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1. Introduction
The reach of typical remote sensing techniques have had his-
tory of image resolutions insufficient for plant-by-plant anal-
ysis (Moran et al., 1997). Adjustable product application rate 
techniques that rely on high resolution spatial data can have 
a positive effect on use efficiency of product such as fertil-
izer, water and herbicide (Sowers et al. 1994), and mecha-
nisms for providing this data cannot solely rely on satellite 
image resolutions. Martin et al. (2012) presented a corn yield 
model which was based on plant spacing periodicity and 
plant height, but the model was produced with plant data 
which is not normally available from above-canopy sensing 
techniques. 

Some of the field parameters most easily sampled locally 
include soil properties, weed presence, crop geometry and 
atmospheric variables. The systems developed in academia 
meant for these local sensing applications tend to be large 
machinery, or are human operated or powered. To fill a gap 
in agricultural automation at a time when precision agricul-
ture takes root, such sensing systems as shown in this paper 
could be deployed on small, inter-row robots. Flexible and 
on-demand sensing platforms should become more market-
able if they do not contribute to compaction, and are not lia-
ble to FAA licensing and regulation such as unmanned aerial 
vehicles. Reduced optical noise under the crop canopy from 
solar radiation also intuitively warrants simpler sensing tech-
niques riding on inter-row mobile robotic platforms, as op-
posed to aerial platforms. 

Several viable sensing devices for plant spacing and yield es-
timation have been developed (Shi et al., 2013). These sys-
tems have not yet been tested in an automated context. 
Researchers in sensing are interested in instrumentation  

development, and researchers of in-field automation pro-
duce research that drives and navigates machinery autono-
mously. The two fields of research need to be combined to 
provide optimal autonomous solutions for plant sensing. If 
robot navigation control systems are more accessible and 
universal, research in sensing may be able to continue more 
commonly under an automated context. 

When sensing research is conducted on automated plat-
forms, it is typically done with a robotic platform developed 
in-house. Many of these platforms depend on GPS with in-
ertial measurement unit localization techniques to navigate 
what are essentially straight crop rows. With this knowledge, 
a simpler single-row robot appears as a feasible option for 
local sensing. 

An inter-row, 2D laser scanning technique for plant spacing 
measurement relies on a clustering algorithm dependent on 
a thresholding process which assumes a constant distance 
from the scanner to the corn row (Shi et al., 2013). Constant 
spacing during measurement could be automated if the sen-
sor was mounted on a crop row navigating robot that could 
maintain its distance from a crop row it navigates along. 

The navigation control systems developed in past research 
are rarely portable to other robotic platforms, since they de-
pend on robot geometry, actuator dynamics, and empirically 
determined lookup tables for system calibration and map-
ping (Darr, 2004). Others use RTK-GPS to augment position 
determination (Biber et al, 2012). Of the row navigation con-
trollers that do not fall into this category, some systems do 
well by relying on the geometry and positioning of the crop 
row instead of the robot (Xue and Xu, 2010). This makes the 
navigation controller more portable to other systems, but 
rarely can the row navigation philosophy be divorced from 
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Abstract
In this paper a fuzzy logic navigation controller for an inter-row agricultural robot is developed and evaluated in laboratory settings. 
The controller receives input from one-dimensional (1D) ranging sensors on the robotic platform, and operated on ten fuzzy rules 
for basic row-following behavior. The control system was implemented on basic hardware for proof of concept and operated on a 
commonly available microcontroller development platform and open source software libraries. The robot platform used for exper-
imentation was a small tracked vehicle with differential steering control. Fuzzy inferencing and defuzzification, step response and 
cross track error were obtained from the test conducted to characterize the transient and steady state response of the controller. 
Controller settling times were within 4 seconds. Steady state centering errors for smooth barrier navigation were found to be within 
3.5% of center for 61 cm wide solid barrier tests, and within 38% for simulated 61 cm corn row tests. 
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the exact hardware used and the firmware used to drive it in 
each of these implementations. These issues are addressed 
and an alternative, more universal row navigation control 
scheme is described and implemented on very general pur-
pose hardware and open source software libraries. 

