝜋 = [(𝑥2 − 𝑦2) − 2𝑥𝑧, 𝑥𝑦 − 𝑦𝑧], where ~1 is a mixing factor. 

The order of these states in energy is 𝐸𝑒𝜎 > 𝐸𝑎1
> 𝐸𝑒𝜋.  

In h-LuFeO3, the three-fold rotational axis of the LuO7 local environment is aligned with the 

crystalline 𝑐 axis, which is also the out-of-plane direction for the film samples. This definitive 

alignment between the high symmetric axis and the polarization of the x-ray generates 

dichroism, as observed in Fig. 2(c). For the 𝑎1 state, since the probability density of the wave 

function is mostly along the 𝑧 axis, its hybridization with the equator O 2pz is expected to be the 

largest, which corresponds to an enhancement with the 𝑝 polarization in the XAS. For the 𝑒𝜎 and 

𝑒𝜋 states, the hybridization are mostly with the 2p of the apex oxygen sites, resulting in higher 

intensity of XAS in the 𝑠 polarization. The calculated hybridization strength is also plotted in 

Fig. 2(c) using the Harrison’s method as a comparison (see S8). [23,26] We extract the energy 

separation as approximately 𝐸𝑒𝜎 − 𝐸𝑎1
= 2.7 eV and 𝐸𝑒𝜎 − 𝐸𝑒𝜋 = 4.9 eV. The crystal field 

splitting is larger in Lu 5d than that in Fe 3d, suggesting that the Lu 5d is more exposed to the 

surrounding oxygen sites. 

In contrast, there is no overall alignment between the rotation axis of the LuO6 moieties and the 

crystal axis, which greatly reduces the dichroism effects, because of the averaging over various 

orientations. Nevertheless, the crystal field splitting feature does not vanish, as observed in the 

spectra in Fig. 2(d). We extract the energy separations of 𝑒𝜎 to 𝑎1 and 𝑒𝜎  to 𝑒𝜋 as approximately 
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𝐸𝑒𝜎 − 𝐸𝑎1
= 2.6 eV, and 𝐸𝑒𝜎 − 𝐸𝑒𝜋 = 4.9 eV, quite similar to the results from the h-LuFeO3. 

The similarities in these energy separations of unoccupied states is consistent with the fact that 

the Lu-O bond length and local symmetry are similar in o-LuFeO3 and h-LuFeO3. 

Therefore, the energy and spatial distributions of the metal states (Fe and Lu) measured using 

XAS are consistent with the crystal field splitting and hybridization analyzed according to the 

crystal structural. Another key result from the XAS study is the significant Fe 3d-O 2p 

hybridizations. In LuFeO3, the Fe 3d is nominally half-filled, corresponding full spin majority 

states and empty spin minority states. On the other hand, significant Fe 3d-O 2p hybridizations 

make the effective occupancy of the spin minority states non-zero and uneven; this turns out to 

be critical for the single-ion magnetic anisotropy in LuFeO3. 

Splitting of orbital states in low symmetry structure and single-ion anisotropy 

As the second step, we study the single-ion anisotropy of Fe based on the 3d orbital states 

measured in the XAS study. We calculate spin anisotropy of the individual Fe 3d states 

according to spin orbit coupling; from the spin anisotropy of these individual states, we calculate 

the spin anisotropy of the whole Fe (single-ion magnetic anisotropy) by considering the uneven 

occupancies of these states, according to the Fe 3d-O 2p hybridizations found in the XAS 

measurements. 

The following one-electron Hamiltonian is used to model the effect of crystal structure on spin 

anisotropy of the Fe 3d individual states: 

𝐻𝛼 = 𝑉𝐶𝐹(𝑑) + 𝜉�⃗� ⋅ 𝑆 − 𝐽𝑆 ⋅ �̂�,   (1) 

where the basis are the 10 Fe 3d states considering both orbital and spin degrees of freedom. 

The first term 𝑉𝐶𝐹(𝑑) is a matrix that takes into account the crystal field on the Fe orbital states. 

The crystal field splitting (about 1 eV) of Fe 3d measured using XAS (D3h symmetry and Oh 

symmetry for hexagonal and orthorhombic structures respectively) are included in the matrix as 

constants (see S6 and S7). In addition, we need to consider more details of crystal field splitting 

that cannot be revealed by XAS measurements (because of the experimental uncertainty), i.e. the 

splitting due to the CS and D2h local symmetry of the Fe in hexagonal and orthorhombic LuFeO3 

respectively. Figure 5(c) and (d) display these local displacement in hexagonal and orthorhombic 

LuFeO3 respectively. In the ferroelectric phase of h-LuFeO3 (below 1050 K), [13] the Fe shift 

from the center of the FeO5 toward (or way from) one of the equator oxygens by 𝛿𝐹𝑒, which 

removes the 3-fold rotation symmetry as well as the 2-fold rotation symmetry; the corresponding 

symmetry of the FeO5 local environment is reduced from D3h to CS, which contains one vertical 

mirror plane that is parallel to the 𝑐 axis and passes the O3 site [see Fig. 5(c)]. For orthorhombic 

LuFeO3, the FeO6 octahedra are distorted so that the Fe-O bond length along the 𝑥, 𝑦 and 𝑧 

directions are all different. Taking the 𝑥 − 𝑦 plane for example, the distortion can be viewed as 

the displacement of oxygen atoms by 𝛿𝑂, as shown in Fig. 5(d). We represent the distortions in 

the crystal field potentials 𝑉𝐶𝐹 using a perturbation parameter 𝑑 that are proportional to the 

displacement of atoms [𝑑 ∝ −𝛿𝐹𝑒 and 𝑑 ∝ 𝛿𝑂, see Fig. 5 (c) and (d)]. The orbital states in these 
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low symmetry structures (CS and D2h) can be calculated as functions of the distortion parameter 

𝑑. 

The second term 𝜉�⃗� ⋅ 𝑆  represents the spin orbit coupling, where �⃗�  and 𝑆  are the orbital and spin 

angular momentum respectively, and 𝜉 is the spin-orbit coupling strength (taken as 0.05 eV). 

The third term 𝐽𝑆 ⋅ �̂� represents the exchange interaction between the Fe sites. The net effect of 

the spins from all the other Fe sites is treated as a molecular field 𝐽�̂�, where 𝐽 > 0 (taken as 4 

eV) represents the molecular field strength from the exchange interaction and 𝛼 = 𝑥, 𝑦, or 𝑧 is 

the orientation of the molecular field. The molecular field splits the individual states on Fe into 

spin majority and minority states, in which the spins are parallel and antiparallel to the molecular 

field respectively. 

Diagonalizing the Hamiltonian in Eq. (1), one can find the energy of every individual states, 

modified by the structural distortion, as well as the molecular field. By varying the direction of 

the molecular field �̂�, one can find the spin anisotropy energy of individual states. The total 

energy of Fe3+ ion can be calculated using 𝐸𝛼 = ∑𝑛𝑖𝐸𝑖𝛼, where 𝑛𝑖 and 𝐸𝑖𝛼  are the occupancy and 

energy of the one-electron state 𝑖 respectively. The single-ion magnetic anisotropy energy can be 

found from the dependence of total energy on the direction �̂�. In LuFeO3, the Fe 3d is nominally 

half-full, corresponding to fully occupied spin majority states and empty minority states; the 

single-ion magnetic anisotropy is then expected to be zero. On the other hand, as observed in the 

XAS, significant hybridization between Fe 3d and O 2p makes the effective occupancy of the 

spin minority states non-zero and uneven. A non-zero single-ion magnetic anisotropy of Fe3+ is 

then expected. Below, we discuss the single-ion magnetic anisotropy of Fe3+ in hexagonal and 

orthorhombic LuFeO3 and the dependence on the distortion parameter 𝑑. 

To discuss the spin anisotropy between the 𝑧 axis and the 𝑥 − 𝑦 plane in h-LuFeO3, as a good 

approximation, the D3h point group can be taken as the symmetry of the FeO5 local environment. 

In this case, the hybridization of the 2𝑧2 − 𝑥2 − 𝑦2 states (𝑎1
′  of Fe 3d) with the O 2p states is 

the largest [see Fig. 2(a)]. So the effect of spin orientation on the energy of the 2𝑧2 − 𝑥2 − 𝑦2 

state is the most important. When the spins are along the 𝑧 axis, the 2𝑧2 − 𝑥2 − 𝑦2 state only 

interacts with the spin majority states (see S7) [23], causing a smaller increase of its energy. 

When the spins are along the 𝑥 axis, the 2𝑧2 − 𝑥2 − 𝑦2 state interacts with both spin minority 

and majority states (see S7) [23], causing a larger increase of its energy. So in D3h local 

environment, one has 𝐸𝑥 > 𝐸𝑧, as shown in Fig. 5(a). Similarly, 𝐸𝑦 > 𝐸𝑧 is found. The 

anisotropy energy 𝐸𝑥 − 𝐸𝑧 is on the order of  
𝜉2

𝐸𝐸𝑋𝐶𝐹
〈𝑛𝑖〉, where 𝐸𝐸𝑋𝐶𝐹 is the energy scale of 

crystal field and exchange interactions (a few eV), and 〈𝑛𝑖〉 is the average occupancies of the 

minority states (see S7) [23]. 

To discuss the spin anisotropy in the 𝑥 − 𝑦 plane in h-LuFeO3, the D3d→CS distortion of the 

local environment needs to be considered. As shown in Fig. 5(a), when 𝑑 = 0, 𝐸𝑥 − 𝐸𝑦 = 0, 

indicating no anisotropy in the 𝑥 − 𝑦 plane when there is no distortion. When 𝑑 < 0, 𝐸𝑥 − 𝐸𝑦 <
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0, corresponding to an easy 𝑥 axis within the 𝑥 − 𝑦 plane. The anisotropy energy 𝐸𝑥 − 𝐸𝑦 is on 

the order of 
𝜉2

𝐸𝐸𝑋𝐶𝐹

𝑑

𝐸𝐸𝑋𝐶𝐹
〈𝑛𝑖〉. 

In o-LuFeO3, we consider Oh→D2h distortion that breaks the symmetry of 𝑥, 𝑦, and 𝑧, again 

using the parameter 𝑑 (distortion energy) that has the same sign as the displacement 𝛿𝑂 (see 

S7) [23]. As shown in Fig. 5(b), when 𝑑 > 0, 𝐸𝑥 < 𝐸𝑧 < 𝐸𝑦; the 𝑥 axis is the easy axis. The 

anisotropy energy 𝐸𝑧 − 𝐸𝑥 is also on the order of 
𝜉2

𝐸𝐸𝑋𝐶𝐹

𝑑

𝐸𝐸𝑋𝐶𝐹
〈𝑛𝑖〉.  

To verify the calculated relations between the structure and the single-ion magnetic anisotropy, 

we compare the above predictions with the experimental observations. 

In o-LuFeO3, the observed lattice distortion is displayed in Fig. 5(d)  [32], where 𝛿𝑂>0 and 𝑑 >

0, suggesting 𝐸𝑥 < 𝐸𝑧 < 𝐸𝑦 according to Fig 5(b). This means that the shortest axis is the easy 

axis, which is consistent with the observed single-ion anisotropy [see S7] [19].  

In h-LuFeO3, at low temperature, the spins on the Fe sites prefer lying in the intersection 

between the basal plane and the mirror plane of the CS symmetry, or the 𝑥 direction displayed in 

Fig. 5(c). [13,14,33] According to Fig. 5(a), this corresponds to a negative distortion parameter 

(𝑑 < 0) and a positive displacement of Fe (𝛿𝐹𝑒 > 0). On the other hand, the details of the CS 

distortion at low temperature, e.g. the sign and magnitude of 𝛿𝐹𝑒, have not been reported. We 

need to measure the structural distortion pattern of h-LuFeO3 at low temperature to verify the 

predicted effect of crystal structure on the single-ion anisotropy. 

In order to clarify the lattice distortion in h-LuFeO3, we measured the low temperature (7 

temperatures, down to 6 K) single-crystal x-ray diffractions (43 peaks) and carried out structure 

refinements (see S9) [23]; the results are shown in Table I. The room temperature distortion 

agrees with the previous work. [10] At low temperature, Fe moves away from the O3 site (see 

site definition in S9) (𝛿𝐹𝑒 > 0, 𝑑 < 0), suggesting that the single-ion magnetic anisotropy energy 

𝐸𝑥 − 𝐸𝑦 < 0, according to the analysis above, which is observed experimentally. 

While the single-ion magnetic anisotropy of h-LuFeO3 in the 𝑥 − 𝑦 plane is correctly predicted 

by the model, the model also predicts that the 𝑧 axis is the overall easy axis. This controversy 

may have to do with the geometric frustration on a triangular lattice when the spins are pointing 

out of plane and the spins are coupled antiferromagnetically. In other words, the spins cannot be 

along the 𝑧 axis  and form the 120 degree order at the same time. [4] Therefore, whether the 

spins are out of the 𝑥 − 𝑦 plane is not solely determined by the single-ion magnetic anisotropy. 

On the other hand, the rotation within the 𝑥 − 𝑦 plane does not change the 120 degree order and 

has no effect on the total energies from the exchange interactions. So in the 𝑥 − 𝑦 plane, the 

single-ion magnetic anisotropy play a dominant role in determining the preferred spin 

orientation, as verified by the correct prediction of the relation between the crystal structure and 

the preferred spin orientation in h-LuFeO3. 

In general, quantitative comparison between the predicted single-ion magnetic anisotropy and the 

observation is difficult, because the occupancy {𝑛𝑖} of the spin minority states, the magnitude of 
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the distortion energy, and the single-ion magnetic anisotropy are hard to estimate. Nevertheless, 

in h-LuFeO3, the reversal of the weak ferromagnetic moments corresponds to the rotation of the 

spins by 180 degree within the 𝑥 − 𝑦 plane; so we can estimate the single-ion magnetic 

anisotropy energy using the coercivity. In addition, the distortion energy can be estimated using 

the onset temperature of the structural distortion. Assuming that the model is correct, one can 

estimate the order of magnitude of {𝑛𝑖} in h-LuFeO3. Taking 2 tesla as the coercive field, and 

0.025 𝜇𝐵/𝐹𝑒 as the canted moment [11,13], the anisotropy energy can be estimated as 

approximately 3 𝜇𝑒𝑉. The order of magnitude of the distortion energy is estimates as 10 meV 

from the onset temperature (~150 K) of the structural distortion observed in Table 1. Using the 

results in Fig. 5(a), we found the occupancies of 𝑛𝑒′′ = 0.05, 𝑛𝑒′ = 0.08, and 𝑛𝑎1
′ = 0.2 for spin 

minority states. The large 𝑛𝑎1
′  is consistent with the recent optical spectroscopy 

results. [12,34,35] 

Conclusion 
In conclusion, we have studied the effect of the crystal structure on the single-ion anisotropy of 

the Fe in hexagonal and orthorhombic LuFeO3. We found that the low structural symmetry of the 

local environment splits the Fe 3d orbital states by the crystal fields; the spin anisotropy of these 

one-electron states is then generated via spin orbit coupling. In addition, the electronic 

configurations of Fe3+ is found more complex than nominal valency arguments, i.e. the spin 

minority states are also partly occupied due to the Fe 3d-O 2p hybridization. These occupancies 

of the different spin minority states are uneven because of their different spatial distributions. 

The single-ion magnetic anisotropy of Fe3+ is then caused by the spin anisotropy of the one-

electron 3d states and the uneven occupancies of these states. For h-LuFeO3, the D3h symmetry 

of the FeO5 is responsible for the anisotropy between the 𝑥 − 𝑦 plane and the 𝑧 axis, while the 

distortion from the D3h to CS symmetry generates the anisotropy within the 𝑥 − 𝑦 plane; 2) for o-

LuFeO3, the distortion from Oh to D2h symmetry of the FeO6 generates the anisotropy between 

the 𝑥, 𝑦 and 𝑧 directions. The key role of the local structural symmetry suggests a route in tuning 

the magnetism in LuFeO3 by fine adjustment of the crystal structures, as well as a route in 

coupling the electric and magnetic degrees of freedom via structural distortions. 
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Figures and captions 
 

 

 

Figure 1. Lattice structures of hexagonal (a) and orthorhombic (b) LuFeO3 as well as the local 

environments of the Lu and Fe sites. The thick arrows in (a) and (b) indicate the orientations of 

the spins. (c) Schematics of the O K edge excitation in LuFeO3. The crystal-field-splitting 

energies are measured from the XAS spectra (see text). 
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Figure 2. Absorption spectra corresponding to the O K edge with linearly polarized (𝑠: in plane, 

𝑝: out of plane, see S1 [23]) x-ray in LuFO3. The spectra corresponding to the Fe 3d-O 2p 

hybridizations are displayed for hexagonal (a) and orthorhombic (b) LuFeO3. The spectra 

corresponding to the Lu 5d-O 2p hybridizations are displayed for hexagonal (c) and 

orthorhombic (d) LuFeO3. The vertical lines (solid: 𝑝 polarization, dashed: 𝑠 polarization) in (a) 

and (c) are the results from the calculation of hybridization using the Harrison’s method (see 

text). The arrows in (a) point to the energies of the excitations corresponding to the 5 hybridized 

states in Fig. 4. In (c)-(e), the hybridizations corresponding to the excitations peaks are labelled. 
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Figure 3.  Calculated density of states (DOS) of h-LuFeO3 resolved into 𝑒′ and 𝑒′′ according to 

the D3d symmetry of  h-LuFeO3 (a), DOS projected at the Fe atom bonded with oxygen at apex 

site containing ½ hole in core 1s states (b), and 𝑡2𝑔 and 𝑒𝑔  resolved DOS of o-LuFeO3 projected 

at Fe atom according to the Oh symmetry of the crystal (c). 
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Figure 4. Model of hybridization between Fe 3d and O 2p illustrated using the relative position 

between the wave functions at different configurations. The configurations that correspond to 

significant hybridizations are boxed. 
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Figure 5. Calculated anisotropy energy as a function of lattice distortion energy parameter 𝑑 for 

h-LuFeO3 (a) and o-LuFeO3 (b). Observed lattice distortion pattern and preferred spin orientation 

from single-ion anisotropy at low temperature in h-LuFeO3 (c) and o-LuFeO3 (d) (See S7) [23]. 

The structural models are viewed along the 𝑐 axis. The O3 and O4 are the equator oxygen atoms 

(see Fig. 1 and S9 for definition). The exchange interaction and spin-orbit coupling parameters 

are assumed as 𝐽 = 4 eV and 𝜉 = 0.05 eV. For the crystal field interaction, the experimentally 

observed parameters are used. The occupancy of the spin majority states are set as one. The 

occupancy for the spin minority states are set as small numbers proportional to the calculated 

hybridizations according to the Harrison’s method. For h-LuFeO3, 𝑛𝑒′′ = 0.046, 𝑛𝑒′ = 0.068, 

and 𝑛𝑎1′ = 0.18; for o-LuFeO3, 𝑛𝑡2𝑔
= 0.02 and 𝑛𝑒𝑔

= 0.071. Notice that 𝑑 ∝ −𝛿𝐹𝑒 and 𝑑 ∝

𝛿𝑂. 
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Table and Caption 
 

Displacement 

(× 𝟏𝟎−𝟑) 
6 K 𝟏𝟎𝟎 𝑲 𝟏𝟏𝟎 𝑲 𝟏𝟑𝟎 𝑲 𝟏𝟓𝟎 𝑲 𝟐𝟎𝟎 𝑲 𝟑𝟎𝟎 𝑲 𝑬𝒓𝒓𝒐𝒓 𝟑𝟎𝟎 𝑲 [10] 

 

𝛿𝐹𝑒/𝑎 1.9 1.6 1.5 1.4 1.4 1.0 0.1 0.9 0 

 

Table 1. Displacements of the Fe sites (𝛿𝐹𝑒), defined as the displacement of Fe site away from 

the nearest equator oxygen site (see Fig. 5(c)) [23], where 𝑎 is the lattice constants of the basal 

plane in h-LuFeO3. 
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On the Structural Origin of the Single-ion Magnetic 

Anisotropy in LuFeO3: supplementary material 
 

S1. X-ray absorption at the oxygen K-edge and the role of metal-oxygen hybridization 

Figure S1.1 (a) depicts the experimental configuration of the x-ray absorption experiments. The x-ray has 

an incident angle of 16 degree above the plane of the sample. For the p polarization, the electric vector of 

the photon is in the sample surface plane. For the s polarization, the electric vector of the photon is almost 

perpendicular to the sample surface, since cos(16o) = 0.96. 

The physical process of the excitation from O-1s orbital (K edge) is illustrated in the Fig. S2(b). The 

intensity of the optical transition is determined by the transition matrix < 𝜙𝑂−1𝑠|𝑟|𝜙𝑓 >, where 𝜙𝑂−1𝑠 is 

the O-1s orbital and 𝜙𝑓 = 𝜙𝑀𝑒 + 𝑎𝜙𝑂−2𝑝, where 𝜙𝑀𝑒 is the metal (Fe and Lu) valence orbital and the 

𝜙𝑂−2𝑝 is the O-2p orbital. The matrix element < 𝜙𝑂−1𝑠|𝑟|𝜙𝑂−2𝑝 > is significant because the O-1s and 

O-2p are on the same atom and the two wave functions have different symmetries with respect to 

inversion. In contrast, the matrix element < 𝜙𝑂−1𝑠|𝑟|𝜙𝑀𝑒 > is much less significant because the overlap 

between the O-1s and valence orbital of metal (Fe and Lu) atoms are much less than that between O-1s 

and O-2p. Therefore, although the coefficient 𝑎 may be small, the observed intensity of the O-K edge x-

ray absorption are coming mainly from the transition of partially unoccupied O-2p orbital. The partially 

unoccupied O-2p excitation is coming from the hybridization described in Fig. S1.1  

 

Figure S1.1 Illustration of the x-ray absorption experiment setup (a) and the physical 

process for excitations at the oxygen K edge (b). The filled (empty) shapes in (b) 

indicate the occupied (unoccupied) orbitals. 
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S2. O-K edge of various compounds 

 

As shown in Fig. S2.1, XAS spectra of the K-edge of LuFe2O4, h-LuFeO3, and YMnO3 are 

displayed. [1,2] The spectra below 532 eV are very different, while the part above 532 eV are more 

similar. This has to do with the structure and electronic structure. For LuFe2O4 and LuFeO3, the local 

environment of Lu are similar except for the difference Lu-O bond length caused in the ferroelectric 

distortion, which explains the similarity for energy above 532 eV. Although the local environment of the 

Fe in LuFe2O4 and h-LuFeO3 are both trigonal bipyramid, the valence difference (2.5+ in LuFe2O4 and 3+ 

in LuFeO3) causes the difference in the electronic structure, which is the origin of the spectra difference 

below 523 eV. The h-LuFeO3 and YMnO3 are isomorphic, i.e. the local environment of the Y and Lu 

have the same symmetry and the local environment of the Mn and Fe have the same symmetry. The 

spectra above 532 eV corresponds to Lu-5d and Y-4d respectively. Because of the similar orbital 

symmetry and local environment, the spectra look similar. The spectra of Y-4d is more like a shrunk 

version of the Lu-5d, suggesting that the Lu-5d orbitals are more extended and sensitive to the crystal 

field generated by the local environment.  

 

 

Figure S2.1 Comparison between the XAS spectra of O-K 

edge in LuFe2O4, h-LuFeO3, and YMnO3. The data of the 

LuFe2O4 and YMnO3 are digitized from Ref.  [1] and  [2] 

respectively. 
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S3. Final states of the O K-edge excitations 

In LuFeO3, an electron can be excited from O-1s orbital to O-2p orbital, which is not totally filled because 

of the hybridization with metal (Fe and Lu) orbitals. Effectively, the electron is excited from an O-1s 

orbital to a metal (Fe and Lu) orbital. The observed spectra may span a sizable range of energy around the 

O-1s to O-2p energy difference, depending on the metal (Fe anf Lu) orbital that the O-2p orbitals 

hybridize with. The structure of the spectra also reflects the density of states of the metal (Fe and Lu) 

orbitals and the selection rules of the excitations.  

S3.1 O-K edge excitation related to O-2p Fe-3d hybridization 

In the ground state of LuFeO3, O-1s is fully filled and Fe3+ is expected to take the high spin (𝑆𝑧 =
5

2
) state. 

Using the language of second quantization, a many body wave function can be written as 𝜙 =

∏ 𝐶 𝜈𝑖

† |𝑣𝑎𝑐 > 𝜈𝑖
, where |𝑣𝑎𝑐 > represent the vacuum state and {𝜈𝑗} are the one-electron wave functions. 

So we can write down the wave function of the ground state 𝜙𝑔 =

𝐶1𝑠,↑
† 𝐶1𝑠,↓

† 𝐶𝑥𝑧,↑
† 𝐶𝑦𝑧,↑

† 𝐶𝑥𝑥−𝑦𝑦,↑
† 𝐶𝑥𝑧,↑

† 𝐶𝑦𝑧,↑
† |0 >. When an electron is excited from an O-1s orbital to an Fe-3d 

orbital, there are multiple final states of Fe-3d6 with 𝑆𝑧 = 2. The energies of these states are determined 

by the Coulomb energy (electron-electron interaction) and the crystal field energies (one-electron energy), 

if the spin-orbit coupling is small. The possible energy distribution of these final state will determine the 

corresponding x-ray absorption spectra. Below, we will show that the Coulomb energy of different O-1s1 

Fe-3d6 states (for 𝑆𝑧 = 2) are the same, as long as the atomic orbitals are treated as hydrogen-like orbitals 

as an approximation. Therefore, the total energy will mostly be determined by the crystal-field energies, 

which can be treated using one-electron picture. 

In order to calculate the energy distribution of these final states, we select the following basis: 

𝜙−2 = 𝐶𝑂1𝑠,↑
† 𝐶𝐹𝑒3𝑑−2,↓

† 𝐶𝐹𝑒3𝑑−2,↑
† 𝐶𝐹𝑒3𝑑−1,↑

† 𝐶𝐹𝑒3𝑑0,↑
† 𝐶𝐹𝑒3𝑑1,↑

† 𝐶𝐹𝑒3𝑑2,↑
† |𝑣𝑎𝑐⟩, 

𝜙−1 = 𝐶𝑂1𝑠,↑
† 𝐶𝐹𝑒3𝑑−1,↓

† 𝐶𝐹𝑒3𝑑−2,↑
† 𝐶𝐹𝑒3𝑑−1,↑

† 𝐶𝐹𝑒3𝑑0,↑
† 𝐶𝐹𝑒3𝑑1,↑

† 𝐶𝐹𝑒3𝑑2,↑
† |𝑣𝑎𝑐⟩, 

𝜙0 = 𝐶𝑂1𝑠,↑
† 𝐶𝐹𝑒3𝑑0,↓

† 𝐶𝐹𝑒3𝑑−2,↑
† 𝐶𝐹𝑒3𝑑−1,↑

† 𝐶𝐹𝑒3𝑑0,↑
† 𝐶𝐹𝑒3𝑑1,↑

† 𝐶𝐹𝑒3𝑑2,↑
† |𝑣𝑎𝑐⟩, 

𝜙1 = 𝐶𝑂1𝑠,↑
† 𝐶𝐹𝑒3𝑑1,↓

† 𝐶𝐹𝑒3𝑑−2,↑
† 𝐶𝐹𝑒3𝑑−1,↑

† 𝐶𝐹𝑒3𝑑0,↑
† 𝐶𝐹𝑒3𝑑1,↑

† 𝐶𝐹𝑒3𝑑2,↑
† |𝑣𝑎𝑐⟩, 

𝜙2 = 𝐶𝑂1𝑠,↑
† 𝐶𝐹𝑒3𝑑2,↓

† 𝐶𝐹𝑒3𝑑−2,↑
† 𝐶𝐹𝑒3𝑑−1,↑

† 𝐶𝐹𝑒3𝑑0,↑
† 𝐶𝐹𝑒3𝑑1,↑

† 𝐶𝐹𝑒3𝑑2,↑
† |𝑣𝑎𝑐⟩, 

where the index from -2 to 2 is the magnetic quantum number 𝑚 of the 3d orbital, and |𝑣𝑎𝑐⟩ is the 

vacuum state. Below, we will show that the calculation of the Coulomb interaction can be simplified due 

to many special conditions  

1) The Hamiltonian of the Coulomb interaction in the basis above is diagonal 

Since the total 𝐿𝑍 is different for all these states, they do not mix due to the Coulomb interaction, i.e. the 

Hamiltonian that represents Coulomb interaction will be diagonal. In other words, only the diagonal terms 

⟨𝜙𝑖|𝑉�̂�|𝜙𝑖⟩ needs to be calculated, where 𝑉�̂� =
1

2
∑ 𝐶𝜈1

† 𝐶𝜈2

† 𝐶𝜈3
𝐶𝜈4𝜈1,𝜈2,𝜈3,𝜈4

 is the Coulomb interaction, 

where  {𝜈𝑗} are atomic orbitals that can be specified by quantum numbers 𝑛𝑗, 𝑙𝑗, 𝑚𝑗, 𝜎𝑗 (𝜎𝑗 is the spin 

states). 

For the diagonal terms  

⟨𝜙𝑖|𝑉�̂�|𝜙𝑖⟩ = ⟨𝜙𝑖|
1
2

∑ 𝑉𝜈1,𝜈2,𝜈2,𝜈1
𝐶𝜈1

† 𝐶𝜈2

† 𝐶𝜈2
𝐶𝜈1𝜈1,𝜈2

|𝜙𝑖⟩ − ⟨𝜙𝑖|
1
2

∑ 𝑉𝜈1,𝜈2,𝜈1,𝜈2
𝐶𝜈1

† 𝐶𝜈2

† 𝐶𝜈1
𝐶𝜈2𝜈1,𝜈2

|𝜙𝑖⟩ , 
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and 

𝑉𝜈1,𝜈2,𝜈2,𝜈1
= ∑ 𝑐𝑘(𝑙1𝑚1; 𝑙1𝑚1)𝑐

𝑘(𝑙2𝑚2; 𝑙2𝑚2)𝑅
𝑘(𝑛1𝑙1, 𝑛2𝑙2)

𝑘=𝑙1+𝑙2

𝑘=|𝑙1−𝑙2|

 

where 𝑐𝑘(𝑙1𝑚1; 𝑙1𝑚1) and 𝑐𝑘(𝑙2𝑚2; 𝑙2𝑚2) are the Gaunt coefficients and 𝑅𝑘(𝑛1𝑙1, 𝑛2𝑙2) are the integral 

of the radial part of the wave function. [3] 

The definition of the Gaunt coefficients is 

 𝑐𝑘(𝑙1𝑚1; 𝑙2𝑚2) = √
4𝜋

2𝑘+1
∫ 𝑑𝜙

2𝜋

0 ∫ 𝑑𝑐𝑜𝑠(𝜃)
2𝜋

0
𝑌𝑙1,𝑚1

∗ (𝜃, 𝜙)𝑌𝑘,𝑚1−𝑚2

∗ (𝜃, 𝜙)𝑌𝑙2,𝑚2

∗ (𝜃, 𝜙). 

2) The Coulomb interaction between the wave function 𝜈𝑂1𝑠 and a wave function 𝜈𝐹𝑒3𝑑𝑚 does not depend 

on the quantum number 𝑚.  

To show this condition, one just has to calculate 𝑐𝑘(𝑙1𝑚1; 𝑙1𝑚1) and 𝑐𝑘(𝑙2𝑚2; 𝑙2𝑚2), where 𝑙1 = 𝑚1 =

0, and 𝑙2 = 2. The results are  

𝑐𝑘(𝑙1𝑚1; 𝑙1𝑚1) = 𝑐0(0,0; 0,0), and 𝑐𝑘(𝑙2𝑚2; 𝑙2𝑚2) = 𝑐𝑘(2,𝑚2; 2,𝑚2). 

Using the definition of the Gaunt coefficient, one can see that 𝑐𝑘(2,𝑚2; 2,𝑚2) is independent of 𝑚2. 

Therefore, the Coulomb interaction between the O-1s orbital and the Fe-3d orbitals are independent of the 

quantum number 𝑚. In addition, because the O-1s orbitals and the Fe-3d orbitals are on different atomic 

sites (the distance is approximately 2.0 Å), the Coulomb interactions between the O-1s orbitals and the 

Fe-3d orbitals are smaller than that between the Fe-3d orbitals. 

3) Due to the particle-hole symmetry, the 3d6 problem can be treated as the 3d4 problem. 

Therefore, we can rewrite the basis of the excited states as 

𝜙−2 = 𝐶𝐹𝑒3𝑑−1↑
† 𝐶𝐹𝑒3𝑑0↑

† 𝐶𝐹𝑒3𝑑1↑
† 𝐶𝐹𝑒3𝑑2↑

† |𝑣𝑎𝑐⟩, 

𝜙−1 = 𝐶𝐹𝑒3𝑑−2↑
† 𝐶𝐹𝑒3𝑑0↑

† 𝐶𝐹𝑒3𝑑1↑
† 𝐶𝐹𝑒3𝑑2↑

† |𝑣𝑎𝑐⟩, 

𝜙0 = 𝐶𝐹𝑒3𝑑−2↑
† 𝐶𝐹𝑒3𝑑−1↑

† 𝐶𝐹𝑒3𝑑1↑
† 𝐶𝐹𝑒3𝑑2↑

† |𝑣𝑎𝑐⟩, 

𝜙1 = 𝐶𝐹𝑒3𝑑−2↑
† 𝐶𝐹𝑒3𝑑−1↑

† 𝐶𝐹𝑒3𝑑0↑
† 𝐶𝐹𝑒3𝑑2↑

† |𝑣𝑎𝑐⟩, 

𝜙2 = 𝐶𝐹𝑒3𝑑−2↑
† 𝐶𝐹𝑒3𝑑−1↑

† 𝐶𝐹𝑒3𝑑0↑
† 𝐶𝐹𝑒3𝑑1↑

† |𝑣𝑎𝑐⟩. 

Here we ignore the Coulomb interactions between the O 1s electrons and Fe 3d electrons because they are 

much smaller and independent on 𝑚, as discussed above. To calculate the Coulomb interaction 

⟨𝜙𝑖|𝑉�̂�|𝜙𝑖⟩, one needs to calculate the interaction between the electron pairs, which is listed as the 

following (here we omit the notation Fe 3d and the spin for simplicity): 

⟨𝑣𝑎𝑐|𝐶−2
† 𝐶−1

† 𝑉�̂�𝐶−1𝐶−2|𝑣𝑎𝑐⟩ = 𝑅0 −  
8

49
𝑅2 −  

9

441
𝑅4,  

⟨𝑣𝑎𝑐|𝐶−2
† 𝐶0

†𝑉�̂�𝐶0𝐶−2|𝑣𝑎𝑐⟩ = 𝑅0 −  
8

49
𝑅2 −  

9

441
𝑅4,  

⟨𝑣𝑎𝑐|𝐶−2
† 𝐶1

†𝑉�̂�𝐶1𝐶−2|𝑣𝑎𝑐⟩ = 𝑅0 −
2

49
𝑅2 −

39

441
𝑅4, 
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⟨𝑣𝑎𝑐|𝐶−2
† 𝐶2

†𝑉�̂�𝐶2𝐶−2|𝑣𝑎𝑐⟩ = 𝑅0 +
4

49
𝑅2 −

69

441
𝑅4, 

⟨𝑣𝑎𝑐|𝐶−1
† 𝐶0

†𝑉�̂�𝐶0𝐶−1|𝑣𝑎𝑐⟩ = 𝑅0 +
1

49
𝑅2 −

54

441
𝑅4, 

⟨𝑣𝑎𝑐|𝐶−1
† 𝐶1

†𝑉�̂�𝐶1𝐶−1|𝑣𝑎𝑐⟩ = 𝑅0 −
5

49
𝑅2 −

24

441
𝑅4, 

⟨𝑣𝑎𝑐|𝐶−1
† 𝐶2

†𝑉�̂�𝐶2𝐶−1|𝑣𝑎𝑐⟩ = 𝑅0 −
2

49
𝑅2 −

39

441
𝑅4, 

⟨𝑣𝑎𝑐|𝐶0
†𝐶1

†𝑉�̂�𝐶1𝐶0|𝑣𝑎𝑐⟩ = 𝑅0 +
1

49
𝑅2 −

54

441
𝑅4, 

⟨𝑣𝑎𝑐|𝐶0
†𝐶2

†𝑉�̂�𝐶2𝐶0|𝑣𝑎𝑐⟩ = 𝑅0 −
8

49
𝑅2 −

9

441
𝑅4, 

⟨𝑣𝑎𝑐|𝐶1
†𝐶2

†𝑉�̂�𝐶2𝐶1|𝑣𝑎𝑐⟩ = 𝑅0 −
8

49
𝑅2 −

9

441
𝑅4, 

where 𝑅0, 𝑅2, and 𝑅4 are abbreviation of 𝑅0(3,2,3,2), 𝑅2(3,2,3,2), and 𝑅4(3,2,3,2). 

In addition, ⟨𝑣𝑎𝑐|𝐶𝑚1
† 𝐶𝑚2

† 𝑉�̂�𝐶𝑚2𝐶𝑚1|𝑣𝑎𝑐⟩ = ⟨𝑣𝑎𝑐|𝐶𝑚2
† 𝐶𝑚1

† 𝑉�̂�𝐶𝑚1𝐶𝑚2|𝑣𝑎𝑐⟩, and 

⟨𝑣𝑎𝑐|𝐶𝑚
† 𝐶𝑚

† 𝑉�̂�𝐶𝑚𝐶𝑚|𝑣𝑎𝑐⟩ = 0. 

Using these results, one gets < 𝜙𝑚|�̂�𝑐|𝜙𝑚 >= 𝑅0 −
21

49
𝑅2 −

189

441
𝑅4, for all m=-2 to 2. 

Hence, the Coulomb interaction provides a constant energy for the 3d6 configuration, meaning the total 

energy is determined by the one-electron (e.g. crystal field) energies. 

S3.2 O-K edge excitation related to O-2p Lu-5d hybridization 

This initial states of the this excitation spectroscopy at the O 1s core (the K edge) is the ground state 

which corresponds to 𝜙𝑔 = 𝐶1𝑠,↑
† 𝐶1𝑠,↓

† |0 >. For the excited state, there will be one electron in the O-1s 

orbital and one electron in the Lu-5d orbital. The only many-body energy will be the Coulomb interaction 

between one Lu-5d electron with one O-1s electron, which is shown small and independent of quantum 

number m. Therefore, the energy of the final states  𝜙𝑓 = 𝐶1𝑠↑
† 𝐶𝐿𝑢−5𝑑𝑚↓

† |0 > can be calculated according 

to the one-electron energy, which is mainly determined by the crystal field splitting. 

  



6 
 

S4. Crystal field splitting from x-ray absorption spectra 

Since the x-ray absorption spectra of O K edge can be approximately treated using one electron picture 

(see section 3), it is possible to extract the crystal field splitting from the spectra. We show here an 

example of analyzing crystal field splitting of Fe-3d using the O K edge x-ray absorption spectra. 

Table S4.1 

Peak index Peak positions (eV) Assignment Peak positions from fit (eV) 

1 529.6 𝑂𝑎𝑝1𝑠 → 𝐹𝑒 3𝑑 𝑒′′ 529.6 

2 530.49 𝑂𝑒𝑞1𝑠 → 𝐹𝑒 3𝑑 𝑒′ 530.49 

3 531.67 𝑂𝑒𝑞1𝑠 → 𝐹𝑒 3𝑑 𝑎1
′  531.67 

4 530.24 𝑂𝑒𝑞1𝑠 → 𝐹𝑒 3𝑑 𝑒′′ 530.23 

5 531.04 𝑂𝑎𝑝1𝑠 → 𝐹𝑒 3𝑑 𝑎1
′  531.04 

 

First, we fit the x-ray absorption spectra using Voigt peaks, as shown in Fig S4.1. The resulting peak 

positions are listed in the Table S4.1.  

Second, we calculate the crystal field energies using these peak positions. There are totally 4 unknown 

variables here. The first three are the three crystal field energies of Fe 3d. The fourth one has to do with 

the two oxygen positions (apex and equator). Assuming that the crystal field energies are 𝐸𝑒′′, 𝐸𝑒′, 𝐸𝑎1′, 

 

Figure S4.1 Fit to the x-ray absorption spectra using Voigt peaks and the 

extracted values for the energy levels. 

 

 

 



7 
 

and the energy difference between the 1s of apex and equator oxygen atoms is 𝛿, one can solve these four 

variables using the peak positions extracted from the fit. 

Note that there are five peak positions which give five equations, but there are only 4 unknown variables. 

So we use the least square fit to find the 4 variables. The results are 𝐸𝑒′′ = 529.6 eV, 𝐸𝑒′ − 𝐸𝑒′′ = 0.25 

eV, 𝐸𝑎1′ − 𝐸𝑒′′ = 1.43 eV, and 𝛿 = 0.64 eV. As shown in Table S4.1, the calculated energies (from the 

least square fit) match the observed energies almost exactly, indicating the validity of the model. 
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S5. Crystal field splitting in Fe 3𝑑 and Lu 5𝑑: analysis using group theory 

In crystalline LuFeO3, metal (Fe and Lu) atoms sites are surrounded by oxygen sites, forming so-called 

local environments. For the atomic orbitals of metal (Fe and Lu) atoms (e.g. 𝑑 orbital) that are not very 

delocalized but exposed to neighboring oxygen atoms, the change of the one-electron energy can be 

analyzed using the crystal field model. In this case, the oxygen atoms are treated as point charges at their 

atomic positions; the degeneracy of the one-electron energy of the atomic orbital (e.g. 𝑑 orbitals) of the 

metals in general splits in the electric field generated by the point charges; this is called crystal field 

splitting. 

Here we show the two-step analysis. The first step is to qualitatively analyze the crystal field splitting 

according to the symmetry of the local environment. The second step is to analyze the crystal field 

splitting semi-quantitatively using multipole expansion of the field. 

In group theory analysis, the first step is to find the symmetry of the local environment of the metal (Fe 

anf Lu) atoms; the symmetry is described using a point group. In many cases (e.g. in LuFeO3), the 

symmetry of the local environment is actually very low. For example, the symmetry of FeO5 in h-LuFeO3 

should be described by CS, since there is only one symmetry operation (mirror plane) in addition to 

identity. But the deviation from the high symmetry D3h is small, so we can approximately treat the 

symmetry of FeO5 using the D3h symmetry, unless this small energy splitting is important, which is the 

case when the orbital angular momentum is discussed. For the LuO7 local environment in h-LuFeO3, we 

choose C3v symmetry as the approximation. In o-LuFeO3, the local symmetry of the FeO6 and LuO6 are 

approximately Oh and C3v respectively.  

Once the symmetry of the local environment is determined in terms of point group, the crystal field 

splitting can be analyzed using the representations of the point group. In principle, any sequence of 

functions form a representation of the point group, which can be reduced to a few irreducible 

representations. For the atomic orbitals of certain angular quantum number (𝑙=2 for 𝑑 orbital), the 

calculation of the representation (more precisely, the characters of the representation) can be found in 

Dressohouse’s book. [4] We list below the calculation for the 𝑑 orbitals in D3h, Oh, and C3v orbitals. The 

decomposition is done by carrying out the dot product between the representation and irreducible 

representations. 