To the knowledge of the authors, limited research has been 
conducted on robotic, sub-canopy row navigation as a sens-
ing platform. The goal of this project was to develop an inter-
row navigation fuzzy controller architecture independent of 
specific hardware products or sensor implementations. The 
resulting controller was designed to be implemented on any 
ground-based mobile robotic platform, any microcontroller 
architecture, and any ranging sensor. The controller was im-
plemented on an inexpensive robot to demonstrate control-
ler portability, and ease of construction. 

2. Materials and Methods 
The robotic platform (Figure 2) selected for the fuzzy con-
troller demonstration was the T-Rex tracked chassis man-
ufactured by DAGU Hi-Tech Electronics (Model No. RS035, 
Zhongshan City, Guangdong Province, China, www.daguro-
bot.com). The chassis selected served as a simple and ro-
bust platform for differential steering experimentation. The 
chassis included a motor and a gearbox for each track which 
enabled simple control of the track velocity (Figure 4). The 
motors were driven with a Sabertooth motor driver made 
by LLC (2x25) (Dimension Engineering, 5171 Hudson Drive, 
Hudson, OH 44236), and powered with a 5 Amp-Hour Lith-
ium cell (Model 5AH 2s, Turnigy Power Systems®). The size 
of the platform was sufficient for crop row navigation as re-
quired for plant spacing sensing devices. Position sensing was 
implemented with two LIDAR ranging sensors (LIDAR-Lite v2, 
PulsedLight, Inc, 700 NW Hill St. Suite 3, Bend, OR 97703) de-
picted in Figure 1. 

Figure 1: LIDAR ranging sensor 

The sensors were positioned at the front of the chassis, and 
aimed 45 degrees ahead of the normal vector of the crop 
row. This look-ahead technique was demonstrated as valu-
able to the system’s dynamic response as shown by (Stom-
baugh et al, 1998). The two sensors provided the input to 
the fuzzy controller. The constructed vehicle is shown in 
Figure 2. 

Figure 2: Fully constructed row-following platform 

Figure 3: Vehicle control model 

The control model (Figure 3) was based on the single goal of 
maintaining a centered position between the crop rows. Error 
amplitude was computed as the difference between the ro-
bot’s distance from the right side row, and the distance from 
the left side row. Additional control input was provided by 
the sum of the distances, indicating the overall navigation 
width of the row. The amplitude was able to freely swing be-
tween positive and negative values in centimeter units. 

Figure 4: Vehicle construction 
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Mapping the error to a desired response required the design 
of a fuzzy membership function for the input and the out-
put. The input membership function was contained in a uni-
verse of discourse with the unit of centimeters, which is the 
output of each of the ranging sensors. The output member-
ship function was a signed 8 bit integer that described the 
difference between the left and right motor speeds, where 
the sign determined motor direction, and magnitude deter-
mined a pulse width modulated (PWM) duty cycle to the mo-
tor. To complete mapping, a Mamdani controller with 10 rules 
was arranged to describe the response of the robot through 
the legal range of possible controller inputs shown in Table 
2 (Mamdani, 1974). 

Figures 5 and 6 show the membership function for the in-
puts available to the controller, and Figure 7 shows the avail-
able outputs to the controller. Table 1 denotes each mem-
bership in the sets. The controller surface defined by the rule 
set is depicted in Figure 8, as plotted in MATLAB (Fuzzy De-
signer, The MathWorks, Inc, 3 Apple Hill Drive, Natick, Mas-
sachusetts 01760 USA) 