In the tables below, the first line shows the group elements in classes. The following lines show the 

character of the irreducible representations. The last line shows the representation of the interested atomic 

orbital. The last two columns show typical linear and quadratic representation basis. The third column 

from the right shows the decomposition of the representation at the last line in terms of the irreproducible 

representations. 

Table S5.1 𝑑 orbital in D3h symmetry (Fe-3𝑑 in h-LuFeO3 approximation) 

D3h E 2C3 3C2 σh 2S3 3σv    

𝑎1′ 1 1 1 1 1 1 1  𝑧2 

𝑒′ 2 -1 0 2 -1 0 1 (𝑥, 𝑦) (𝑥2 − 𝑦2, 𝑥𝑦) 

𝑎2′′ 1 1 -1 -1 -1 1 0 𝑧  

𝑒′′ 2 -1 0 -2 1 0 1  (𝑥𝑧, 𝑦𝑧) 
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𝑑 (𝑙=2) 5 -1 1 1 1 1    

According to the table above, the 𝑑 orbitals in a D3h symmetry are decomposed into 𝑎1′ + 𝑒′ + 𝑒′′. By 

looking at the typical quadratic basis, one can associate these irreproducible representations with different 

components of the d orbitals: 𝑎1′ (𝑧
2)  +  𝑒′ (𝑥2 − 𝑦2)  +  𝑒′′ (𝑥𝑧, 𝑦𝑧). Experimentally, one then expects 

to see that the degeneracy of the 𝑑 orbital is broken; three one-electron energies are supposed to be 

observed. 

Table S5.2 𝑑 orbital in Cs symmetry (Fe-3𝑑 in h-LuFeO3) 

Cs E σv    

𝑎′ 1 1 3 x, y 𝑥2, 𝑦2, 𝑧2, 𝑥𝑦 

𝑎′′ 1 -1 2 z 𝑥𝑧, 𝑦𝑧 

𝑑 (𝑙=2) 5 1    

The real local environment of the Fe in h-LuFeO3 has three distortions: Γ2
−, 𝐾1, and 𝐾3. The 𝐾3 distortion 

is a rigid rotation that does not change the local environment. The 𝐾1 distortion destroys the 3-fold 

rotational symmetry and the Γ2
− distortion combined with the 𝐾3 mode removes the 2-fold rotational 

symmetry as well as the horizontal mirror plane. What’s left is only the vertical mirror plane. Hence the 

point group becomes 𝐶𝑆. From the last two columns of the character table above, one can infer that the 𝑒′ 

representation in D3h is decomposed into two 𝑎′ in Cs; the 𝑒′′ representation in D3h is decomposed into 

two 𝑎′′ in Cs; the 𝑎1′ representation in D3h becomes 𝑎′ in CS. 

Table S5.3 𝑑 orbital in C3v symmetry (Lu-5d in h-LuFeO3 and o-LuFeO3 approximately) 

C3v E 2C3 3σv    

𝑎1 1 1 1 1 z 𝑧2 

𝑎2 1 1 -1 0   

𝑒 2 -1 0 2 (𝑥, 𝑦) (𝑥2 − 𝑦2, 𝑥𝑦) (𝑥𝑧, 𝑦𝑧) 

𝑑 (𝑙=2) 5 -1 1    

According to the table above, the 𝑑 orbitals in a C3v local environment are decomposed into 𝑎1 + 2𝑒.  

Table S5.4 𝑑 orbital in Oh symmetry (Fe-3d in o-LuFeO3 approximately) 

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd    

𝑎1𝑔 1 1 1 1 1 1 1 1 1 1 0  𝑥2 + 𝑦2 + 𝑧2 

𝑎2𝑔 1 1 -1 -1 1 1 -1 1 1 -1 0   

𝑒𝑔 2 -1 0 0 2 2 0 -1 2 0 1  (𝑧2, 𝑥2 − 𝑦2) 
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𝑡1𝑔 3 0 -1 1 -1 3 1 0 -1 -1 0   

𝑡2𝑔 3 0 1 -1 -1 3 -1 0 -1 1 1  (𝑥𝑧, 𝑦𝑧, 𝑥𝑦) 

𝑎1𝑢 1 1 1 1 1 -1 -1 -1 -1 -1 0   

𝑎2𝑢 1 1 -1 -1 1 -1 1 -1 -1 1 0   

𝑒𝑢 2 -1 0 0 2 -2 0 1 -2 0 0   

𝑡1𝑢 3 0 -1 1 -1 -3 -1 0 1 1 0 (𝑥, 𝑦, 𝑧)  

𝑡2𝑢 3 0 1 -1 -1 -3 1 0 1 -1 0   

𝑑 (𝑙=2) 5 -1 1 -1 1 5 -1 -1 1 1    

 

Table S5.5 𝑑 orbital in D2h symmetry (Fe-3d in o-LuFeO3) 

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (xz) σ (yz)    

𝑎1𝑔 1 1 1 1 1 1 1 1 2  𝑥2, 𝑦2, 𝑧2 

𝑏1𝑔 1 1 -1 -1 1 1 -1 -1 1  𝑥𝑦 

𝑏2𝑔 1 -1 1 -1 1 -1 1 -1 1  𝑥𝑧 

𝑏3𝑔 1 -1 -1 1 1 -1 -1 1 1  𝑦𝑧 

𝑎𝑢 1 1 1 1 -1 -1 -1 -1 0   

𝑏1𝑢 1 1 -1 -1 -1 -1 1 1 0 𝑧  

𝑏2𝑢 1 -1 1 -1 -1 1 -1 1 0 𝑥  

𝑏3𝑢 1 -1 -1 1 -1 1 1 -1 0 𝑦  

d (l=2) 5 1 1 1 5 1 1 1    

 

According to the table above, the d orbitals in an D2h local environment are decomposed into 2𝑎1𝑔 +

𝑏1𝑔 + 𝑏2𝑔 + 𝑏3𝑔. From the quadratic form of the irreducible representations in the character table above, 

one can infer that the 𝑡2𝑔 in Oh symmetry is decomposed into 𝑏1𝑔 + 𝑏2𝑔 + 𝑏3𝑔 in the D2h symmetry; the 

𝑒𝑔 in Oh symmetry is decomposed into 2𝑎1𝑔. 

The group theory analysis provides quick and qualitative analysis without having to know much detail 

about the local environment other than the symmetry. In addition, the symmetry of the split orbitals can 

also be found in the analysis, which is very useful. The main limitation is that it does not directly provide 

information about the energy relations between the spilt levels. This becomes inconvenient when a certain 
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irreducible representation appears more than once in the decomposition, for example when a 𝑑 orbital is 

put in a C3v local environment. 

To resolve this problem, we carry out semi-quantitative analysis using the multipole expansion of the 

crystal field. 
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S6. Crystal field splitting in Fe 3𝑑 and Lu 5𝑑: analysis using multiplets model 

In principle, the splitting of atomic levels (with angular momentum 𝑙) in a local environment can be found 

by diagonalizing the corresponding matrix of the crystal field potential 𝑉𝐶𝐹(𝑟): 

𝑉𝐶𝐹
𝑚1,𝑚2 = ∫𝑅𝑛,𝑙

2 (𝑟)𝑌𝑙,𝑚1

∗ (𝜃, 𝜙)𝑉𝐶𝐹(𝑟)𝑌𝑙,𝑚2
(𝜃, 𝜙)𝑟2 sin(𝜃)𝑑𝜃𝑑𝜙 𝑑𝑟, where 

𝑌𝑙,𝑚1
(𝜃, 𝜙) and 𝑌𝑙,𝑚2

(𝜃, 𝜙) are spherical harmonic functions, and 𝑅𝑛,𝑙(𝑟) are the radial function of atomic 

orbital with main quantum number 𝑛, angular quantum number 𝑙, and magnetic quantum number 𝑚. 

Using the spherical harmonic expansion,  

𝑉𝐶𝐹(𝑟) = −
𝑍𝑜𝑒2

4𝜋𝜖𝑅
∑ ∑ 𝛾𝑘,𝑚 (

𝑟

𝑅
)
𝑘
√

4𝜋

2𝑘+1
𝑘
𝑚=−𝑘 𝑌𝑘.𝑚(𝜃, 𝜙)

∞
𝑘=0 , where 

𝛾𝑘,𝑚 = √
4𝜋

2𝑘+1
∑ (

𝑟

𝑅𝑖
)
𝑘+1

𝑌𝑘,𝑚
∗ (𝜃𝑖, 𝜙𝑖)

𝑛𝑜
𝑖=1  is called the structural factor, 𝑍𝑜, 𝑅 ,and 𝑖 are point charge of the 

crystal field (from oxygen), the average distance between the charges and the metal (Fe and Lu) atom, 

and 𝑖 is the index of the point charges, respectively. [3] 

Using the above definition, one can calculate the matrix elements using  

𝑉𝐶𝐹
𝑚1,𝑚2 = ∑ 𝛾𝑘,𝑚1−𝑚2

𝑐𝑘(𝑙,𝑚1, 𝑙, 𝑚2)𝑈𝑛,𝑙,𝑘𝑘∈{0,2,…,2𝑙} , where 

𝑈𝑛,𝑙,𝑘 = −
𝑍𝑜𝑒2

4𝜋𝜖𝑅𝑘+1 ∫ 𝑅𝑛,𝑙
2 (𝑟)𝑟𝑘+2𝑑𝑟

∞

0
= −

𝑍𝑜𝑒2

4𝜋𝜖𝑅

〈𝑟𝑘〉𝑛,𝑙 

𝑅𝑘  is the integral that has the dimension of energy,  

〈𝑟𝑘〉𝑛,𝑙 ≡ ∫ 𝑅𝑛,𝑙
2 (𝑟)𝑟𝑘+2𝑑𝑟

∞

0
,  

and 𝑐𝑘(𝑙,𝑚1, 𝑙, 𝑚2) = ∫𝑌𝑙,𝑚1

∗ (𝜃, 𝜙)𝑌𝑘,𝑚1−𝑚2
(𝜃, 𝜙)𝑌𝑙,𝑚2

(𝜃, 𝜙) sin(𝜃) 𝑑𝜃𝑑𝜙 are called the Gaunt 

coefficients which have been calculated and tabulated by Slater. [3] 

Therefore, the problem of finding the matrix elements is reduced to find the structure factor 𝛾𝑘,𝑚 and 

energy integral 𝑈𝑛,𝑙,𝑘. 

Before discussing any specific crystal field, we can examine a few points: 

1) For the sum in 𝑉𝐶𝐹
𝑚1,𝑚2, the term 𝑘=0 corresponds to 𝛾0,𝑚1−𝑚2

𝑐𝑘(𝑙,𝑚1, 𝑙, 𝑚2)𝑈𝑛,𝑙,𝑘. For non-zero 

𝛾0,𝑚1−𝑚2
, 𝑚1 − 𝑚2 = 0. According to the definition of the Gaunt coefficients, the value of 

𝑐𝑘(𝑙,𝑚, 𝑙, −𝑚) is independent of 𝑚. So 𝑘 =0 only contributes an identity matrix multiplied by a 

factor 𝛾0,0𝑐
𝑘(𝑙,𝑚, 𝑙, −𝑚)𝑈𝑛,𝑙,𝑘. Therefore, in real calculations, one can ignore the 𝑘=0 term if 

only the relative energies are interested. 

 

2)  〈𝑟𝑘〉: 𝑅𝑛,𝑙(𝑟) can be written as 𝑎−
3

2�̅�𝑛,𝑙 (
𝑟

𝑎
), where 𝑎 =

𝑎0

𝑍𝑒𝑓𝑓
,  𝑎0 = 0.53 × 10−10 meter and 𝑍𝑒𝑓𝑓 

is the effective charge of the nucleus for the atomic orbital. 

〈𝑟𝑘〉𝑛,𝑙 ≡ ∫ 𝑎−3�̅�𝑛,𝑙
2 (

𝑟

𝑎
) 𝑟𝑘+2𝑑𝑟

∞

0
= 𝑎𝑘 ∫ �̅�𝑛,𝑙

2 (
𝑟

𝑎
) (

𝑟

𝑎
)
𝑘+2

𝑑 (
𝑟

𝑎
)

∞

0
= 𝑎𝑘 ∫ �̅�𝑛,𝑙

2 (𝜌)𝜌𝑘+2𝑑𝜌
∞

0
, 

where the integral 𝐼𝑛,𝑙,𝑘 = ∫ �̅�𝑛,𝑙
2 (𝜌)𝜌𝑘+2𝑑𝜌

∞

0
 depends only on 𝑛, 𝑙, and 𝑘. 

Therefore 𝑈𝑛,𝑙,𝑘 = −
𝑍𝑜𝑒2

4𝜋𝜖𝑅

𝑎𝑘 

𝑅𝑘 𝐼𝑛,𝑙,𝑘 = −
𝑍𝑜𝑒2

4𝜋𝜖𝑅
(

𝑎0 

𝑅𝑍𝑒𝑓𝑓
)
𝑘

𝐼𝑛,𝑙,𝑘. 
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3) Here we will be calculating 𝑑 (𝑙 = 2) orbit exclusively, so the possible values for 𝑘 are 0, 2, and 

4. 

4) Note that 
𝐼3,2,4

𝐼3,2,2
=

9

4

Γ(11)

Γ(9)
=

405

2
. For Fe atoms, if we treat the 1s, 2s, 2p, 3s and 3p electrons as part 

of the ionic core, we have 𝑍𝑒𝑓𝑓 = 8. In this case, 
𝑈3,2,4

𝑈3,2,2
= 0.231 ≈

1

4
. 

 

S6.1 Fe-3𝑑 orbitals in an Oh local environment 

Here 𝑙=2, 𝑅𝑖 = 𝑅.   

Since this local environment is totally symmetric, 𝛾𝑘,𝑚 vanishes for all the odd 𝑚.  

The six oxygen atoms will be located at (𝑅, 0,0), (−𝑅, 0,0), (0, 𝑅, 0), (0,−𝑅, 0), (0,0, 𝑅), and (0,0, −𝑅). 

In addition, 𝛾2,𝑚 = 0.    

Only 𝛾4,4 = 𝛾4,−4 = √
35

8
, 𝛾4,0 =

7

2
 are non-zero. 

The resulting matrix for 𝑉𝐶𝐹 =

[
 
 
 
 
 
𝐶−2,−2

4 𝛾4,0 0 0 0 𝐶−2,2
4 𝛾4,−4

0 𝐶−1,−1
4 𝛾4,0 0 0 0

0 0 𝐶0,0
4 𝛾4,0 0 0

0 0 0 𝐶1,1
4 𝛾4,0 0

𝐶2,−2
4 𝛾4,4 0 0 0 𝐶2,2

4 𝛾4,0 ]
 
 
 
 
 

𝑈3,2,4, where 𝑙1 = 𝑙2 = 2 

are omitted for the Gaunt coefficients.  

Plugging the numbers 𝐶−2,−2
4 = 𝐶2,2

4 =
1

21
, 𝐶−1,−1

4 = 𝐶1,1
4 = −

4

21
, 𝐶0,0

4 =
6

21
, 𝐶−2,2

4 = 𝐶2,−2
4 =

√70

21
 

𝑉𝐶𝐹 =
𝐼3,2,4

6

[
 
 
 
 
1 0 0 0 5
0 −4 0 0 0
0 0 6 0 0
0 0 0 −4 0
5 0 0 0 1]

 
 
 
 

. 

One can diagonalize 𝑉𝐶𝐹, the 3d orbitals are split into two levels in energy: 

 −
2

3
𝑈𝑛,2,4  for (𝑥𝑧, 𝑥𝑦, 𝑦𝑧)  

𝑈𝑛,2,4 for (𝑧2, 𝑥2 − 𝑦2).  

This is consistent with the group theory analysis. In addition to the splitting, the relative energy difference 

is also revealed. 

S6.2 Fe 3𝑑 orbitals in an D2h local environment 

In Pbnm o-LuFeO3, the octahedrons are actually distorted according to the orthorhombic symmetry. Then 

the six oxygen atoms will be located at (𝑅 + 𝑎, 0,0), (−𝑅 − 𝑎, 0,0), (0, 𝑅 + 𝑏, 0), (0, −𝑅 − 𝑏, 0), 

(0,0, 𝑅 + 𝑐), and (0,0,−𝑅 − 𝑐). Note that here the a and b are not lattice constants. 

We can now calculate the structural factors. Notice that the structure factors 𝛾𝑘,𝑚 are zero when 𝑚 is odd. 

𝛾2,0 = 2(
𝑅

𝑅 + 𝑐
)
3

− (
𝑅

𝑅 + 𝑏
)
3

− (
𝑅

𝑅 + 𝑎
)
3

≈
3𝑎 + 3𝑏 − 6𝑐

𝑅
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𝛾2,2 = −
√6

4
[(

𝑅

𝑅 + 𝑎
)
3

− (
𝑅

𝑅 + 𝑏
)
3

] ≈
3√6

4

𝑎 − 𝑏

𝑅
 

𝛾4,0 =
1

4
[3 (

𝑅

𝑅 + 𝑎
)
5

+ 3(
𝑅

𝑅 + 𝑏
)
5

+ 8(
𝑅

𝑅 + 𝑐
)
5

] ≈
7

2
 

𝛾4,2 = −
√10

2
[(

𝑅

𝑅 + 𝑎
)
5

− (
𝑅

𝑅 + 𝑏
)
5

] ≈
5√10

2

𝑎 − 𝑏

𝑅
 

𝛾4,4 = −
√70

8
[(

𝑅

𝑅 + 𝑎
)
5

+ (
𝑅

𝑅 + 𝑏
)
5

] ≈ √
35

8
. 

There are two types of distortions here.  

The first type of distortion is represented by the non-zero 𝛾2,0; it modifies the on-diagonal terms in 𝑉𝐶𝐹. 

Using 𝐶−2,−2
2 = 𝐶2,2

2 = −
2

7
, 𝐶−1,−1

2 = 𝐶1,1
2 =

1

7
, 𝐶0,0

2 =
2

7
, this additional term is: 

𝐻1 =
𝑈3,2,2

7

3𝑎 + 3𝑏 − 6𝑐

𝑅
[

−2 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 −2

]. 

Diagonalizing 𝑉𝐶𝐹 + 𝐻1 results in splitting of the (𝑥𝑧, 𝑦𝑧, 𝑥𝑦) into (𝑥𝑧, 𝑦𝑧) and 𝑥𝑦; (𝑧2, 𝑥2 − 𝑦2) is split 

into 𝑧2 and 𝑥2 − 𝑦2. This is actually a symmetry transformation from Oh to D4h. This splitting is 

proportional to 
𝑎+𝑏−2𝑐

2𝑅
. If we assume 𝑎 > 𝑐 > 𝑏, then 

𝑎+𝑏−2𝑐

2𝑅
= 0.1% in orthorhombic LuFeO3. 

The second type of distortion is represented by𝛾2,2 and 𝛾4,2.  

Using 𝐶−2,0
2 = 𝐶2,0

2 = 𝐶0,−2
2 = 𝐶0,2

2 = −
2

7
, 𝐶−1,1

2 = 𝐶1,−1
2 = −

√6

7
, 𝐶−2,0

4 = 𝐶2,0
4 = 𝐶0,−2

4 = 𝐶0,2
4 =

√15

21
, 𝐶−1,1

4 = 𝐶1,−1
4 = −

√40

21
, the additional term in the Hamiltonian is 

 𝐻2 =
𝑈3,2,4𝛾4,2

21

[
 
 
 
 
 0 0 √15 0 0

0 0 0 −√40 0

√15 0 0 0 √15

0 −√40 0 0 0

0 0 √15 0 0 ]
 
 
 
 
 

+
𝑈3,2,2𝛾2,2

7

[
 
 
 
 
0 0 −2 0 0

0 0 0 −√6 0
−2 0 0 0 −2

0 −√6 0 0 0
0 0 −2 0 0 ]

 
 
 
 

. 

This will couple the 𝑚 = ±2 and 𝑚 = ±1 states. By diagonalizing the Hamiltonian including the 𝐻2 

term, the 𝑡2𝑔 states will split into 𝑥𝑦, 𝑦𝑧, 𝑥𝑧 ; the 𝑒𝑔states split into 2𝑧2 + (
√6

2
− 1)𝑥2 − (

√6

2
+

1)𝑦2, 2𝑧2 − (
√6

2
+ 1)𝑥2 + (

√6

2
− 1)𝑦2. This is consistent with the group theory analysis of the Oh to D2h 

distortion. The splitting is proportional to 
𝑎−𝑏

𝑅
 (about 1.3% in orthorhombic LuFeO3). This distortion is 

significantly larger than the Oh to D4h distortion. 

From the form of 𝐻2 above, we can assume 

𝐻2 =

[
 
 
 
 
0 0 𝛼′ 0 0
0 0 0 𝛽′ 0

𝛼′ 0 0 0 𝛼′
0 𝛽′ 0 0 0

0 0 𝛼′ 0 0 ]
 
 
 
 

, 
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 where  

𝛼′ =
√15

21
𝑈3,2,4𝛾4,2 −

2

7
𝑈3,2,2𝛾2,2 =

5√30

42

𝑎 − 𝑏

𝑅
𝑈3,2,4 −

6√6

28

𝑎 − 𝑏

𝑅
𝑈3,2,2, 

𝛽′ =
−√40

21
𝑈3,2,4𝛾4,2 −

√6

7
𝑈3,2,2𝛾2,2 =

−50

21

𝑎 − 𝑏

𝑅
𝑈3,2,4 −

9

14

𝑎 − 𝑏

𝑅
𝑈3,2,2. 

If we assume 
𝑈3,2,4

𝑈3,2,2
≈

1

4
, then 𝛼′ ≈ −0.36

𝑎−𝑏

𝑅
𝑈3,2,2, 𝛽′ ≈ −1.2

𝑎−𝑏

𝑅
𝑈3,2,2. 

To find the energy change due to 𝐻2, one can transform 𝐻2 to the basis {𝑧2, 𝑥2 − 𝑦2, 𝑥𝑧, 𝑥𝑦, 𝑦𝑧}, which 

means 𝐻2
′ = 𝑇†𝐻2𝑇, where the transformation matrix is: 

𝑇 =

[
 
 
 
 
 
 
 0 

1

√2
 0

𝑖

√2
0

0 0
1

√2
0

𝑖

√2

1 0 0 0 0

0 0
1

√2
0

−𝑖

√2

0
1

√2
0

−𝑖

√2
0 ]

 
 
 
 
 
 
 

. 

The result is 

𝐻2
′ =

[
 
 
 
 0 √2𝛼′ 0 0 0

√2𝛼′ 0 0 0 0
0 0 𝛽′ 0 0
0 0 0 0 0
0 0 0 0 −𝛽′]

 
 
 
 

. 

The results correspond to energies for the states: 

𝑈𝑛,2,4 + √2𝛼′ for √2|𝑚 = 0⟩ + |𝑚 = 2⟩ + |𝑚 = −2⟩ 𝑜𝑟  2𝑧2 + (
√6

2
− 1)𝑥2 − (

√6

2
+ 1)𝑦2 

𝑈𝑛,2,4 − √2𝛼′ for √2|𝑚 = 0⟩ − |𝑚 = 2⟩ − |𝑚 = −2⟩ 𝑜𝑟  2𝑧2 − (
√6

2
+ 1)𝑥2 + (

√6

2
− 1)𝑦2 

−
2

3
𝑈𝑛,2,4 + 𝛽′ for 𝑥𝑧 

−
2

3
𝑈𝑛,2,4 for 𝑥𝑦 

−
2

3
𝑈𝑛,2,4 − 𝛽′ for 𝑦𝑧. 

If we assume 
𝑈3,2,4

𝑈3,2,2
≈

1

4
, the splitting of the 𝑒𝑔 level is about half of that in 𝑡2𝑔 level.   

Therefore, whether a state goes up or down in energy is decided by the sign of 𝛼′ and 𝛽′. Here we assume 

𝛼 and 𝛽 are both greater than zero (meaning 𝑎 < 𝑏). Then these states, sorted in ascending energy are: 

𝑦𝑧, 𝑥𝑦, 𝑥𝑧, 2𝑧2 − (
√6

2
+ 1)𝑥2 + (

√6

2
− 1)𝑦2, 2𝑧2 + (

√6

2
− 1)𝑥2 − (

√6

2
+ 1)𝑦2. 

S6.3 Fe-3𝑑 orbitals in an D3h local environment 

Here 𝑙=2, 𝑅 = 𝑅𝑎 for the equator oxygen atoms and 𝑅 = 𝑅𝑐 for the apex oxygen atoms. 

The angles for the oxygen atoms are listed in Table S5.1 
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Table S6.1 

index 𝜽 𝝓 R 

1 0 0 𝑅𝑐 

2 𝜋 0 𝑅𝑐 

3 𝜋

2
 0 𝑅𝑎 

4 𝜋

2
 

2𝜋

3
 

𝑅𝑎 

5 𝜋

2
 

4𝜋

3
 

𝑅𝑎 

 

If we define 𝛼 =
𝑅𝑐

𝑅𝑎
, we get 𝛾4,0 =

1

8
(

5

2𝛼+3
)
5
(16𝛼5 + 9), 𝛾2,0 =

1

2
(

5

2𝛼+3
)
3
(4𝛼3 − 3).  

All the other structural factors are zero.  

Note that for h-LuFeO3, 𝛼 ≈ 0.94. So 𝛾4,0 ≈ 2.92 and 𝛾2,0 ≈ 0.17. 

Therefore, the matrix of crystal field is diagonal. 

𝑉𝐶𝐹 =

[
 
 
 
 
 
𝐶−2,−2

4 𝛾4,0 0 0 0 0

0 𝐶−1,−1
4 𝛾4,0 0 0 0

0 0 𝐶0,0
4 𝛾4,0 0 0

0 0 0 𝐶1,1
4 𝛾4,0 0

0 0 0 0 𝐶2,2
4 𝛾4,0]

 
 
 
 
 

𝑈3,2,4 +

[
 
 
 
 
 
𝐶−2,−2

2 𝛾2,0 0 0 0 0

0 𝐶−1,−1
2 𝛾2,0 0 0 0

0 0 𝐶0,0
2 𝛾2,0 0 0

0 0 0 𝐶1,1
2 𝛾2,0 0

0 0 0 0 𝐶2,2
2 𝛾2,0]

 
 
 
 
 

𝑈3,2,2. 

Using 𝐶−2,−2
2 = 𝐶2,2

2 = −
2

7
, 𝐶−1,−1

2 = 𝐶1,1
2 =

1

7
, 𝐶0,0

2 =
2

7
, one finds 

𝑉𝐶𝐹 =
𝑈3,2,4𝛾4,0

21
[

1 0 0 0 0
0 −4 0 0 0
0 0 6 0 0
0 0 0 −4 0
0 0 0 0 1

] +
𝑈3,2,2𝛾2,0

7
[

−2 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 −2

]. 

To further study the energy splitting, we look at the ratio  

𝛽′ =
7𝑈3,2,4𝛾4,0

21𝑈3,2,2𝛾2,0
=

1

3

𝛾4,0

𝛾2,0
(

𝑎0 

𝑅𝑍𝑒𝑓𝑓
)
2

𝐼3,2,4

𝐼3,2,2
. 

Note that (
𝑎0

𝑅
)
2

≈ (
0.53

1.95
)
2

≈ 0.074. In addition, 
𝛾4,0

𝛾2,0
≈ 17.2. 
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So 𝛽′ = 1.325 (
𝑈3,2,4

𝑈3,2,2
= 0.231)  for 𝑍𝑒𝑓𝑓 = 8. 

Therefore, the 3d orbitals are split into three levels: 

 (1 − 4𝛽′)𝐼3,2,2 = −4.3𝐼3,2,2 for (𝑥𝑧, 𝑦𝑧) or 𝑒′′,  

(𝛽′ − 2)𝐼3,2,2 = −0.67𝐼3,2,2 for (𝑥𝑥 − 𝑦𝑦, 𝑥𝑦) or 𝑒′,  

 (6𝛽′ + 2)𝐼3,2,2 = 10.0𝐼3,2,2 for (𝑧𝑧) or 𝑎1′. 

This is consistent with the group theory analysis. The additional information is the energy difference and 

the order of the levels in energy. 

S6.4 Fe-3𝑑 orbitals in an CS local environment 

In P63cm h-LuFeO3, the trigonal bipyramid is actually distorted due to the displacement of the apex 

oxygen atoms in the Γ2
− and 𝐾1 mode (Note that the 𝐾3 mode corresponds to a rigid rotation that does not 

distort the FeO5 trigonal bipyramid itself). 

𝛤2
− mode 

The effect of the Γ2
− mode is to displace the two apex atoms toward the same direction. This effect makes 

the two apex oxygen atoms (1 and 2, see Fig. S5.1) inequivalent. In other words, one has 𝑅𝑐
1 = 𝑅𝑐 −

𝛿, 𝑅𝑐
2 = 𝑅𝑐 + 𝛿.  

The result of this distortion is a small modification of 𝛾4,0 and 𝛾2,0; there is no additional structural factor 

generated. 

In addition, this displacement of apex oxygen atoms, combined with the 𝐾3 rotation, changes the Oap-Fe-

Oap angle from 180 degree. Therefore, one can parameterize the effect using a small angle 𝜃𝑔2. The 

corresponding Oap-Fe-Oap angle is 𝜋 − 𝜃𝑔2. In this case, the sin(𝜃𝑔2) is a small quantity that can be 

treated as the order of magnitude of the perturbation. 

One can show that with this distortion, all the structure factor  𝛾𝑘,𝑚 are non-zero. On the other hand, one 

can show that 𝛾𝑘,𝑚 is proportional to [sin(𝜃𝑔2)]
𝑚

.  Therefore, we only keep the lowest order, i.e. 𝛾2,1 and 

𝛾4,1. 

Again, here 𝑙=2, 𝑅 = 𝑅𝑎 for the equator oxygen atoms and 𝑅 = 𝑅𝑐1, 𝑅𝑐2 ≈ 𝑅𝑐 for the apex oxygen atoms. 

To keep the lowest order, the perturbation Hamiltonian can be written as  

 

Figure S6.1 The (exaggerated) angles in the two distortions. 
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𝐻1 =
𝑈3,2,4𝛾4,1

21

[
 
 
 
 
 0 −√5 0 0 0

−√5 0 √30 0 0

0 √30 0 √30 0

0 0 √30 0 −√5

0 0 0 −√5 0 ]
 
 
 
 
 

+
𝑈3,2,2𝛾2,1

7

[
 
 
 
  0 √6 0 0 0

√6 0 1 0 0
0 1 0 1 0

0 0 1 0 √6

0 0 0 √6 0 ]
 
 
 
 

. 

where 𝛾4,1 = 10√5 (
 3+2𝛼

5𝛼
)
5

sin2(𝜃𝑔2) = 𝛾4,−1, and 𝛾2,1 = 3√6(
 3+2𝛼

5𝛼
)
3

sin2(𝜃𝑔2) = 𝛾2,−1.  

If we define 𝛼′ =
−√5

21
𝑈3,2,4𝛾4,1 +

√6

7
𝑈3,2,2𝛾2,1 and 𝛽′ =

√30

21
𝑈3,2,4𝛾4,1 +

1

7
𝑈3,2,2𝛾2,1, the perturbation 

Hamiltonian can be rewritten as 

𝐻1 =

[
 
 
 
 
0 𝛼′ 0 0 0
𝛼′ 0 𝛽′ 0 0

0 𝛽′ 0 𝛽′ 0

0 0 𝛽′ 0 𝛼′

0 0 0 𝛼′ 0 ]
 
 
 
 

, 

where  

𝛼′ =
−50

21
𝑈3,2,4 (

 3+2𝛼

5𝛼
)
5

sin2(𝜃𝑔2) +
18

7
𝑈3,2,2 (

 3+2𝛼

5𝛼
)
3

sin2(𝜃𝑔2) and 

𝛽′ =
50√6

21
𝑈3,2,4 (

 3+2𝛼

5𝛼
)
5

sin2(𝜃𝑔2) +
3√6

7
𝑈3,2,2 (

 3+2𝛼

5𝛼
)
3

sin2(𝜃𝑔2). 

Transforming to the basis {𝑧2, 𝑥2 − 𝑦2, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧}, one gets 

𝐻1
′ =

[
 
 
 
 0 0 0 √2𝛽′ 0

0 0 0 𝛼′ 0
0 0 0 0 𝛼′

√2𝛽′𝛼′ 0 0 0

0 0 𝛼′ 0 0 ]
 
 
 
 

. 

Assuming 
𝑈3,2,4

𝑈3,2,2
= 0.25, one can estimate 𝛼′ = 2.2𝑈3,2,2 sin2(𝜃𝑔2) and 𝛽′ = 2.5𝑈3,2,2 sin2(𝜃𝑔2).  

Adding this perturbation results in coupling between the individual states. On the other hand, since the off 

diagonal terms in 𝐻1
′  are zero and the degenerate states in D3h (i.e. {𝑥𝑦, 𝑥2 − y2 },{ 𝑥𝑧, 𝑦𝑧}) are not 

coupled, the resulting perturbation are all second order in energy, which means that the modification of 

levels caused by Γ2
− mode is actually proportional to [sin(𝜃𝑔2)]

4
, which is small enough to be ignored.  

In principle, 𝛾2,2, 𝛾4,2, 𝛾4,3, and 𝛾4,4 are also nonzero. Since the effect of 𝛾4,1 and 𝛾2,1 are actually fourth 

order in terms of sin(𝜃𝑔2), one needs to consider 𝛾2,2 and 𝛾4,2, where  

𝛾2,2 = 𝛾2,−2 =
√6

2
(

 3 + 2𝛼

5𝛼
)

3

sin2(𝜃𝑔2) 

𝛾4,2 = 𝛾4,−2 =
3√10

2
(

 3 + 2𝛼

5𝛼
)

5

sin2(𝜃𝑔2). 

This additional Hamiltonian is  
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𝐻2 =
𝑈3,2,4𝛾4,2

21

[
 
 
 
 
 0 0 √15 0 0

0 0 0 −√40 0

√15 0 0 0 √15

0 −√40 0 0 0

0 0 √15 0 0 ]
 
 
 
 
 

+
𝑈3,2,2𝛾2,2

7

[
 
 
 
 
0 0 −2 0 0

0 0 0 −√6 0
−2 0 0 0 −2

0 −√6 0 0 0
0 0 −2 0 0 ]

 
 
 
 

. 

This may be transformed into the basis {𝑧2, 𝑥2 − 𝑦2, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧} as 

𝐻2
′ =

[
 
 
 
 0 √2𝛼′ 0 0 0

√2𝛼′ 0 0 0 0
0 0 0 0 0
0 0 0 𝛽′ 0

0 0 0 0 −𝛽′]
 
 
 
 

. 

where  

𝛼′ =
√15

21
𝑈3,2,4𝛾4,2 −

2

7
𝑈3,2,2𝛾2,2 = [

5√6

14
𝑈3,2,4 (

 3 + 2𝛼

5𝛼
)

5

−
√6

7
𝑈3,2,2 (

 3 + 2𝛼

5𝛼
)

3

] sin2(𝜃𝑔2), 

𝛽′ = −
√40

21
𝑈3,2,4𝛾4,2 −

√6

7
𝑈3,2,2𝛾2,2 = [−

10

7
𝑈3,2,4 (

 3 + 2𝛼

5𝛼
)

5

−
3

7
𝑈3,2,2 (

 3 + 2𝛼

5𝛼
)

3

] sin2(𝜃𝑔2). 

Assuming 
𝑈3,2,4

𝑈3,2,2
= 0.25, one can estimate 

 𝛼′ = −0.13𝑈3,2,2 sin2(𝜃𝑔2) and 𝛽′ = −2.2 𝑈3,2,2 sin2(𝜃𝑔2) .  

In h-LuFeO3, sin(𝜃𝑔2) ≈ 0.044, meaning sin2(𝜃𝑔2) ≈ 0.19%. 

In addition, since this is a second order effect, no matter which direction the distortion occurs the splitting 

of the crystal field levels always follow the similar pattern. Sorted in descending energy, the five states 

are 𝑧2, 𝑥𝑦, 𝑥2 − 𝑦2, 𝑦𝑧, 𝑥𝑧. 

𝐾1 mode 

The effect of the K1 mode can be divided into two types. The first type is the horizontal displacement of 

the apex oxygen atoms; this generates a Oap-Fe-Oap angle that is similar to the effect of Γ2
−, which is the 

second order. The second type comes from the displacement of the Fe atoms (𝛿) in the basal plan. This 

can also be describe by the deviation of the Oeq-Fe-Oeq angle from 120 degree, which can be called 𝜙𝑘1 

(see Fig. S5.1) Next, we investigate the effect of this angle.  

If only the displacement of Fe atoms are concerned, all the equator oxygen atoms still have 𝜃 =
𝜋

2
. 

Therefore, in addition to 𝛾2,0, 𝛾4,0, the other non-zero structural factors are 𝛾2,2, 𝛾4,2, and 𝛾4,4. 

We can calculate these factors. The results are: 

𝛾2,2 = −
15√2

4
(
3 + 2𝛼

5
)
3

sin(𝜙𝑘1) 

𝛾4,2 =
7√30

8
(
3 + 2𝛼

5
)
5

sin(𝜙𝑘1) 

𝛾4,4 = −
√210

16
(
3 + 2𝛼

5
)
5

sin(𝜙𝑘1). 

The perturbation Hamiltonian can be written as  



20 
 

𝐻2 =
𝑈3,2,4𝛾4,4

21
[

 0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

] +
𝑈3,2,4𝛾4,2

21

[
 
 
 
 
 0 0 √15 0 0

0 0 0 −√40 0

√15 0 0 0 √15

0 −√40 0 0 0

0 0 √15 0 0 ]
 
 
 
 
 

+
𝑈3,2,2𝛾2,2

7

[
 
 
 
 
0 0 −2 0 0

0 0 0 −√6 0
−2 0 0 0 −2

0 −√6 0 0 0
0 0 −2 0 0 ]

 
 
 
 

. 

To find the energy change due to 𝐻2, one can transform 𝐻2 to the basis {𝑧2, 𝑥2 − 𝑦2, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧}, which is  

𝐻2
′

=

[
 
 
 
 0 √2𝛼′ 0 0 0

√2𝛼′ −𝛿′ 0 0 0
0 0 −𝛿′ 0 0
0 0 0 𝛽′ 0

0 0 0 0 −𝛽′]
 
 
 
 

. 

where  

𝛼′ =
√15

21
𝑈3,2,4𝛾4,2 −

2

7
𝑈3,2,2𝛾2,2 = [

5√2

8
𝑈3,2,4 (

3 + 2𝛼

5
)
5

+
15√2

14
𝑈3,2,2 (

3 + 2𝛼

5
)
3

] sin(𝜙𝑘1), 

𝛽′ = −
√40

21
𝑈3,2,4𝛾4,2 −

√6

7
𝑈3,2,2𝛾2,2 = [−

5√3

3
𝑈3,2,4 (

3 + 2𝛼

5
)
5

+
15√3

14
𝑈3,2,2 (

3 + 2𝛼

5
)
3

] sin(𝜙𝑘1), 

𝛿′ = −
𝑈3,2,4𝛾4,4

21
=

√210

16
𝑈3,2,4 (

3 + 2𝛼

5
)
5

sin(𝜙𝑘1). 

If we assume 
𝑈3,2,4

𝑈3,2,2
≈

1

4
, and 𝛼 = 0.94, these parameters are 

𝛼′ ≈ 1.6 𝑈3,2,2 sin(𝜙𝑘1) , 𝛽′ ≈ 1.1 𝑈3,2,2 sin(𝜙𝑘1) , 𝛿′ ≈ 0.2 𝑈3,2,2 sin(𝜙𝑘1).  

Therefore, the result of splitting of the levels relative to those in the 𝐷3ℎ symmetry is on the order of 

sin(𝜙𝑘1).  

The sign of the coupling terms in the perturbation Hamiltonian determines whether a level goes up or 

down in energy. If we assume sin(𝜙𝑘1) > 0 (𝛿 > 0), the 3d orbitals are split into five levels. They are 

approximately 𝑦𝑧, 𝑥𝑧, 𝑥2 − 𝑦2, 𝑥𝑦, 𝑧2, in the order of ascending energy. In additional, the splitting 

between the 𝑥2 − 𝑦2, 𝑥𝑦 is second order since it comes from the off-diagonal term √2𝛼′. So the splitting 

between the 𝑦𝑧 and 𝑥𝑧 states are most important since 𝛽′ is much larger than 𝛿′. 

S6.5 Lu 5𝑑 orbitals in an C3v local environment 

Here 𝑙=2, 𝑅 = 𝑅𝑎 for the apex oxygen atoms (six of them) and 𝑅 = 𝑅𝑐 for the equator oxygen atom (only 

one). For the apex atoms, the angles are 𝜃 ≈ 1.09,𝜙 = 0,
2𝜋

3
,
4𝜋

3
, and 𝜃 ≈ 2.05,𝜙 =

𝜋

3
, 𝜋,

5𝜋

3
. For the 

equator atom, 
𝑅𝑐

𝑅𝑎
≈ 1.1. 

One can calculate 𝛾4,3 = 𝛾4,−3 = −3.11, 𝛾4,0 = −0.858, 𝛾2,0 = −0.399.  

Therefore, the matrix of crystal field is the following. 
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𝑉𝐶𝐹 =

[
 
 
 
 
 
𝐶−2,−2

4 𝛾4,0 0 0 𝐶−2,1
4 𝛾4,−3 0

0 𝐶−1,−1
4 𝛾4,0 0 0 𝐶−1,2

4 𝛾4,−3

0 0 𝐶0,0
4 𝛾4,0 0 0

𝐶1,−2
4 𝛾4,3 0 0 𝐶1,1

4 𝛾4,0 0

0 𝐶2,−1
4 𝛾4,3 0 0 𝐶2,2

4 𝛾4,0 ]
 
 
 
 
 

𝑈5,2,4 +

[
 
 
 
 
 
𝐶−2,−2

2 𝛾2,0 0 0 0 0

0 𝐶−1,−1
2 𝛾2,0 0 0 0

0 0 𝐶0,0
2 𝛾2,0 0 0

0 0 0 𝐶1,1
2 𝛾2,0 0

0 0 0 0 𝐶2,2
2 𝛾2,0]

 
 
 
 
 

𝑈5,2,2. 

One can calculate that  
𝐼5,2,4

𝐼5,2,2
=

625

2
.  

Since 𝑅 = 2.30 Å, (
𝑎0 

𝑅𝑍𝑒𝑓𝑓
)
2

=
0.0511

𝑍𝑒𝑓𝑓
2 . So  

𝑈5,2,4

𝑈5,2,2
=

15.97

𝑍𝑒𝑓𝑓
2  . 

If we let 𝛽′ =
𝑈5,2,4

𝑈5,2,2
 and plug in the numbers for the Gaunt coefficients and the structure factors: 

𝑉𝐶𝐹 = 𝑈5,2,2

[
 
 
 
 
 
0.11 − 0.04𝛽′ 0 0 0.88𝛽′ 0

0 −0.06 + 0.16𝛽′ 0 0 0.88𝛽′

0 0 −0.11 − 0.24𝛽′ 0 0

0.88𝛽′ 0 0 −0.06 + 0.16𝛽′ 0

0 0.88𝛽′ 0 0 0.11 − 0.04𝛽′]
 
 
 
 
 

 

If we assume 𝑍𝑒𝑓𝑓 = 8, 𝛽′ ≈ 0.25. 