Figure 5: Membership function of the distance sums input 

Figure 6: Membership function of the centering error input 

Figure 7: Membership function of the controller output set 

Table 1: Fuzzy set descriptions of the fuzzy controller 

Fuzzy Set  Description  Universe of Discourse 

MF1  narrow row  sum input 
MF2  wide row  sum input 
MF3  far right  centering error input 
MF4  right  centering error input 
MF5  centered  centering error input 
MF6  left  centering error input 
MF7  far left  centering error input 
MF8  hard right  Control integer output 
MF9  nominal right  Control integer output 
MF10  light right  Control integer output 
MF11  go straight  Control integer output 
MF12  light left  Control integer output 
MF13  nominal left  Control integer output 
MF14  hard left  Control integer output 

The development of these fuzzy sets were the result of an it-
erative tuning process where controller response was evalu-
ated on how well the robot performed while navigating be-
tween solid barriers. Desirable results were identified by the 
minimization of centering error, response period, and steady 
state oscillation magnitude. The rules determining the sys-
tem behavior are described by Table 2. 

Table 2: Rule set for fuzzy controller 

Antecedent A  AND/OR  Antecedent B  Consequent 

narrow row  AND  far right  hard left 
narrow row  AND  right  nominal left 
narrow row  AND  center  go straight 
narrow row  AND  left  nominal right 
narrow row  AND  far left  hard right 
wide row  AND  far right  nominal left 
wide row  AND  right  light left 
wide row  AND  center  go straight 
wide row  AND  left  light right 
wide row  AND  far left  nominal right 
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Figure 8: Rule surface as defined by 10 rules 

Implementing the fuzzy controller was done with open-
source development tools including the Arduino 1.6.6 de-
velopment environment (http://www.arduino.cc), and the 
Embedded Fuzzy Logic Library (eFLL) which used max-min 
composition for inferencing, minimum Mamdani for compo-
sition, and center of area for defuzzification (http://github.
com/zerokol/eFLL). 

Figure 9: Input/output of the fuzzy controller 

The Arduino MEGA development board was used as the 
hardware target, acting as the interface between the dis-
tance sensors, and the motor controller. The sensors pro-
duced a distance integer at a centimeter resolution at a rate 
of 20 Hz, and the motor controller was controlled and con-
figured over the serial port on the microcontroller’s board at 
9600 kbps, 1 stop bit, no parity, no CTS or RTS. Device inter-
faces are shown in Figure 10. 

Figure 10: Physical layer communications interfaces 

The C functions for motor control accepted a signed 8 bit in-
teger to produce a PWM motor speed waveform with 7 bits 
of resolution in both directions. A forward bias of the mo-
tors defined in firmware provided a forward drive which re-
quired a nominal bias value of 32. This correlated to speed of 
25% of the maximum for the motor in the forward direction. 
The output of the fuzzy controller was a motor speed differ-
ence. To apply this speed difference to the motors, the out-
put of the fuzzy controller functions was added to the bias 
value of 32 and sent to the motor controller as the speed de-
sired for one motor. The same fuzzy controller output was 
then subtracted from the bias value of 32, and then sent as 
the desired speed of the other motor to complete a differ-
ential steering effect. 

Figure 11: Firmware algorithm of the Arduino MEGA 

The process shown in Figure 11 describes the control flow 
of the firmware and the use of the eFLL functions to achieve 
steering control in the ATMEGA2560. Firmware was written in 
C/C++ in the Arduino integrated development environment 
(IDE). The control loop was event driven which produced a 
controller process frequency of 20 Hz. This period was de-
termined by LIDAR sampling loop defined in the STM32 (ST-
M32F446RE, STMicroelectronics, Geneva, Switzerland) firm-
ware as shown in Figure 12. 

Figure 12: Sampling and streaming algorithm of the STM32 

http://github.com/zerokol/eFLL
http://github.com/zerokol/eFLL
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After implementation was complete, a test row was built to 
characterize the navigation controller. The test row made of 
solid barriers was built to impart a unit step error input to 
the fuzzy controller to allow for the evaluation of the control-
ler response and steady state error. Both positive and nega-
tive step inputs were tested. The widths of the simulated row 
changed between 91 cm (36 in) and 61 cm (24 in), depending 
on the step function polarity of the test. The setup for these 
tests are depicted in Figures 13 and 14. 