𝑉𝐶𝐹 = 𝑈5,2,2

[
 
 
 
 
0.10 0 0 0.22 0

0 −0.02 0 0 0.22
0 0 −0.17 0 0

0.22 0 0 −0.02 0
0 0.22 0 0 0.10]

 
 
 
 

. 

Obviously, the off-diagonal terms are the largest. So the 5d levels will be split into the following 3 levels, 

in the order of descending energy:  

(𝑥2 − 𝑦2 + 2𝑥𝑧, 𝑥𝑦 + 𝑦𝑧), 𝑧2, (𝑥2 − 𝑦2 − 2𝑥𝑧, 𝑥𝑦 − 𝑦𝑧),  

where  > 0 is a mixing factor that can be found from diagonalizing 𝑉𝐶𝐹. When the off diagonal terms 

dominate, 1.  

With the analysis of spherical harmonic expansion, we can distinguish the 2𝑒 in the group theory 

analysis. In fact, we can name them as 𝑒𝜎 = (𝑥2 − 𝑦2 + 2𝑥𝑧, 𝑥𝑦 + 𝑦𝑧) and 𝑒𝜋 = (𝑥2 − 𝑦2 −
2𝑥𝑧, 𝑥𝑦 − 𝑦𝑧), where the energy of 𝑒𝜎  is the highest, and the energy of 𝑒𝜋 is the lowest. 
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S7. Single-ion anisotropy of Fe3+ in h-LuFeO3 and o-LuFeO3 

In principle, the 3𝑑5 configuration of Fe3+ gives half-filled 3𝑑 orbitals, which corresponds to zero orbital 

angular moments. On the other hand, the high coercivity of LuFeO3 [5,6] suggests significant magnetic 

crystalline anisotropy energy, which requires non-zero orbital angular momentum. 

As discussed in Section 1 and 8, the hybridization between the Fe-3𝑑 and O-2𝑝 orbital makes the 3𝑑5 

configuration an approximation. In other words, there should be non-zero occupancy of the spin-minority 

bands, which may generate a certain orbital angular momentum. Below, we attempt to estimate the 

magnetic anisotropy energy. Since both hexagonal and orthorhombic LuFeO3 are only weakly 

ferromagnetic with aniferromagnetic orders, single-ion anisotropy is actually concerned.  

It is well known that magnetic anisotropy are closely related to the symmetry of the lattice structure. [7] 

We show that the local distortion from D3h to Cs is the key for the anisotropy in h-LuFeO3; the local 

distortion from Oh to D2h is the key for the anisotropy in o-LuFeO3. 

In order to calculate the single-ion anisotropy, we consider the following interactions: crystal field 

interaction, exchange splitting between the spin up and spin down electrons, and the spin-orbit couplings. 

We assume that the exchange splitting has an energy scale of 𝐸𝑒𝑥 which is larger than the energy scale of 

the crystal field energy (on the order of 1 eV) and the spin-orbit coupling (on the order of 50 meV for 3d 

transition metal atoms).  

The single-ion anisotropy energy is calculated by comparing the energy of individual states when the spin 

is along 𝑧 and 𝑥 directions respectively. The spin up and down states are represented as | ↑⟩ and | ↓⟩ 

respectively; the spin along 𝑥 and – 𝑥 directions are represented as 
1

√2
(| ↑⟩ + | ↓⟩) and 

1

√2
(| ↑⟩ − | ↓⟩) 

respectively; the spin along 𝑦 and – 𝑦 directions are represented as 
1

√2
(| ↑⟩ + 𝑖| ↓⟩) and 

1

√2
(| ↑⟩ − 𝑖| ↓⟩) 

respectively. 

In the calculation, we write down the Hamitonian that represent all three interactions and diagonalize to 

find the energy of the eigenstates. While the crystal field energy depends on the detailed local symmetry, 

the exchange splitting basically means all the spin-minority levels has an energy shift 𝐸𝑒𝑥. Since the spin 

orbit interaction is much weaker than the other two interaction, the energy of the eigenstates are mostly 

determined by the exchange splitting and crystal field interactions; the spin-orbit interactions act as 

perturbation. 

S7.1 Hexagonal LuFeO3 

S7.1.1 D3h symmetry 

Spin along the 𝑧 direction.  

In this case, we choose the following crystal field levels as the basis: 

𝜙1𝑧 = |𝑧𝑧 ↑⟩, 𝜙2𝑧 = |𝑥𝑦 ↑⟩, 𝜙3𝑧 = |𝑥2 − 𝑦2 ↑⟩, 𝜙4𝑧 = |𝑥𝑧 ↑⟩, 𝜙5𝑧 = |𝑦𝑧 ↑⟩, 

𝜙6𝑧 = |𝑧𝑧 ↓⟩, 𝜙7𝑧 = |𝑥𝑦 ↓⟩, 𝜙8𝑧 = |𝑥2 − 𝑦2 ↓⟩, 𝜙9𝑧 = |𝑥𝑧 ↓⟩, 𝜙10𝑧 = |𝑦𝑧 ↓⟩ . 

The Hamiltonian for the exchange splitting and the crystal field interaction is: 
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𝐻𝐶𝐹𝐸𝑥
𝐷3ℎ =

[
 
 
 
 
 
 
 
 
 
𝐸𝑒𝑥 0 0 0 0 0 0 0 0 0
0 𝐸𝑒𝑥 − 𝑎 0 0 0 0 0 0 0 0
0 0 𝐸𝑒𝑥 − 𝑎 0 0 0 0 0 0 0
0 0 0 𝐸𝑒𝑥 − 𝑏 0 0 0 0 0 0
0 0 0 0 𝐸𝑒𝑥 − 𝑏 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝑎 0 0 0
0 0 0 0 0 0 0 −𝑎 0 0
0 0 0 0 0 0 0 0 −𝑏 0
0 0 0 0 0 0 0 0 0 −𝑏]

 
 
 
 
 
 
 
 
 

. 

Note that due to the basis we choose, the Hamiltonian 𝐻𝐶𝐹𝐸𝑥
𝐷3ℎ  is already diagonalized. 

The Hamiltonian for the spin orbit interaction can be derived as  

𝐻𝑆𝑂
𝑧 = 𝜉 𝑆 ⋅ �⃗⃗�  = 𝜉

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 0 0 0

√3

2

√3

2

0 0 1 0 0 0 0 0 −
1

2

1

2

0 1 0 0 0 0 0 0
1

2
−

1

2

0 0 0 0
1

2

√3

2

1

2

1

2
0 0

0 0 0
1

2
0 −

√3

2

1

2

1

2
0 0

0 0 0
√3

2
−

√3

2
0 0 0 0 0

0 0 0
1

2

1

2
0 0 0 −1 0

0 0 0
1

2

1

2
0 0 −1 0 0

√3

2
−

1

2

1

2
0 0 0 0 0 0 −

1

2

√3

2

1

2
−

1

2
0 0 0 0 0 −

1

2
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

The Hamiltonian 𝐻𝐶𝐹𝐸𝑥
𝐷3ℎ + 𝐻𝑆𝑂

𝑧  can be diagonalized using the perturbation theory. The results are 

𝜙1𝑧
′ = 𝜙1𝑧 +

√3

2

𝜉

𝐸𝑒𝑥 + 𝑏
(𝜙9𝑧 + 𝜙10𝑧), 𝐸1𝑧

′ = 𝐸𝑒𝑥 +
3

2

𝜉2

𝐸𝑒𝑥 + 𝑏
 

𝜙2𝑧
′ =

1

√2
(𝜙2𝑧 + 𝜙3𝑧), 𝐸2𝑧

′ = 𝐸𝑒𝑥 − 𝑎 + 𝜉 

𝜙3𝑧
′ =

1

√2
(𝜙3𝑧 − 𝜙2𝑧) +

1

√2

𝜉

𝐸𝑒𝑥 + 𝑏 − 𝑎
(𝜙9𝑧 − 𝜙10𝑧), 𝐸3𝑧

′ = 𝐸𝑒𝑥 − 𝑎 − 𝜉 +
𝜉2

𝐸𝑒𝑥 − 𝑎 + 𝑏
 

𝜙4𝑧
′ =

1

√2
(𝜙4𝑧 + 𝜙5𝑧) +

1

√2

𝜉

𝐸𝑒𝑥 + 𝑏 − 𝑎
(𝜙7𝑧 + 𝜙8𝑧), 𝐸4𝑧

′ = 𝐸𝑒𝑥 − 𝑏 +
𝜉

2
+

𝜉2

𝐸𝑒𝑥 + 𝑎 − 𝑏
 

𝜙5𝑧
′ =

1

√2
(𝜙4𝑧 − 𝜙5𝑧) +

√6

2

𝜉

𝐸𝑒𝑥 − 𝑏
𝜙6𝑧, 𝐸5𝑧

′ = 𝐸𝑒𝑥 − 𝑏 −
𝜉

2
+

3

2

𝜉2

𝐸𝑒𝑥 − 𝑏
 

𝜙6𝑧
′ = 𝜙6𝑧 −

√3

2

𝜉

𝐸𝑒𝑥 − 𝑏
(𝜙4𝑧 − 𝜙5𝑧), 𝐸6𝑧

′ = −
3

2

𝜉2

𝐸𝑒𝑥 − 𝑏
 

𝜙7𝑧
′ =

1

√2
(𝜙7𝑧 + 𝜙8𝑧) −

1

√2

𝜉

𝐸𝑒𝑥 + 𝑏 − 𝑎
(𝜙4𝑧 + 𝜙5𝑧), 𝐸7𝑧

′ = −𝑎 − 𝜉 −
𝜉2

𝐸𝑒𝑥 + 𝑎 − 𝑏
 

𝜙8𝑧
′ =

1

√2
(𝜙8𝑧 − 𝜙7𝑧), 𝐸8𝑧

′ = −𝑎 + 𝜉 
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𝜙9𝑧
′ =

1

√2
(𝜙9𝑧 + 𝜙10𝑧) −

√6

2

𝜉

𝐸𝑒𝑥 + 𝑏
𝜙1𝑧, 𝐸9𝑧

′ = −𝑏 −
𝜉

2
−

3

2

𝜉2

𝐸𝑒𝑥 + 𝑏
 

𝜙10𝑧
′ =

1

√2
(𝜙9𝑧 − 𝜙10𝑧) −

1

√2

𝜉

𝐸𝑒𝑥 − 𝑎 + 𝑏
(𝜙3𝑧 − 𝜙2𝑧), 𝐸10𝑧

′ = −𝑏 +
𝜉

2
−

𝜉2

𝐸𝑒𝑥 − 𝑎 + 𝑏
. 

 

Spin along the 𝑥 and y direction 

In this case, in order to use the same 𝐻𝐶𝐹𝐸𝑥
𝐷3ℎ , we need to choose different basis and the corresponding spin-

orbit Hamiltonian. 

When the spins are along the 𝑥 axis, the basis of the spin-orbit interaction Hamiltonians are:  

𝜙1𝑥 =
1

√2
(|𝑧𝑧 ↑⟩ + |𝑧𝑧 ↓⟩), 𝜙2𝑥 =

1

√2
(|𝑥𝑦 ↑⟩ + |𝑥𝑦 ↓⟩), 

𝜙3𝑥 =
1

√2
(|𝑥2 − 𝑦2 ↑⟩ + |𝑥2 − 𝑦2 ↓⟩), 𝜙4𝑥 =

1

√2
(|𝑥𝑧 ↑⟩ + |𝑥𝑧 ↓⟩), 𝜙5𝑥 =

1

√2
(|𝑦𝑧 ↑⟩ + |𝑦𝑧 ↓⟩), 

𝜙6𝑥 =
1

√2
(|𝑧𝑧 ↑⟩ − |𝑧𝑧 ↓⟩), 𝜙7𝑥 =

1

√2
(|𝑥𝑦 ↑⟩ − |𝑥𝑦 ↓⟩), 

𝜙8𝑥 =
1

√2
(|𝑥2 − 𝑦2 ↑⟩ − |𝑥2 − 𝑦2 ↓⟩), 𝜙9𝑥 =

1

√2
(|𝑥𝑧 ↑⟩ − |𝑥𝑧 ↓⟩), 𝜙10𝑥 =

1

√2
(|𝑦𝑧 ↑⟩ − |𝑦𝑧 ↓⟩). 

The Hamiltonian for the spin-orbit interaction is: 

𝐻𝑆𝑂
𝑥 = 𝜉

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0

√3

2
0 0 0 0 0 −

√3

2

0 0 0 0
1

2
0 0 1

1

2
0

0 0 0
1

2
0 0 1 0 0

1

2

√3

2
0

1

2
0 0 0 −

1

2
0 0

1

2

0
1

2
0 0 0

√3

2
0 −

1

2

1

2
0

0 0 0 0
√3

2
0 0 0 −

√3

2
0

0 0 1 −
1

2
0 0 0 0 0 −

1

2

0 1 0 0 −
1

2
0 0 0 −

1

2
0

0
1

2
0 0

1

2
−

√3

2
0 −

1

2
0 0

−
√3

2
0

1

2

1

2
0 0 −

1

2
0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

When the spins are along the y axis, the basis are 

𝜙1𝑦 =
1

√2
(|𝑧𝑧 ↑⟩ + 𝑖|𝑧𝑧 ↓⟩), 𝜙2𝑦 =

1

√2
(|𝑥𝑦 ↑⟩ + 𝑖|𝑥𝑦 ↓⟩), 

𝜙3𝑦 =
1

√2
(|𝑥2 − 𝑦2 ↑⟩ + 𝑖|𝑥2 − 𝑦2 ↓⟩), 𝜙4𝑦 =

1

√2
(|𝑥𝑧 ↑⟩ + 𝑖|𝑥𝑧 ↓⟩), 𝜙5𝑦 =

1

√2
(|𝑦𝑧 ↑⟩ + 𝑖|𝑦𝑧 ↓⟩), 

𝜙6𝑦 =
1

√2
(|𝑧𝑧 ↑⟩ − 𝑖|𝑧𝑧 ↓⟩), 𝜙7𝑦 =

1

√2
(|𝑥𝑦 ↑⟩ − 𝑖|𝑥𝑦 ↓⟩), 

𝜙8𝑦 =
1

√2
(|𝑥2 − 𝑦2 ↑⟩ − 𝑖|𝑥2 − 𝑦2 ↓⟩), 𝜙9𝑦 =

1

√2
(|𝑥𝑧 ↑⟩ − 𝑖|𝑥𝑧 ↓⟩), 𝜙10𝑦 =

1

√2
(|𝑦𝑧 ↑⟩ − 𝑖|𝑦𝑧 ↓⟩). 

The Hamiltonian for the spin-orbit interaction is: 
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 𝐻𝑆𝑂
𝑦

= 𝜉

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0

−𝑖√3

2
0 0 0

𝑖√3

2
0

0 0 0
𝑖

2
0 0 0 1 0

𝑖

2

0 0 0 0
𝑖

2
0 1 0

𝑖

2
0

0
−𝑖

2
0 0 0

𝑖√3

2
0

𝑖

2
0

1

2

𝑖√3

2
0

−𝑖

2
0 0 0

𝑖

2
0

1

2
0

0 0 0
−𝑖√3

2
0 0 0 0 0

𝑖√3

2

0 0 1 0
−𝑖

2
0 0 0

−𝑖

2
0

0 1 0
−𝑖

2
0 0 0 0 0 −

𝑖

2

−𝑖√3

2
0

−𝑖

2
0

1

2
0

𝑖

2
0 0 0

0
−𝑖

2
0

1

2
0

−𝑖√3

2
0

𝑖

2
0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

These Hamiltonians have the following features: 1) The diagonal terms are all zero. 2) The degenerate 

states are not directly coupled. 3) The degenerate states are not coupled by a third states. So the 

perturbation energy are all second order: 

𝜙𝑖
′ = 𝜙𝑖 + ∑

⟨𝜙𝑖|𝐻𝑆𝑂|𝜙𝑗⟩

𝐸𝑖 − 𝐸𝑗
𝜙𝑗

𝑖

, 𝐸𝑖
′ = 𝐸𝑖 + ∑

|⟨𝜙𝑖|𝐻𝑆𝑂|𝜙𝑗⟩|
2

𝐸𝑖 − 𝐸𝑗
𝑖

. 

For example, when the spins are along the 𝑥 axis, the results of the energies are: 

𝐸1𝑥
′ = 𝐸𝑒𝑥 +

3

4

𝜉2

𝑏
+

3

4

𝜉2

𝐸𝑒𝑥 + 𝑏
 

𝐸2𝑥
′ = 𝐸𝑒𝑥 − 𝑎 +

1

4

𝜉2

𝑏 − 𝑎
+

𝜉2

𝐸𝑒𝑥
+

1

4

𝜉2

𝐸𝑒𝑥 + 𝑏 − 𝑎
 

𝐸3𝑥
′ = 𝐸𝑒𝑥 − 𝑎 +

1

4

𝜉2

𝑏 − 𝑎
+

𝜉2

𝐸𝑒𝑥
+

1

4

𝜉2

𝐸𝑒𝑥 + 𝑏 − 𝑎
 

𝐸4𝑥
′ = 𝐸𝑒𝑥 − 𝑏 −

3

4

𝜉2

𝑏
−

1

4

𝜉2

𝑏 − 𝑎
+

1

4

𝜉2

𝐸𝑒𝑥 + 𝑎 − 𝑏
+

1

4

𝜉2

𝐸𝑒𝑥
 

𝐸5𝑥
′ = 𝐸𝑒𝑥 − 𝑏 −

1

4

𝜉2

𝑏 − 𝑎
+

3

4

𝜉2

𝐸𝑒𝑥 − 𝑏
+

1

4

𝜉2

𝐸𝑒𝑥 + 𝑎 − 𝑏
+

1

4

𝜉2

𝐸𝑒𝑥
 

𝐸6𝑥
′ = −

3

4

𝜉2

𝑏
−

3

4

𝜉2

𝐸𝑒𝑥 − 𝑏
 

𝐸7𝑥
′ = −𝑎 +

1

4

𝜉2

𝑏 − 𝑎
−

𝜉2

𝐸𝑥
−

1

4

𝜉2

𝐸𝑥 + 𝑎 − 𝑏
 

𝐸8𝑥
′ = −𝑎 +

1

4

𝜉2

𝑏 − 𝑎
−

𝜉2

𝐸𝑥
−

1

4

𝜉2

𝐸𝑥 + 𝑎 − 𝑏
 

𝐸9𝑥
′ = −𝑏 −

3

4

𝜉2

𝑏
−

1

4

𝜉2

𝑏 − 𝑎
−

1

4

𝜉2

𝐸𝑥 + 𝑏 − 𝑎
−

1

4

𝜉2

𝐸𝑥
 

𝐸10𝑥
′ = −𝑏 −

1

4

𝜉2

𝑏 − 𝑎
−

3

4

𝜉2

𝐸𝑥 + 𝑏
−

1

4

𝜉2

𝐸𝑥 + 𝑏 − 𝑎
−

1

4

𝜉2

𝐸𝑥
. 
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All the perturbations are in second order, which is small compared to the modification to energy 

generated by the spin in the 𝑧 direction. 

Figure S7.1 depicts the energy diagram of 3d electron levels in D3h local symmetry. With the spin orbit 

coupling, the energy of a certain orbital actually depend on the spin direction. We define the single-ion 

anisotropy energy as 

𝐸𝑖
𝑎𝑛 = 𝐸𝑖𝑧 − 𝐸𝑖𝑥 . 

Therefore, in case of D3h local symmetry, the modification of energy when spin is along the 𝑧 direction is 

dominant. 

Using this model, one can analyze the single-ion anisotropy energy in the D3h symmetry. 

For Fe3+, if the electron occupation follows the nominal valence as 3d5 in the majority band, the total spin 

orbit coupling energy is canceled. So there will be no anisotropy, which is why the anisotropy is in 

general small (but non-zero) for Fe3+, even if the local symmetry is anisotropic. The non-zero magnetic 

anisotropy is then expected to be related to the partially filled minority states due to the Fe 3d-O 2p 

hybridization. As shown in Section 8, the hybridization between the 𝑥2 − 𝑦2 and the O 2p states are the 

same as that between the 𝑥𝑦 state and the O 2p states. This is also true for 𝑥𝑧 and 𝑦𝑧 states. So if we 

calculate the total energy using ∑ 𝐸𝑖𝑛𝑖𝑖 , where 𝑖 is the index for states, and 𝑛𝑖 is the population of the 𝑖𝑡ℎ 

state, the first order modification to the energies in terms of 𝜉 is canceled. The result of the sum ∑ 𝐸𝑖𝑛𝑖𝑖  

depends on the second order terms. In principle, if the hybridization level of all states are the same, the 

sum ∑ 𝐸𝑖𝑛𝑖𝑖  vanishes. On the other hand, due to D3h symmetry, the hybridization of the 𝑧2 state is the 

strongest, followed by the 𝑥2 − 𝑦2 and 𝑥𝑦 states, and the 𝑥𝑧 and 𝑦𝑧 states (see Section 8). This difference 

in hybridization creates an imbalance in 𝑛𝑖, causing a non-zero ∑ 𝐸𝑖𝑛𝑖𝑖 . In this case, when the spins are 

along the 𝑥 axis, the minority states can interact with other minority states, pushing the 𝑧2, 𝑥2 − 𝑦2, and 

𝑥𝑦 up and 𝑥𝑧 and 𝑦𝑧 states down. Combined with the population imbalance, the result is ∑ 𝐸𝑖𝑥𝑛𝑖𝑥𝑖 >
∑ 𝐸𝑖𝑧𝑛𝑖𝑧𝑖 . This means that the 𝑧 axis is the easy axis for the single-ion anisotropy. The fact that the spins 

are in the 𝑥 − 𝑦 plane suggests that the triangular lattice plays an important role in the spin orientations. 

 

Figure S7.1 Single-ion anisotropy energy of 3d electrons in a D3h local symmetry. The 

spin-orbit splitting when the spin is along the 𝑥 direction are all on the order of 𝜉2. 
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In the D3h symmetry, the 𝑥 and 𝑦 directions are equivalent. So one finds ∑ 𝐸𝑖𝑥𝑛𝑖𝑥𝑖 = ∑ 𝐸𝑖𝑦𝑛𝑖𝑦𝑖 . To 

discuss the in-plane anisotropy, one needs to introduce the CS distortion, as shown below. 

Note that, using this model, we can also analyze the single-ion anisotropy of Fe in LuFe2O4. For Fe2+, the 

additional electron on 𝑥𝑧, 𝑦𝑧 orbital generates an anisotropy energy −
𝜉

2
, which favors spin along the 𝑧 

direction. This explains why the coercive field of LuFe2O4 is very large (close to 10 T at 4 K): the local 

environment is the anisotropic D3h, and the 3d6 electronic configuration generates a single ion anisotropic 

energy on the order −
𝜉

2
. [1] 

S7.1.2 CS symmetry 

In order to understand the single-ion anisotropy in h-LuFeO3, one needs to consider the structural 

distortion from D3h symmetry and calculate the anisotropy in the Cs symmetry. 

As shown in the Section 6, the distortion to CS symmetry will split the 𝑒′ and 𝑒′′ levels. To simplify the 

calculation, we use a single parameter 𝑑 to represent the D3h to CS distortion, i.e. only consider the 

splitting between the 𝑦𝑧 and 𝑥𝑧 states because that is the largest. Using the basis {𝑧2, 𝑥𝑦, 𝑥2 − 𝑦2, 𝑥𝑧, 𝑦𝑧}, 
the Hamiltonian is  

𝐻𝐶𝐹𝐸𝑥
𝐷3ℎ =

[
 
 
 
 
 
 
 
 
 
𝐸𝑒𝑥 0 2𝑑 0 0 0 0 0 0 0
0 𝐸𝑒𝑥 − 𝑎 0 0 0 0 0 0 0 0
2𝑑 0 𝐸𝑒𝑥 − 𝑎 0 0 0 0 0 0 0
0 0 0 𝐸𝑒𝑥 − 𝑏 + 𝑑 0 0 0 0 0 0
0 0 0 0 𝐸𝑒𝑥 − 𝑏 − 𝑑 0 0 0 0 0
0 0 0 0 0 0 0 2𝑑 0 0
0 0 0 0 0 0 −𝑎 0 0 0
0 0 0 0 0 2𝑑 0 −𝑎 0 0
0 0 0 0 0 0 0 0 −𝑏 + 𝑑 0
0 0 0 0 0 0 0 0 0 −𝑏 − 𝑑]

 
 
 
 
 
 
 
 
 

. 

By diagonalizing the total Hamiltonian numerically and comparing with the results when the spin is along 

the 𝑦 axis, one can discuss the anisotropy energy in the 𝑥 − 𝑦 plane. As shown in Fig. S7.2, when 𝑑 = 0 

(D3h symmetry), within the 𝑥 − 𝑦 plane, the spin orientation is isotropic, i.e. 𝐸𝑦 − 𝐸𝑥 = 0. When 𝑑 < 0, 

the minority (unoccuopied) 𝑦𝑧 orbit has a higher energy because of the CS distortion; its hybridization is 

also stronger. At the same time, the anisotropy energy 𝐸𝑦 − 𝐸𝑥 > 0, suggesting that the 𝑥 axis is an easy 

axis. Therefore, the spin is more likely to point toward 𝑥 direction, which is observed in hexagonal 

LuFeO3. When 𝑑 > 0, minority (unoccuopied) 𝑦𝑧 orbit has higher energy and higher hybridization. Since 

the anisotropy energy of 𝑥𝑧 orbit is 𝐸𝑥 − 𝐸𝑦 > 0, the 𝑦 axis becomes the easy axis. More details of the 

calculation is shown below. 

When the spins are in the 𝑥 or 𝑦 direction, one can estimate the eigenenergies using the perturbation 

theory. For the minority states 

𝐸1,𝑥
′ = 𝐸𝑒𝑥 +

2𝑑2

𝑎
+

3

4

𝜉2

𝑏 − 𝑑
+

3

4

𝜉2

𝐸𝑥 + 𝑏 + 𝑑
 

𝐸2,𝑥
′ = 𝐸𝑒𝑥 − 𝑎 +

1

4

𝜉2

𝑏 − 𝑎 + 𝑑
+

𝜉2

𝐸𝑥
+

1

4

𝜉2

𝐸𝑥 + 𝑏 − 𝑎 − 𝑑
 

𝐸3,𝑥
′ = 𝐸𝑒𝑥 − 𝑎 −

2𝑑2

𝑎
+

1

4

𝜉2

𝑏 − 𝑎 − 𝑑
+

𝜉2

𝐸𝑥
+

1

4

𝜉2

𝐸𝑥 + 𝑏 − 𝑎 + 𝑑
 

𝐸4,𝑥
′ = 𝐸𝑒𝑥 − 𝑏 + 𝑑 −

3

4

𝜉2

𝑏 − 𝑑
−

1

4

𝜉2

𝑏 − 𝑎 − 𝑑
+

1

4

𝜉2

𝐸𝑥 + 𝑎 − 𝑏 + 𝑑
+

1

4

𝜉2

𝐸𝑥 + 2𝑑
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𝐸5,𝑥
′ = 𝐸𝑒𝑥 − 𝑏 − 𝑑 −

1

4

𝜉2

𝑏 − 𝑎 − 𝑑
+

3

4

𝜉2

𝐸𝑥 − 𝑏 − 𝑑
+

1

4

𝜉2

𝐸𝑥 + 𝑎 − 𝑏 − 𝑑
+

1

4

𝜉2

𝐸𝑥 − 2𝑑
 

𝐸1,𝑦
′ = 𝐸𝑒𝑥 +

2𝑑2

𝑎
+

3

4

𝜉2

𝑏 + 𝑑
+

3

4

𝜉2

𝐸𝑥 + 𝑏 − 𝑑
 

𝐸2,𝑦
′ = 𝐸𝑒𝑥 − 𝑎 +

1

4

𝜉2

𝑏 − 𝑎 − 𝑑
+

𝜉2

𝐸𝑥
+

1

4

𝜉2

𝐸𝑥 + 𝑏 − 𝑎 + 𝑑
 

𝐸3,𝑦
′ = 𝐸𝑒𝑥 − 𝑎 −

2𝑑2

𝑎
+

1

4

𝜉2

𝑏 − 𝑎 + 𝑑
+

𝜉2

𝐸𝑥
+

1

4

𝜉2

𝐸𝑥 + 𝑏 − 𝑎 − 𝑑
 

𝐸4,𝑦
′ = 𝐸𝑒𝑥 − 𝑏 + 𝑑 −

1

4

𝜉2

𝑏 − 𝑎 − 𝑑
+

3

4

𝜉2

𝐸𝑥 − 𝑏 + 𝑑
+

1

4

𝜉2

𝐸𝑥 + 𝑎 − 𝑏 + 𝑑
+

1

4

𝜉2

𝐸𝑥 + 2𝑑
 

𝐸5,𝑦
′ = 𝐸𝑒𝑥 − 𝑏 − 𝑑 −

3

4

𝜉2

𝑏 + 𝑑
−

1

4

𝜉2

𝑏 − 𝑎 + 𝑑
+

1

4

𝜉2

𝐸𝑥 + 𝑎 − 𝑏 − 𝑑
+

1

4

𝜉2

𝐸𝑥 − 2𝑑
 

Then one can calculate anisotropy  

𝐸1,𝑦
′ − 𝐸1,𝑥

′ =
3

4

𝜉2

𝑏+𝑑
+

3

4

𝜉2

𝐸𝑒𝑥+𝑏−𝑑
−

3

4

𝜉2

𝑏−𝑑
−

3

4

𝜉2

𝐸𝑒𝑥+𝑏+𝑑
  

𝐸2,𝑦
′ − 𝐸2,𝑥

′ =
1

4

𝜉2

𝑏−𝑎−𝑑
+

1

4

𝜉2

𝐸𝑒𝑥+𝑏−𝑎+𝑑
−

1

4

𝜉2

𝑏−𝑎+𝑑
−

1

4

𝜉2

𝐸𝑒𝑥+𝑏−𝑎−𝑑
  

𝐸3,𝑦
′ − 𝐸3,𝑥

′ =
1

4

𝜉2

𝑏−𝑎+𝑑
+

1

4

𝜉2

𝐸𝑒𝑥+𝑏−𝑎−𝑑
− 

1

4

𝜉2

𝑏−𝑎−𝑑
−

1

4

𝜉2

𝐸𝑒𝑥+𝑏−𝑎+𝑑
 

𝐸4,𝑦
′ − 𝐸4,𝑥

′ =
3

4

𝜉2

𝐸𝑒𝑥−𝑏+𝑑
+

3

4

𝜉2

𝑏−𝑑
  

𝐸5,𝑦
′ − 𝐸5,𝑥

′ = −
3

4

𝜉2

𝐸𝑒𝑥−𝑏−𝑑
−

3

4

𝜉2

𝑏+𝑑
. 

The sum of the anisotropy energy ∑(𝐸𝑖,𝑦
′ − 𝐸𝑖,𝑥

′ ) is expected to be close to zero. On the other hand, since 

the hybridization is different for different states, the real anisotropy energy ∑𝑛𝑖(𝐸𝑖,𝑦
′ − 𝐸𝑖,𝑥

′ ) is non-zero. 

In particular, since the hybridization of the 𝑧2 state is the largest, the sign of 𝐸1,𝑦
′ − 𝐸1,𝑥

′  determines the 

total anisotropy energy. One can expand the anisotropy energies assuming 𝑑 is small, the results are 

𝐸1,𝑦
′ − 𝐸1,𝑥

′ ≈ −
3

2

𝜉2

𝑏2 𝑑 +
3

2

𝜉2

(𝐸𝑥+𝑏)2
𝑑  

 

Figure. S7.2 Anisotropy energy in the 𝑥 − 𝑦 plane as a function of the CS distortion energy. 

The parameters assumed are 𝜉 = 50 𝑚𝑒𝑉, 𝑎 = 1.1 𝑒𝑉, 𝑏 = 1.4 𝑒𝑉, 𝐸𝑒𝑥 = 4 𝑒𝑉, 𝑛1 =

0.18, 𝑛2 = 𝑛3 = 0.068, 𝑛4 = 𝑛5 = 0.046. 
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𝐸2,𝑦
′ − 𝐸2,𝑥

′ ≈
1

2

𝜉2

(𝑏−𝑎)2
𝑑 −

1

2

𝜉2

(𝐸𝑥+𝑏−𝑎)2
𝑑  

𝐸3,𝑦
′ − 𝐸3,𝑥

′ ≈ −
1

2

𝜉2

(𝑏−𝑎)2
𝑑 +

1

2

𝜉2

(𝐸𝑥+𝑏−𝑎)2
𝑑  

𝐸4,𝑦
′ − 𝐸4,𝑥

′ ≈ −
3

4

𝜉2

(𝐸𝑥−𝑏)2
𝑑 +

3

4

𝜉2

𝑏2 𝑑  

𝐸5,𝑦
′ − 𝐸5,𝑥

′ ≈ −
3

4

𝜉2

(𝐸𝑥−𝑏)2
𝑑 +

3

4

𝜉2

𝑏2 𝑑. 

When 𝑑 < 0 (the case for h-LFO at low temperature), the 𝐸1,𝑦
′ − 𝐸1,𝑥

′ > 0, suggesting that the spins are 

preferred to be along the 𝑥 direction, which is consistent with the experimental observations. 

Figure S7.2 shows the numerical results of ∑𝑛𝑖(𝐸𝑖,𝑦
′ − 𝐸𝑖,𝑧

′ ) and ∑𝑛𝑖(𝐸𝑖,𝑥
′ − 𝐸𝑖,𝑧

′ ) as a function of CS 

distortion parameterized using variable 𝑑. The minority state population is chosen to be proportional to 

the hybridization (see Section 8), while the majority states are filled. Note that multiplying the population 

of all states does not change the results qualitatively. Indeed, when 𝑑 < 0, ∑𝑛𝑖(𝐸𝑖,𝑥
′ − 𝐸𝑖,𝑧

′ ) <

∑𝑛𝑖(𝐸𝑖,𝑦
′ − 𝐸𝑖,𝑧

′ ), suggesting that the easy axis in the 𝑥 − 𝑦 plane is the 𝑥 axis. 

S7.2 Orthorhombic LuFeO3 

In the orthorhombic LuFeO3, the local environment of the Fe is the FeO6 octahedral, which is 

approximately Oh symmetry. In Oh symmetry, the 𝑥, 𝑦, and 𝑧 directions are equivalent, making the 

anisotropy energy minimal. The distortion into D2h is expected to generate anisotropy.  

We choose the same basis as we do in the analysis of D3h symmetry for the spin in the 𝑥, 𝑦 and 𝑧 

directions. Then the spin-orbit coupling Hamiltonian are the same. The Hamiltonian for the crystal field 

and exchange splitting is 

𝐻𝐶𝐹𝐸𝑥
𝐶2ℎ =

[
 
 
 
 
 
 
 
 
 
 
𝐸𝑒𝑥 + 𝐸10𝑑𝑞 0 𝑑 0 0 0 0 0 0 0

0 𝐸𝑒𝑥 0 0 0 0 0 0 0 0
𝑑 0 𝐸𝑒𝑥 + 𝐸10𝑑𝑞 0 0 0 0 0 0 0

0 0 0 𝐸𝑒𝑥 + 2𝑑 0 0 0 0 0 0
0 0 0 0 𝐸𝑒𝑥 − 2𝑑 0 0 0 0 0
0 0 0 0 0 𝐸10𝑑𝑞 0 𝑑 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 𝑑 0 𝐸10𝑑𝑞 0 0

0 0 0 0 0 0 0 0 2𝑑 0
0 0 0 0 0 0 0 0 0 −2𝑑]

 
 
 
 
 
 
 
 
 
 

, 



30 
 

where 𝐸10𝑑𝑞 is the splitting between 𝑡2𝑔 and 𝑒𝑔 levels and 𝑑 is the parameter that represent the magnitude 

of the D2h distortion. Again, for simplicity, only a single parameter 𝑑 is used to represent the distortion; 

the tetragonal part of the distortion is ignored. When 𝑑 = 0, the symmetry is Oh. Note that the sign of 𝑑 is 

the same as 𝑏 − 𝑎, as shown in the Section 6. 

Figure S7.3 displays the anisotropy energy of ∑𝑛𝑖(𝐸𝑖,𝑦
′ − 𝐸𝑖,𝑧

′ ) and ∑𝑛𝑖(𝐸𝑖,𝑥
′ − 𝐸𝑖,𝑧

′ ), calculated by 

diagonalizing the total Hamiltonian numerically. The minority state population is chosen to be 

proportional to the hybridization (see Section 8), while the majority states are filled. When distortion 

parameter 𝑑 > 0, ∑𝑛𝑖(𝐸𝑖,𝑥
′ − 𝐸𝑖,𝑧

′ ) > ∑𝑛𝑖(𝐸𝑖,𝑥
′ − 𝐸𝑖,𝑧

′ ), suggesting that the 𝑥 axis is the easy axis, which 

is consistent with the experimental observations.  [8] 

Observed single-ion anisotropy 

 

  

 

Figure S7.3 Effect of lattice distortion from Oh symmetry to D2h symmetry on the single ion 

anisotropy. The parameters assumed are 𝐸𝑒𝑥 = 4 𝑒𝑉, 𝐸10𝑑𝑞 = 1.4 𝑒𝑉 𝑎𝑛𝑑 𝜉 = 50 𝑚𝑒𝑉, 𝑛1 = 0, 𝑛1 =

𝑛3 = 0.07, 𝑛2 = 𝑛4 = 𝑛5 = 0.02. 

 

Figure S7.4 Structure and spin orientation in orthorhombic LuFO3. The arrows are the spin 

orientations. The rods indicate the shortest O-Fe-O path in the FeO6; they are the local 𝑥 

axis used in the analysis above. 
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As shown in Fig. S7.4, the observed spins are actually not pointing to the symmetry axis of the FeO6 

octahedra. Instead, they point toward the crystal 𝑎 axis, which is the shortest axis. This is an example in 

which the geometric arrangements of the magnetic ions play an important role. As shown in Fig. S7.4, the 

shortest axes (the 𝑥 axis) of the FeO6 are indicated using solid rods. The angles between the solid rods are 

52 degree. If the spins are all oriented according to the single-ion anisotropy, the antiparallel alignment 

required by the antiferromagnetism cannot be satisfied. Since the exchange interaction has a larger energy 

scale than that of the single-ion anisotropy, the spins are reoriented to form the antiferromagnetic order. 

To minimize the energy loss in the single-ion anisotropy, the spins are aligned along the 𝑎 axis to have a 

minimum common angle with the easy axis of the single-ion anisotropy. In other words, the observed 

magnetocrystalline anisotropy is consistent with the predicted easy axis from the single-ion anisotropy. 
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S8. Hybridization of atomic orbitals 

S8.1 General concept 

As shown in Fig. S7.1, when two atoms form an ionic bond, the new electronic (bonding state and anti-

bonding) states are formed. The bonding (occupied) and anti-bonding (unoccupied) states are both 

superposition of the original atomic states; this is hybridization. Here we discuss the hybridization using a 

one-electron picture, to provide a simplest model.  

Consider two bonding orbitals |𝜙𝑎 > and |𝜙𝑏 > (on atom 𝑎 and 𝑏 respectively), which are the eigenstates 

of Hamiltonian 𝐻𝑎 =
ℏ2

2𝑚
∇2 + 𝑉𝑎 and 𝐻𝑏 =

ℏ2

2𝑚
∇2 + 𝑉𝑏 respectively, where 𝑉𝑎 = −

𝑍𝑎𝑒2

|𝑟−𝑟𝑎|
  and 𝑉𝑏 =

−
𝑍𝑏𝑒2

|𝑟−𝑟𝑏|
 . 

It follows that 𝐻𝑎|𝜙𝑎 >= 𝜖𝑎|𝜙𝑎 > and 𝐻𝑏|𝜙𝑏 >= 𝜖𝑏|𝜙𝑏 >, where 𝜖𝑎 and 𝜖𝑏 are the eigenenergies. 

In the bonded atoms, the Hamiltonian for the electron becomes 𝐻 =
ℏ2

2𝑚
∇2 + 𝑉𝑎 + 𝑉𝑏. 

Assuming the new eigenstates are |𝜓 >= 𝑎|𝜙𝑎 > +𝑏|𝜙𝑏 >, if follows that 

𝐻𝜓 = (
ℏ2

2𝑚
∇2 + 𝑉𝑎 + 𝑉𝑏) (𝑎|𝜙𝑎 > +𝑏|𝜙𝑏 >) = 𝑎(𝜖𝑎 + 𝑉𝑏)|𝜙𝑎 > +𝑏(𝜖𝑏 + 𝑉𝑎)|𝜙𝑏 >. 

Consider the Schodinger equation 𝐻|𝜓 >= 𝐸|𝜓 >, one has 

𝑎(𝜖𝑎 + 𝑉𝑏)|𝜙𝑎 > +𝑏(𝜖𝑏 + 𝑉𝑎)|𝜙𝑏 >= 𝐸(𝑎|𝜙𝑎 > +𝑏|𝜙𝑏 >). 

Taking inner product of the above equation with < 𝜙𝑎| and < 𝜙𝑏|, one reaches two linear equations: 

𝑎(𝜖𝑎 +< 𝜙𝑎|𝑉𝑏|𝜙𝑎 >) + 𝑏 < 𝜙𝑎|𝑉𝑎|𝜙𝑏 >= 𝑎𝐸, 

𝑎 < 𝜙𝑏|𝑉𝑏|𝜙𝑎 > +𝑏(𝜖𝑏+< 𝜙𝑏|𝑉𝑎|𝜙𝑏 >) = 𝑎𝐸. 

If we define 𝑉𝑎𝑏𝑎 ≡< 𝜙𝑎|𝑉𝑏|𝜙𝑎 >, 𝑉𝑎𝑎𝑏 ≡< 𝜙𝑎|𝑉𝑎|𝜙𝑏 >, 𝑉𝑏𝑏𝑎 ≡< 𝜙𝑏|𝑉𝑏|𝜙𝑎 >, and 𝑉𝑏𝑎𝑏 ≡

< 𝜙𝑏|𝑉𝑎|𝜙𝑏 >, the new states are 

𝐸𝑎,𝑏 =
𝜖𝑎 + 𝑉𝑎𝑏𝑎 + 𝜖𝑏 + 𝑉𝑏𝑎𝑏 ± √(𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏)

2 + 4𝑉𝑎𝑎𝑏𝑉𝑏𝑏𝑎 

2
 

𝜓𝑎 = 𝜙𝑎 −
𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏 − √(𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏)

2 + 4𝑉𝑎𝑎𝑏𝑉𝑏𝑏𝑎  

2𝑉𝑎𝑎𝑏
𝜙𝑏 , 

 

Figure S8.1 Schematic illustration of hybridization 
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𝜓𝑏 = 𝜙𝑏 +
𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏 − √(𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏)

2 + 4𝑉𝑎𝑎𝑏𝑉𝑏𝑏𝑎  

2𝑉𝑏𝑏𝑎
𝜙𝑎 . 