Figure 13: Unit step navigation testing 

Figure 14: Positive and negative step function experiments

For simple performance measurement, the left and right dis-
tances were streamed from the Arduino MEGA to a PC for 
logging. This measurement method was selected because of 
a lack of inexpensive and simplified global localization refer-
ences. All samples for the tests were collected at the 20 Hz 
control loop frequency. 

A second test was devised to entertain the performance pos-
sibilities of the controller in a straight corn row, where the 
distance measurements vary greatly due to gaps between 
the crops and overhanging leaves present in the LIDAR sens-
ing space. The corn row used in the test was a simulated row 
made from painted PVC pipe stalks and aluminum foil leaves. 

The row was arranged to be 91 cm (36 in) wide, and 16 corn 
stalks long at 20 cm (8 in) spacing. The experiment layout for 
the second test is depicted in Figures 15 and 16. 

Figure 15: Centering tests in simulated row of corn 

Figure 16: Navigation space was irregular in the second test 

3. Results 
The positive step response of the controller is shown in Fig-
ure 17. The rise time of the left distance shows the row be-
coming suddenly expanded, and settles to a steady state 3 
seconds into the test when the robot steers to the left, allow-
ing the right distance to converge with the left. This settling 
time was 1.5 seconds. The steady state error was evaluated 
within the 3 to 9 second period of the test. Maximum error 
in this steady state period was within 2.85 cm (3.14% for 91 
cm row width), and had a mean value of 0.74 cm and a stan-
dard deviation of 0.88 cm. 
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Figure 17: Step input response - row width expansion 

The negative step response of the controller is shown in Fig-
ure 18. The fall time of the left distance shows the row be-
coming suddenly compressed, and settles to a steady state 
6.5 seconds into the test when the robot steers to the right, 
allowing the right distance to converge with the left. This set-
tling time was 3.5 seconds. The steady state error was evalu-
ated within the 6 to 12.5 second period of the test. Maximum 
error in this steady state period was within 2.14 cm (3.5% for 
61 cm row width), and had a mean value of 0.22 cm and a 
standard deviation of 0.69 cm. 

Figure 18: Step input response – row width compression 

Response of the controller for simulated corn row naviga-
tion is shown in Figure 19. The inconsistency of the naviga-
tion references provided large and frequent error impulses 
to the controller. The entire simulated row was traversed in 
just over 7 seconds. The centering error was evaluated for 
the entire 7 second period of the test since the corn row was 
straight, without any intended step changes included. Maxi-
mum error for the test was within 34 cm (37.4% from 61 cm 
row width). For seconds 2 through 7 of the test, maximum 
error was within 14.4 cm (18% for 61 cm row width). Error 
throughout the test had a mean value of -3.55 cm, and a 
standard deviation of 8.43 cm. 

Figure 19: Navigation response for simulated corn row test 

4. Discussion 
The fuzzy controller as described was able to successfully 
navigate converging, diverging, and step changes in barrier 

arrangements made to simulate worst-case corn rows. The 
robot was able to navigate a simulated corn row with larger 
and more frequent error than observed in smooth barrier 
step response tests. Further testing will take place in the field 
to facilitate the development of crop row measurement tech-
niques that navigate rows despite varying gaps between in-
dividual crops and overhanging leaves. This will enable the 
design of the fuzzy controller to be used in a large variety of 
row-following systems. As the number of sub-canopy system 
designs increases, the viability of large-scale data collection 
of plant-by-plant characterization will increase. These analy-
ses will offer the benefits found in the field of precision ag-
riculture by treating subplots of a field as individually con-
trolled crop systems. As the row-following fuzzy controller 
is matured and further developed, inexpensive sub-canopy 
sensing systems can become adapted for automated deploy-
ment in both academia and industry, driving the collection 
of plant-by-plant field diagnostics as a wide-spread sens-
ing technique. 
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