If 𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏 ≫ 4𝑉𝑎𝑎𝑏𝑉𝑏𝑏𝑎, the solution are 

𝐸𝑎 = 𝜖𝑎 + 𝑉𝑎𝑏𝑎 +
4𝑉𝑎𝑎𝑏𝑉𝑏𝑏𝑎

2(𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏)
 

𝐸𝑏 = 𝜖𝑏 + 𝑉𝑏𝑎𝑏 −
4𝑉𝑎𝑎𝑏𝑉𝑏𝑏𝑎

2(𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏)
 

𝜓𝑎 = 𝜙𝑎 +
𝑉𝑏𝑏𝑎

2(𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏)
𝜙𝑏 

𝜓𝑏 = 𝜙𝑏 −
𝑉𝑎𝑎𝑏

2(𝜖𝑎 + 𝑉𝑎𝑏𝑎 − 𝜖𝑏 − 𝑉𝑏𝑎𝑏)
𝜙𝑎 . 

Furthermore, 𝑉𝑎𝑏𝑎 and 𝑉𝑏𝑎𝑏 are small compared with the 𝜖𝑎 − 𝜖𝑏, so the solutions can be reduced to 

𝐸𝑎 = 𝜖𝑎 +
4𝑉𝑎𝑎𝑏𝑉𝑏𝑏𝑎

2(𝜖𝑎 − 𝜖𝑏)
 

𝐸𝑏 = 𝜖𝑏 −
4𝑉𝑎𝑎𝑏𝑉𝑏𝑏𝑎

2(𝜖𝑎 − 𝜖𝑏)
 

𝜓𝑎 = 𝜙𝑎 +
𝑉𝑏𝑏𝑎

2(𝜖𝑎 − 𝜖𝑏)
𝜙𝑏 

𝜓𝑏 = 𝜙𝑏 −
𝑉𝑎𝑎𝑏

2(𝜖𝑎 − 𝜖𝑏)
𝜙𝑎 . 

Therefore, the degree of hybridization can be estimated using the parameters 𝑉𝑏𝑏𝑎 or 𝑉𝑎𝑎𝑏. Note that 

𝑉𝑏𝑏𝑎 = 𝑉𝑎𝑎𝑏. For example, if an Fe-O bond is concerned, the contribution of oxygen orbital to the 

unoccupied Fe orbital is related to 𝑉𝑂𝑂𝐹𝑒 =< 𝜙𝑂|𝑉𝑂|𝜙𝐹𝑒 >. 

 

S8.2 Hybridization of between metal (Fe and Lu) and oxygen in h-LuFeO3 

One can see from the simple model of hybridization that the matrix element 𝑉𝑚1,𝑚2
𝑖 =

⟨𝜓𝐹𝑒−3𝑑
𝑚1 |𝑉𝐹𝑒|𝜙𝑂−2𝑝,𝑖

𝑚2 ⟩  is important, where 𝑚1,𝑚2 are the magnetic quantum numbers, and 𝑖 is the index 

for the oxygen neighbor. In order to calculate the matrix, we define the 𝑧 axis along the vector that 

connects Fe and O atoms. In that case, if we write down the wave function of Fe and O using spherical 

harmonic function Ψ𝑙
𝑚, the matrix element are only non-zero when 𝑚1 = 𝑚2, because 𝑉𝐹𝑒 does not 

depend on the azimuthal angle 𝜙. Therefore, we can rewrite the matrix element as 𝑉𝑚
𝑖 = 𝑉𝑚1,𝑚2

𝑖 , where 

𝑚 = 𝑚1 = 𝑚2. When 𝑚 = 0, 1,2 the matrix element corresponds to a so called 𝜎, 𝜋, 𝛿 bond, respectively. 

Since we are dealing with the interaction between Fe-3d and O-2p, the matrix elements are also written as 

𝑉𝑝𝑑𝜎
𝑖  and 𝑉𝑝𝑑𝜋

𝑖 . According to Harrison, [9] the matrix elements are proportional to 𝑑−3.5, where 𝑑 is the 

distance between the two atoms for a 𝑝𝑑 bond. 

Therefore, the calculation of the matrix elements 𝑉𝑚
𝑖  comes down to transforming the atomic orbitals into 

the coordinate system mentioned above, i.e. 𝑧 axis along the vector that connects Fe and O atoms. Below, 

we calculate the individual 𝑉𝑚
𝑖 , starting from D3h symmetry and introduce CS symmetry later. 
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S8.2.1 D3h symmetry 

For the hybridization between the Fe and apex oxygen atoms, the coordinate system is automatically set 

for calculation. So the results are readily obtained: 

𝑉𝑚=0
𝑖=1 = 𝑉𝑚=0

𝑖=2 = 𝑉𝑝𝑑𝜎𝑅𝑐
−3.5 

𝑉𝑚=1
𝑖=1 = 𝑉𝑚=1

𝑖=2 = 𝑉𝑚=−1
𝑖=1 = 𝑉𝑚=−1

𝑖=2 = 𝑉𝑝𝑑𝜋𝑅𝑐
−3.5. 

The 𝑚 = ±2 states of an Fe atom has no hybridization with the apex O atoms. 

If we use the wave functions {𝑧2, 𝑥𝑦, 𝑥2 − 𝑦2, 𝑥𝑧, 𝑦𝑧} for an Fe site and {𝑥, 𝑦, 𝑧} for an O site, the matrix 

elements are 𝑉𝜇𝜈 
𝑖  

𝑉𝑧2,𝑧
1 = 𝑉𝑧2,𝑧

2 = 𝑉𝑝𝑑𝜎𝑅𝑐
−3.5 

𝑉𝑥𝑧,𝑥
1 = 𝑉𝑦𝑧,𝑦

1 = 𝑉𝑥𝑧,𝑥
2 = 𝑉𝑦𝑧,𝑦

2 = 𝑉𝑝𝑑𝜋𝑅𝑐
−3.5, 

where 𝜇 ∈ {𝑧2, 𝑥2 − 𝑦2, 𝑥𝑦, 𝑥𝑧, 𝑦𝑧} and 𝜈 ∈ {𝑥, 𝑦, 𝑧}. 

Putting these equations together, one gets the results in Table S8.1 

Table S8.1 

𝑉𝜇𝜈 
𝑖 𝑅𝑐

3.5 x y z 

2𝑧2 − 𝑥2 − 𝑦2 0 0 𝑉𝑝𝑑𝜎 

√3(𝑥2 − 𝑦2) 0 0 0 

 

Figure S8.2 The coordinate systems and oxygen indices used for calculating the hybridization. Here 

we use two coordinate systems. The {𝑥𝑜𝑖, 𝑦𝑜𝑖𝑧𝑜𝑖} {𝑥𝐹𝑒 , 𝑦𝐹𝑒 , 𝑧𝐹𝑒} system is shown in the right panel in 

which all the z axis are aligned to the crystalline c axis. When the hybridization is calculated, the 

atomic orbitals are transformed to the {𝑥′𝑜𝑖, 𝑦′𝑜𝑖𝑧′𝑜𝑖} {𝑥′𝐹𝑒 , 𝑦′𝐹𝑒 , 𝑧′𝐹𝑒} systems. In the {𝑥′𝑜𝑖 , 𝑦′𝑜𝑖𝑧′𝑜𝑖} 

{𝑥′𝐹𝑒, 𝑦′𝐹𝑒 , 𝑧′𝐹𝑒}, the 𝑧’ axis of the O and Fe sites are along the vector that connects Fe and O atoms. 

The axes that are not shown can be found using the cross products of the displayed axes. 
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2√3𝑥𝑦 0 0 0 

2√3𝑥𝑧 𝑉𝑝𝑑𝜋 0 0 

2√3𝑦𝑧 0 𝑉𝑝𝑑𝜋 0 

 

The {𝑥𝑦, 𝑥2 − 𝑦2} states of Fe atom has no hybridization with the apex O atoms. 

For the hybridization between Fe and equator oxygen atoms, the coordinate systems need to be 

transformed for the calculation.  

As shown in Fig. S8,2, we choose z axis for both Fe and O sites to be along the crystal 𝑐 axis.  

For the hybridization between Fe and 3-5 O (see Fig. S8.2), we can make the transformation by rotating 

the axis.  

The transformation is [
𝑥
𝑦
𝑧
]

𝐹𝑒

= [
cos(𝜙) −sin (𝜙) 0
sin (𝜙) cos(𝜙) 0

0 0 1

] [
0 0 1
0 1 0

−1 0 0
] [

𝑥′

𝑦′

𝑧′

]

𝐹𝑒

=

[
0 −sin (𝜙) cos(𝜙)
0 cos(𝜙) sin (𝜙)

−1 0 0

] [
𝑥′

𝑦′

𝑧′

]

𝐹𝑒

, where 𝜙 is 0, 
2𝜋

3
, and 

4𝜋

3
, for 3, 4, and 5 oxygen atoms respectively. 

The transformation is [
𝑥
𝑦
𝑧
]

𝑂𝑖

= [
0 0 1
0 1 0

−1 0 0
] [

𝑥′

𝑦′

𝑧′

]

𝑂𝑖

for the 𝑖th oxygen atom. 

Using the transformation, the relation between the wave functions are: 

|2𝑧2 − 𝑥2 − 𝑦2⟩ = |2𝑥′2 − 𝑦′2 − 𝑧′2⟩ = −
1

2
|2𝑧′2 − 𝑥′2 − 𝑦′2⟩ +

√3

2
|√3(𝑥′2 − 𝑦′2)⟩ 

|√3(𝑥2 − 𝑦2)⟩ =
√3

2
cos(2𝜙) |2𝑧′2 − 𝑥′2 − 𝑦′2⟩ +

1

2
cos(2𝜙) |√3(𝑥′2 − 𝑦′2)⟩ − sin(2𝜙) |2√3𝑦′𝑧′⟩ 

|2√3𝑥𝑦⟩ =
√3

2
sin(2𝜙) |2𝑧′2 − 𝑥′2 − 𝑦′2⟩ +

1

2
sin(2𝜙) |√3(𝑥′2 − 𝑦′2)⟩ + cos(2𝜙) |2√3𝑦′𝑧′⟩ 

|2√3𝑥𝑧⟩ = sin(𝜙) |2√3𝑥′𝑦′⟩ − cos(𝜙) |2√3𝑥′𝑧′⟩ 

|2√3𝑦𝑧⟩ = −cos(𝜙) |2√3𝑥′𝑦′⟩ − sin (𝜙)|2√3𝑥′𝑧′⟩ 

Table S8.2 shows the hybridization using the (𝑥′, 𝑦′, 𝑧′) coordinate system of oxygen.  

Table S8.2 

𝑉𝜇𝜈 
𝑖 𝑅𝑎

3.5 𝒙𝒊′ 𝒚𝒊′ 𝒛𝒊′ 

2𝑧2 − 𝑥2 − 𝑦2   
−

1

2
𝑉𝑝𝑑𝜎 
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√3(𝑥2 − 𝑦2)  −sin(2𝜙𝑖) 𝑉𝑝𝑑𝜋 √3

2
cos(2𝜙𝑖) 𝑉𝑝𝑑𝜎 

2√3𝑥𝑦  cos(2𝜙𝑖) 𝑉𝑝𝑑𝜋 √3

2
sin(2𝜙𝑖) 𝑉𝑝𝑑𝜎 

2√3𝑥𝑧 −cos(𝜙𝑖) 𝑉𝑝𝑑𝜋   

2√3𝑦𝑧 −sin (𝜙𝑖)𝑉𝑝𝑑𝜋   

 

After transforming to the (𝑥, 𝑦, 𝑧) coordinate system of oxygen, the hybridization matrix elements are 

shown in the Table S8.3. 

Table S8.3 

𝑉𝜇𝜈 
𝑖 𝑅𝑎

3.5 𝒙𝒊 𝒚𝒊 𝒛𝒊 

2𝑧2 − 𝑥2

− 𝑦2 
−

1

2
𝑉𝑝𝑑𝜎 

  

√3(𝑥2 − 𝑦2) √3

2
cos(2𝜙𝑖) 𝑉𝑝𝑑𝜎 

sin(2𝜙𝑖) 𝑉𝑝𝑑𝜋  

2√3𝑥𝑦 √3

2
sin(2𝜙𝑖) 𝑉𝑝𝑑𝜎 

cos(2𝜙𝑖) 𝑉𝑝𝑑𝜋  

2√3𝑥𝑧   cos(𝜙𝑖) 𝑉𝑝𝑑𝜋 

2√3𝑦𝑧   sin (𝜙𝑖)𝑉𝑝𝑑𝜋 

 

Adding all three sites (3-5) together, one gets the hybridizations strength in Table S8.4. 

Table S8.4 

∑|𝑉𝜇𝜈 
𝑖 |

2

𝑖

𝑅𝑎
7 𝒙𝒊 𝒚𝒊 𝒛𝒊 

2𝑧2 − 𝑥2 − 𝑦2 3

4
|𝑉𝑝𝑑𝜎|

2
 

  

√3(𝑥2 − 𝑦2) 9

8
|𝑉𝑝𝑑𝜎|

2
 

3

2
|𝑉𝑝𝑑𝜋|

2
 

 

2√3𝑥𝑦 9

8
|𝑉𝑝𝑑𝜎|

2
 

3

2
|𝑉𝑝𝑑𝜋|

2
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2√3𝑥𝑧   3

2
|𝑉𝑝𝑑𝜋|

2
 

2√3𝑦𝑧   3

2
|𝑉𝑝𝑑𝜋|

2
 

 

Arranging the hybridization in an in-plane (𝑝) and out-of-plane (𝑠) fashion, we get the Table S8.5. 

Table S8.5 

∑|𝑉𝜇𝜈 
𝑖 |

2

𝑖

 Apex-p Apex-s Equator-p Equator-s 

2𝑧2 − 𝑥2

− 𝑦2 

 2|𝑉𝑝𝑑𝜎|
2
𝑅𝑐

−7 
3

4
|𝑉𝑝𝑑𝜎|

2
𝑅𝑎

−7 
 

√3(𝑥2 − 𝑦2)   
(
3

2
|𝑉𝑝𝑑𝜋|

2
+

9

8
|𝑉𝑝𝑑𝜎|

2
)𝑅𝑎

−7 
 

2√3𝑥𝑦   
(
3

2
|𝑉𝑝𝑑𝜋|

2
+

9

8
|𝑉𝑝𝑑𝜎|

2
)𝑅𝑎

−7 
 

2√3𝑥𝑧 2|𝑉𝑝𝑑𝜋|
2
𝑅𝑐

−7   3

2
|𝑉𝑝𝑑𝜋|

2
𝑅𝑎

−7 

2√3𝑦𝑧 2|𝑉𝑝𝑑𝜋|
2
𝑅𝑐

−7   3

2
|𝑉𝑝𝑑𝜋|

2
𝑅𝑎

−7 

If we take the Harrison’s assumption [9] 
𝑉𝑝𝑑𝜎

𝑉𝑝𝑑𝜋
= −2.17 and 

𝑅𝑐

𝑅𝑎
= 0.94 in h-LFO, we can estimate the 

relative values for the hybridization, as shown in the Table S8.6. 

Table S8.6 

∑ |𝑉𝜇𝜈 
𝑖 |

2
𝑖 / 

|𝑉𝑝𝑑𝜋|
2
𝑅𝑎

−7 

Apex-p Apex-s Equator-p Equator-s 

2𝑧2 − 𝑥2

− 𝑦2 

 14.5 3.5  

√3(𝑥2 − 𝑦2)   6.8  

2√3𝑥𝑦   6.8  

2√3𝑥𝑧 3.08   1.5 

2√3𝑦𝑧 3.08   1.5 

 



38 
 

Or graphically, one can illustrate the hybridization as shown in the Figure S8.3 

As shown in Fig. S8.3, the relative geometric configuration of different Fe-3d and O-2p orbitals are 

illustrated. There are 12 combinations of hybridizations coming from 3 Fe-3d orbitals, 2 O-2p orbital, and 

2 types of O (apex and equator) atomic positions. From the relative geometric configuration of the 

orbitals, one can qualitatively estimate the configurations that have significant hybridizations; this results 

in 5 cases which are indicated by the boxes in Fig. S8.3. These 5 case can be further divided into two 

groups according to the polarization of the x-ray when the O-K edge excitation is concerned.  

S8.2.2 CS symmetry 

Again, we discuss the effect of CS distortion in terms of lattice distortion mode Γ2
− and 𝐾1. Although the 

displacement also changes the bond angles, but due to the 𝑅−7 dependence, the main effect on the 

hybridization is coming from the atomic distance. 

Γ2
− mode 

The hybridization between the Fe-3d and the apex oxygen atoms are affected. If we assume that the 

distance between the Fe atom and the apex oxygen atom changes from 𝑅𝑐 to 𝑅𝑐 + 𝛿 and 𝑅𝑐 − 𝛿. So the 

∑ |𝑉𝜇𝜈 
𝑖 |

2
𝑖  that contains 𝑅𝑐

−7 will have an factor 𝑓ℎ𝑦𝑏 =
1

2
(1 +

𝛿

𝑅𝑐
)
−7

+
1

2
(1 −

𝛿

𝑅𝑐
)
−7

= 1 + 21 (
𝛿

𝑅𝑐
)
2
. 

In h-LuFeO3, 
𝛿

𝑅𝑐
≈ 3.7%, which results in 𝑓ℎ𝑦𝑏 = 1.015. 

 

Figure S8.3 Schematic illustration of relative geometric configuration between Fe-3d and 

O-2p orbitals. The boxes indicate significant hybridizations. 
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This uniformly shifts the hybridization between the 𝑎1′ and 𝑒′′ states and the apex oxygen. 

On the other hand, if one combines the effect of Γ2
− and 𝐾3, a different effect on the hybridization of 𝑥𝑧 

and 𝑦𝑧 states will occur. This effect comes from the hybridization between the 𝑥𝑧 state of Fe-3d and the 𝑧 

state of the apex oxygen because of the small angle 𝜃𝑔2. 

Using the table derived for the Lu-5d and O-2p hybridization, this results in an additional term 

∑ |𝑉𝜇𝜈 
𝑖 |

2
𝑖 = 2(|𝑉𝑝𝑑𝜋|

2
+ 3|𝑉𝑝𝑑𝜎|

2
)𝑅𝑐

−7 sin2(𝜃2𝑔), which is second order in terms of sin(𝜃2𝑔) 

This additional hybridization is much smaller for the 𝑦𝑧 state. 

𝐾1 mode 

There are two parts of distortion in the K1 mode, one is the displacement of the apex oxygen, the other is 

the displacement of the Fe within the triangular lattice, with respect to equator oxygen. 

For the oxygen displacement, it generates a factor 𝑓ℎ𝑦𝑏 =
1

2
(1 +

𝛿

𝑅𝑐
)
−7

+
1

2
(1 +

𝛿

𝑅𝑐
)
−7

= 1 − 7
𝛿

𝑅𝑐
. For h-

LuFeO3, 
𝛿

𝑅𝑐
≈ 0.018%, which corresponds to 𝑓ℎ𝑦𝑏 = 1 + 1.2 × 10−3. 

Again, this affects the ∑ |𝑉𝜇𝜈 
𝑖 |

2
𝑖  that contains 𝑅𝑐

−7, which means the hybridizations between the 𝑎1′ and 𝑒′′ 

states and the apex oxygen. 

For the Fe displacement, one needs to calculate 

 ∑ |sin(2𝜙𝑖)|
2𝑅𝑎,𝑖

−7
𝑖 = ∑ |sin(𝜙𝑖)|

2𝑅𝑎,𝑖
−7

𝑖 =
3

2
𝑅𝑎

−7(1 −
7

2

𝛿

𝑅𝑎
)  

and   

∑ |cos(2𝜙𝑖)|
2𝑅𝑎,𝑖

−7
𝑖 = ∑ |cos(𝜙𝑖)|

2𝑅𝑎,𝑖
−7

𝑖 =
3

2
𝑅𝑎

−7(1 +
7

2

𝛿

𝑅𝑎
). 

The resulting hybridization is summarized in the Table S7.7. 

Table S8.7 

∑|𝑉𝜇𝜈 
𝑖 |

2

𝑖

 Apex-p Apex-s Equator-p Equator-s 

2𝑧2 − 𝑥2

− 𝑦2 

 2|𝑉𝑝𝑑𝜎|
2
𝑅𝑐

−7 
3

4
|𝑉𝑝𝑑𝜎|

2
𝑅𝑎

−7 
 

√3(𝑥2 − 𝑦2)   (
3

2
|𝑉𝑝𝑑𝜋|

2
+

9

8
|𝑉𝑝𝑑𝜎|

2
)𝑅𝑎

−7 +
7

2

𝛿

𝑅𝑎
(−

3

2
|𝑉𝑝𝑑𝜋|

2
+

9

8
|𝑉𝑝𝑑𝜎|

2
)𝑅𝑎

−7  

 

2√3𝑥𝑦   (
3

2
|𝑉𝑝𝑑𝜋|

2
+

9

8
|𝑉𝑝𝑑𝜎|

2
)𝑅𝑎

−7 −
7

2

𝛿

𝑅𝑎
(−

3

2
|𝑉𝑝𝑑𝜋|

2
+

9

8
|𝑉𝑝𝑑𝜎|

2
)𝑅𝑎

−7  

 

2√3𝑥𝑧 2|𝑉𝑝𝑑𝜋|
2
𝑅𝑐

−7   3

2
|𝑉𝑝𝑑𝜋|

2
𝑅𝑎

−7(1 +
7

2

𝛿

𝑅𝑎
) 
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2√3𝑦𝑧 2|𝑉𝑝𝑑𝜋|
2
𝑅𝑐

−7   3

2
|𝑉𝑝𝑑𝜋|

2
𝑅𝑎

−7(1 −
7

2

𝛿

𝑅𝑎
) 

It is clear that when 
𝛿

𝑅𝑎
> 0, the hybridization of √3(𝑥2 − 𝑦2) will be stronger than that of 2√3𝑥𝑦 state. 

Similarly, the hybridization of the 2√3𝑥𝑧 state is stronger than that of the 2√3𝑦𝑧 state. The relative 

change is 
7

2

𝛿

𝑅𝑎
 for 2√3𝑥𝑧 and 2√3𝑦𝑧 states but slightly smaller for the √3(𝑥2 − 𝑦2) and 2√3𝑥𝑦 states. In 

h-LuFeO3, 
𝛿

𝑅𝑎
 can be as large as 6 × 10−3 at low temperature. 

S8.3 Hybridization between Lu-5d and O-2p in h-LuFeO3 

In the C3v local environment, the Lu-5d orbitals are split into three energy levels by the crystal field: 𝑒𝜎 =

(𝑥2 − 𝑦2 + 2𝑥𝑧, 𝑥𝑦 + 𝑦𝑧), 𝑎1 = 𝑧2, 𝑒𝜋 = (𝑥2 − 𝑦2 − 2𝑥𝑧, 𝑥𝑦 − 𝑦𝑧) 

where  is a mixing factor that is on the order of 1. Significant hybridizations are expected in most cases 

between Lu-5d orbital and O-2p orbital. 

The hybridization between the Lu-5d orbit and the equator oxygen can be calculated straightforwardly 

since their 𝑥, 𝑦 and 𝑧 axis can be readily aligned. The results are similar to the hybridization between Fe-

3d and the apex oxygen atoms, which is shown again in the Table S8.8. 

Table S8.8 

𝑉𝜇𝜈 
𝑖 𝑅𝑐

3.5 x y z 

2𝑧2 − 𝑥2 − 𝑦2 0 0 𝑉𝑝𝑑𝜎 

√3(𝑥2 − 𝑦2) 0 0 0 

2√3𝑥𝑦 0 0 0 

2√3𝑥𝑧 𝑉𝑝𝑑𝜋 0 0 

2√3𝑦𝑧 0 𝑉𝑝𝑑𝜋 0 

 

For all the hybridization of Lu-5d with other 6 oxygen atoms, the calculation can be down using the 

coordinate system show in Fig. S8.4. In order to align the 𝑧 axis of both Lu and O to the vector that 

connects the two atoms, one needs to make the following transformations: 

[
𝑥
𝑦
𝑧
]

𝐿𝑢

= [
cos(𝜙) −sin (𝜙) 0
sin (𝜙) cos(𝜙) 0

0 0 1

] [
cos(𝜃) 0 sin(𝜃)

0 1 0
− sin(𝜃) 0 cos(𝜃)

] [
𝑥′

𝑦′

𝑧′

]

𝐿𝑢

= [

cos(𝜙) cos(𝜃) −sin (𝜙) cos(𝜙) sin(𝜃)
sin (𝜙) cos(𝜃) cos(𝜙) sin (𝜙) sin(𝜃)

− sin(𝜃) 0 cos(𝜃)
] [

𝑥′

𝑦′

𝑧′

]

𝐿𝑢

 

for Lu, and 
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[
𝑥
𝑦
𝑧
]

𝑂𝑖

= [
cos(𝜃) 0 sin(𝜃)

0 1 0
− sin(𝜃) 0 cos(𝜃)

] [
𝑥′

𝑦′

𝑧′

]

𝑂𝑖

for 𝑖th oxygen atom, where 𝜙 is 0, 
𝜋

3
, 
2𝜋

3
, 𝜋, 

4𝜋

3
 and 

5𝜋

3
, for 6, 4, 7, 

2, 5, and 3 oxygen atoms respectively. 

 

The transformation of the Lu-5d wave function is 

|2𝑧2 − 𝑥2 − 𝑦2⟩

= (
2 − 3 sin2  (𝜃)

2
) |2𝑧′2 − 𝑥′2 − 𝑦′2⟩ −

√3

2
sin2(𝜃) |√3(𝑥′2 − 𝑦′2)⟩

−
sin(2𝜃)

2√3
|2√3𝑥′𝑧′⟩ 

|√3(𝑥2 − 𝑦2)⟩ =
√3 cos(2𝜙) sin2(𝜃)

2
|2𝑧′2 − 𝑥′2 − 𝑦′2⟩ − cos(2𝜙)(1 −

sin2  (𝜃)

2
) |√3(𝑥′2 − 𝑦′2)⟩

− sin(2𝜙) cos(𝜃) |2√3𝑥′𝑦′⟩ +
1

2
cos(2𝜙) sin(2𝜃) |2√3𝑥′𝑧′⟩

− sin(2𝜙) sin(𝜃) |2√3𝑦′𝑧′⟩ 

|2√3𝑥𝑦⟩ =
√3 sin(2𝜙) sin2(𝜃)

2
|2𝑧′2 − 𝑥′2 − 𝑦′2⟩ −

sin(2𝜙)

2
(1 −

sin2(𝜃)

2
) |√3(𝑥′2 − 𝑦′2)⟩

+ cos(2𝜙) cos(𝜃) |2√3𝑥′𝑦′⟩ +
1

2
sin(2𝜙) sin(2𝜃) |2√3𝑥′𝑧′⟩

+ cos(2𝜙) sin(𝜃) |2√3𝑦′𝑧′⟩ 

|2√3𝑥𝑧⟩ =
√3 cos(𝜙) sin  (2𝜃)

2
|2𝑧′2 − 𝑥′2 − 𝑦′2⟩ −

cos(𝜙) sin  (2𝜃)

2
|√3(𝑥′2 − 𝑦′2)⟩

+ sin(𝜙) sin(𝜃) |2√3𝑥′𝑦′⟩ + cos(𝜙) cos(2𝜃) |2√3𝑥′𝑧′⟩ − sin(𝜙) cos(𝜃) |2√3𝑦′𝑧′⟩ 

 

Figure S8.4 The coordinate system and indices used to calculate the hybridization 

between Lu-5d and O-2p orbits. 
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|2√3𝑦𝑧⟩ =
√3 sin(𝜙) sin  (2𝜃)

2
|2𝑧′2 − 𝑥′2 − 𝑦′2⟩ −

sin(𝜙) sin  (2𝜃)

2
|√3(𝑥′2 − 𝑦′2)⟩

− cos(𝜙) sin(𝜃) |2√3𝑥′𝑦′⟩ + sin(𝜙) cos(2𝜃) |2√3𝑥′𝑧′⟩ − cos(𝜙) cos(𝜃) |2√3𝑦′𝑧′⟩. 

With the transformed wave function, one can calculate the hybridization matrix, as shown in the Table 

S8.9. 

Table S8.9 

𝑉𝜇𝜈 
𝑖 𝑅𝑎

3.5 𝒙𝒊 𝒚𝒊 𝒛𝒊 

2𝑧2 − 𝑥2 − 𝑦2 
(
2 − 3 sin2  (𝜃)

2
) sin(𝜃) 𝑉𝑝𝑑𝜎

−
sin(2𝜃) cos(𝜃)

2√3
𝑉𝑝𝑑𝜋 

 
(
2 − 3 sin2  (𝜃)

2
) cos(𝜃)𝑉𝑝𝑑𝜎

−
sin(2𝜃) sin(𝜃)

2√3
𝑉𝑝𝑑𝜋 

√3(𝑥2 − 𝑦2) √3 cos(2𝜙) sin2(𝜃) sin(𝜃)

2
𝑉𝑝𝑑𝜎

+
1

2
cos(2𝜙) sin(2𝜃) cos(𝜃) 𝑉𝑝𝑑𝜋 

−sin(2𝜙) sin(𝜃)𝑉𝑝𝑑𝜋 √3 cos(2𝜙) sin2(𝜃) cos(𝜃)

2
𝑉𝑝𝑑𝜎

−
1

2
cos(2𝜙) sin(2𝜃) sin(𝜃)𝑉𝑝𝑑𝜋 

2√3𝑥𝑦 sin(2𝜙) sin2(𝜃) sin(𝜃)

2
𝑉𝑝𝑑𝜎

+
sin(2𝜙) sin(2𝜃) cos(𝜃)

2
𝑉𝑝𝑑𝜋 

cos(2𝜙) sin(𝜃)𝑉𝑝𝑑𝜋 √3 sin(2𝜙) sin2(𝜃) cos(𝜃)

2
𝑉𝑝𝑑𝜎

+
sin(2𝜙) sin(2𝜃) sin(𝜃)

2
𝑉𝑝𝑑𝜋 

2√3𝑥𝑧 √3 cos(𝜙) sin(2𝜃) sin(𝜃)

2
𝑉𝑝𝑑𝜎

+ cos(𝜙) cos(2𝜃) cos(𝜃) 𝑉𝑝𝑑𝜋 

−sin(𝜙) cos(𝜃) 𝑉𝑝𝑑𝜋 √3 cos(𝜙) sin(2𝜃) cos(𝜃)

2
𝑉𝑝𝑑𝜎

+ cos(𝜙) cos(2𝜃) sin(𝜃)𝑉𝑝𝑑𝜋 

2√3𝑦𝑧 √3 sin(𝜙) sin(2𝜃) sin(𝜃)

2
𝑉𝑝𝑑𝜎

+ sin(𝜙) cos(2𝜃) cos(𝜃) 𝑉𝑝𝑑𝜋 

−cos(𝜙) cos(𝜃) 𝑉𝑝𝑑𝜋 √3 sin(𝜙) sin(2𝜃) cos(𝜃)

2
𝑉𝑝𝑑𝜎

+ sin(𝜙) cos(2𝜃) sin(𝜃) 𝑉𝑝𝑑𝜋 

 

As expected from the symmetry of the local environment, the hybridization between the Lu-5d and the 

apex oxygen are not anisotropic. That said, the hybridization between the Lu-5d and the equator oxygen is 

anisotropic. The Lu-5d 𝑎1 hybridize more with the O-2p out-of-plane orbits (𝑠 polarization); the Lu-5d 

𝑒𝜎, 𝑒𝜋 hybridize more with the O-2p in-plane (𝑝 polarization) orbits. 

In addition, the hybridization of the Lu-5d 𝑎1 with the apex oxygen atoms are much less than that with the 

equator oxygen atoms, according to the calculated 𝑉𝜇𝜈 
𝑖 𝑅𝑎

3.5 in the table above. If we take 𝜃 = 37 degree 

as an approximation, the hybridization are 𝑉𝑎1,𝑥 
𝑖 𝑅𝑎

3.5 = 0.27𝑉𝑝𝑑𝜎 − 0.22𝑉𝑝𝑑𝜋 and 𝑉𝑎1,𝑧 
𝑖 𝑅𝑎

3.5 =

0.36𝑉𝑝𝑑𝜎 − 0.57𝑉𝑝𝑑𝜋. This also means that The Lu-5d 𝑎1 hybridize more with the O-2p out-of-plane 

orbits (𝑠 polarization). All of these are consistent with the experimental observation. 

S8.4 Hybridization of between Fe and oxygen in o-LuFeO3 

Since the local environment of Fe in o-LuFeO3 is octahedral of Oh symmetry, the hybridization is easier 

to calculate. The result for the Oh symmetry is shown in Table S8.10, where the 1-6 oxygen atoms are 

located at (𝑅, 0,0), (−𝑅, 0,0), (0, 𝑅, 0), (0, −𝑅, 0), (0,0, 𝑅), and (0,0,−𝑅) respectively. 
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Table S8.10 

𝑉𝜇𝜈 
𝑖 𝑅−3.5 𝒙𝟏,𝟐 𝒚𝟏,𝟐 𝒛𝟏,𝟐 𝒙𝟒,𝟔  𝒚𝟒,𝟔 𝒛𝟒,𝟔 𝒙𝟑,𝟓 𝒚𝟑,𝟓 𝒛𝟑,𝟓 

2𝑧2 − 𝑥2

− 𝑦2 

0 0 𝑉𝑝𝑑𝜎 0 −
1

2
𝑉𝑝𝑑𝜎  0 

−
1

2
𝑉𝑝𝑑𝜎 

0 0 

√3(𝑥2 − 𝑦2) 0 0 0 0 
−

√3

2
𝑉𝑝𝑑𝜎 

0 √3

2
𝑉𝑝𝑑𝜎 

0 0 

2√3𝑥𝑦 0 0 0 𝑉𝑝𝑑𝜋 0 0 0 𝑉𝑝𝑑𝜋 0 

2√3𝑥𝑧 𝑉𝑝𝑑𝜋 0 0 0 0 0 0 0 −𝑉𝑝𝑑𝜋 

2√3𝑦𝑧 0 𝑉𝑝𝑑𝜋 0 0 0 −𝑉𝑝𝑑𝜋 0 0 0 

For the D2h distortion, 𝑅12 = 𝑅, R35 = 𝑅 − 𝛿, 𝑅46 = 𝑅 + 𝛿. 

The relation value of hybridization ∑ |𝑉𝜇𝜈 
𝑖 |

2
𝑖 /|𝑉𝑝𝑑𝜋|

2
𝑅𝑎

−7 are 7.1, 7.1, 2, 2, 2 for the 2𝑧2 − 𝑥2 − 𝑦2, 

√3(𝑥2 − 𝑦2), 2√3𝑥𝑦, 2√3𝑥𝑧, and 2√3𝑦𝑧 states respectively. 

The total hybridization for the 3d orbitals is shown in Table S8.11. 

Table S8.11 

 |𝑉𝜇𝜈 
𝑖 |

2
𝑅−7 

2𝑧2 − 𝑥2 − 𝑦2 
|𝑉𝑝𝑑𝜎|

2
[3 + 21 (

𝛿

𝑅
)
2

] 

√3(𝑥2 − 𝑦2) 
3|𝑉𝑝𝑑𝜎|

2
[1 + 21 (

𝛿

𝑅
)
2

] 

2√3𝑥𝑦 
4|𝑉𝑝𝑑𝜋|

2
[1 + 21 (

𝛿

𝑅
)
2

] 

2√3𝑥𝑧 4|𝑉𝑝𝑑𝜋|
2
(1 +

7

2

𝛿

𝑅
) 

2√3𝑦𝑧 4|𝑉𝑝𝑑𝜋|
2
(1 −

7

2

𝛿

𝑅
) 

Therefore, the states 2𝑧2 − 𝑥2 − 𝑦2, √3(𝑥2 − 𝑦2), and 2√3𝑥𝑦 are insensitive to the D2h distortion, while 

2√3𝑥𝑧 and 2√3𝑦𝑧 are. 



44 
 

  

 

Figure S8.5 The coordinate system and indices used in calculating the 

hybridization between Fe-3d and O-2p in an Oh local environment. 
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S9. Refinement of atomic positions in the h-LuFeO3 lattice structure at various temperatures 

In the paramagnetic phase of h-LuFeO3, the symmetry of the crystal structure can be described using 

space group P63mmc. In the ferroelectric phase (below 1050 K  [10]), lattice distortion occurs, which 

changes the symmetry to P63cm. The distortions move the atoms away from high symmetric positions. 

The displacements of the atoms can be decomposed into 3 modes: 𝐾3, 𝐾1, and Γ2
−. [10,11] The 𝐾3 mode 

corresponds to a rotation of the FeO5; the Γ2
−displaces the atoms along the 𝑐 axis which is expected to 

generate the electric polarization; the 𝐾1 mode involves a displacement of Fe in the basal plane. 

In order to measure the temperature dependence of the lattice distortion in the h-LuFeO3 films, we carried 

out single-crystal x-ray diffraction measurements of 43 peaks (see the list of peaks below) at 7 

temperatures. By fitting the measured peak intensities (areas), one can find the positions of the atoms. The 

distortions can be calculated from the displacement of the atoms from their high symmetry positions. 

Here we define the lattice distortion using 9 parameters (e.g. 𝑑𝑧𝐿𝑢1), as shown in the Table S9.1.  

Table S9.1 Definition of atomic displacements in the units of lattice constants. 

Site Wyckoff position 𝒙/𝒂 𝒚/𝒃 𝒛/𝒄 

𝐿𝑢1 2a 0 0 
1

4
+ 𝑑𝑧𝐿𝑢1 

𝐿𝑢2 4b 
1

3
 

2

3
 

1

4
+ 𝑑𝑧𝐿𝑢2 

𝐹𝑒 6c 
1

3
+ 𝑑𝑥𝐹𝑒 0 0 

𝑂1 6c 
1

3
+ 𝑑𝑥𝑂1 0 𝑑𝑧𝑂1 

𝑂2 6c 
2

3
− 𝑑𝑥𝑂2 0 𝑑𝑧𝑂2 

𝑂3 2a 0 0 𝑑𝑧𝑂3 

𝑂4 4b 
1

3
 

2

3
 𝑑𝑧𝑂4 

Temperature dependence structural distortion can then be represented using the 9 parameters in the table 

below. The last column is the data from Magome et al. [12] 

Table S9.2 Measured atomic displacements at various temperatures. 

Variables 

(× 𝟏𝟎−𝟑) 
6 K 𝟏𝟎𝟎 𝑲 𝟏𝟏𝟎 𝑲 𝟏𝟑𝟎 𝑲 𝟏𝟓𝟎 𝑲 𝟐𝟎𝟎 𝑲 𝟑𝟎𝟎 𝑲 𝑬𝒓𝒓𝒐𝒓 

 

𝟑𝟎𝟎 𝑲 

 (𝑴𝒂𝒈𝒐𝒎𝒆) 

𝑑𝑧𝐿𝑢1 28.0 27.7 27.3 26.7 25.8 25.3 24.1 0.7 22.1 

𝑑𝑧𝐿𝑢2 -13.6 -13.7 -14.1 -14.4 -15.1 -15.4 -14.4 0.7 -16.8 

𝑑𝑥𝐹𝑒 1.9 1.6 1.5 1.4 1.4 1.0 0.1 0.9 0 

𝑑𝑥𝑂1 -41 -43 -44 -44 -43 -43 -21 7 -30.3 

𝑑𝑧𝑂1 152 150 148 149 148 148 162 4 154.2 

𝑑𝑥𝑂2 7 5 4 3 3 2 -5 5 -17.7 

𝑑𝑧𝑂2 322 322 321 322 321 320 327 3 332 
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𝑑𝑧𝑂3 -60 -50 -50 -60 -60 -60 -50 10 -28 

𝑑𝑧𝑂4 16 15 16 16 15 16 19 4 17 

 

From the table above, one can see that the uncertainty for the positions of the oxygen atoms are much 

higher than those of the metal (Fe and Lu) atoms, which can be attributed to the small scattering factor of 

the oxygen atoms.  

The next step is to decompose the displacement patterns into the three distortion modes. Due to the larger 

uncertainty of the position of the oxygen atoms, we choose to use the displacement of metal (Fe and Lu) 

atoms to represent the lattice distortions. 

For 𝐾1 mode, 𝑑𝐹𝑒𝐾1
= 𝑑𝑥𝐹𝑒 is naturally chosen. 

For 𝐾3, we choose 𝑑𝐿𝑢𝐾3
≡

1

2
(𝑑𝑧𝐿𝑢1 − 2𝑑𝑧𝐿𝑢2). Here 𝐿𝑢1 is the minority sites and 𝐿𝑢2 is the majority 

sites since the number of 𝐿𝑢2 is twice as much as that of 𝐿𝑢1. 

For Γ2
−, we choose 𝑑𝐿𝑢Γ2

− =
1

2
(𝑑𝑧𝐿𝑢1 + 2𝑑𝑧𝐿𝑢2). One needs to be careful in explaining the values: it is 

not proportional to the electric polarization. This is because in the coordinate used here, Fe site is at the 

origin, which is not necessarily the center of the charge. One needs to know the oxygen positions to 

estimate the electric polarization. Unfortunately, the uncertainty of the oxygen positions is very high here. 

Table S9.3 shows the temperature dependence of the parameters chosen to represent the three lattice 

distortions. 

Table S9.3 

Variables 

(× 𝟏𝟎−𝟑) 

6 K 𝟏𝟎𝟎 𝑲 𝟏𝟏𝟎 𝑲 𝟏𝟑𝟎 𝑲 𝟏𝟓𝟎 𝑲 𝟐𝟎𝟎 𝑲 𝟑𝟎𝟎 𝑲 𝑬𝒓𝒓𝒐𝒓 𝟑𝟎𝟎 𝑲 

 (𝑴𝒂𝒈𝒎𝒂) 

𝑑𝐿𝑢𝐾3
 27.6 27.5 27.8 27.8 28.1 28.0 26.4 0.8 27.9 

𝑑𝐿𝑢Γ2
−  0.4 0.2 -0.5 -1.1 -2.2 -2.7 -2.4 0.8 -5.7 

𝑑𝐹𝑒𝐾1
 1.9 1.6 1.5 1.4 1.4 1.0 0.1 0.9 0 

 

The peaks we measured are:  

(0, 1, 8), (1, 0, 8), (1, 0, 6), (1, 0, 4), (1, 1, 3), (1, 1, 4), (1, 1, 5), (1, 1, 6), 

(1, 1, 7), (1, 1, 8), (1, 1, 9), (1, 1, 10), (0, 2, 10), (0, 2, 8), (2, 0, 10), (2, 0, 

8), (2, 0, 6), (2, 0, 4), (1, 2, 4), (1, 2, 6), (1, 2, 8), (1, 2, 10), (1, 2, 12), (2, 1, 

12), (2, 1, 10), (2, 1, 8), (2, 1, 6), (2, 1, 4), (2, 2, 3), (2, 2, 4), (2, 2, 5), (2, 2, 

6), (2, 2, 7), (2, 2, 8), (2, 2, 10), (2, 2, 11), (3, 0, 12), (3, 0, 10), (3, 0, 8), (3, 

0, 6), (3, 0, 4), (0, 3, 8), (0, 3, 12 ).
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S10. Effect of the O-Fe-O bond angle on the density of states in a FeO5 cluster 
 

Figure S10:  Density of states of FeO5 cluster with ∠O-Fe-O =120°  projected at Fe site and resolved 

into cubic harmonics according to the D3d symmetry (a) and those of FeO5 cluster with ∠O-Fe-O =135°  

(b). 

  

120° 

(a) (b) 
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