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aBstraCt
Nitrogen management for corn (Zea mays L.) may be improved 
by applying a portion of N in-season. Th is investigation 
was conducted to evaluate crop modeling (Maize-N) and 
active crop canopy sensing approaches for recommending 
in-season N fertilizer rates. Th ese approaches were evaluated 
during 2012–2013 on 11 fi eld sites, in Missouri, Nebraska, 
and North Dakota. Nitrogen management also included a 
no-N treatment (check) and a non-limiting N reference (all 
at planting). Nitrogen management treatments were assessed 
for two hybrids and at low and high seeding rates, arranged in 
a randomized complete block design. In 9 of 11 site-years, the 
sensor-based approach recommended lower in-season N rates 
than the model (collectively 59% less N), resulting in trends 
of higher partial factor productivity of nitrogen (PFPN) and 
higher agronomic effi  ciency (AE) than the model. However, 
yield was better protected by the model-based approach. In 
some situations, canopy sensing excelled at optimizing the 
N rate for localized conditions. With abnormally warm 
and moist soil conditions for the 2012 Nebraska sites and 
presumed high levels of inorganic N from mineralization, 
N application was appropriately reduced, resulting in no 
yield decrease and N savings compared to the non-limiting  
N reference. Depending on the site, both recommendation 
approaches were successful; a combination of model and 
sensor information may optimize in-season decision support 
for N recommendation.
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Abbreviations: AE, agronomic effi  ciency; CI, chlorophyll index; 
EONR, economically optimum nitrogen rate; LAI, leaf area index; 
LOI, loss on irrigation; ME, mean error; NDRE, normalized diff erence 
red edge; NDVI, normalized diff erence vegetation index; NUE, 
nitrogen use effi  ciency; ONR, optimum nitrogen rate; PFPN, partial 
factor productivity of nitrogen; SI, suffi  ciency index; SOC, soil organic 
carbon; SOM, soil organic matter.

Low nitrogen use efficiency (NUE) has been 
attributed to several factors including poor synchrony 
between N fertilizer application and crop demand, 

unaccounted for spatial variability resulting in varying crop 
N needs, and temporal variance in crop N needs (Shanahan 
et al., 2008). It is estimated that 75% of N fertilizer is applied 
before planting (Cassman et al., 2002), resulting in high levels 
of inorganic N, such as nitrate, in the soil before the stage of 
rapid crop uptake occurs. Because of this, improvements in 
NUE can be achieved by attaining greater synchrony between 
the crop N need and the N which is available to the plant from 
all sources throughout the growing season (Cassman et al., 
2002). Applying a portion of the N fertilizer alongside the 
growing crop allows N availability to coincide more closely 
with the time of the crop N needs and is expected to increase 
NUE. Spatial variability of soil properties presents further 
challenges to N management. Nitrogen supplying capacity can 
vary throughout a fi eld. Mamo et al. (2003), showed that N 
mineralization of soil organic matter (SOM) varied spatially 
within a fi eld. Additionally, the N fertilizer need by the crop 
can vary spatially across a fi eld, due to varying yield potential. 
Mineralization of N is also dependent on soil water and tem-
perature, which vary with landscape position; therefore SOM 
content should not be used as a sole criterion when delineat-
ing N management zones (Schmidt et al., 2002). Managing N 
application based on spatial variability can reduce the overall N 
rate applied and increase profi tability compared with a uniform 
N application (Mamo et al., 2003). Variable rate application of 
N decreases the risk of overfertilization or underfertilization, 
compared with uniform applications. In addition to the spatial 
variability component of N management, temporal variations 
in N response and N mineralization related to environmental 
factors have also been observed (Mamo et al., 2003; Scharf et 
al., 2006). Climate and management interactions can cause 
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considerable year-to-year variation in both crop N requirement 
and yield (Cassman et al., 2002). Together, spatial and tempo-
ral variation creates uncertainty as to the optimal N fertilizer 
quantity for any given year (Roberts et al., 2010). Determining 
the amount and timing of N needed by the crop over a spatially 
diverse field is critical for improving NUE.

Active crop canopy sensors are available to assess the N 
status of the crop, allowing growers to make management 
decisions that are reactive to actual growing season condi-
tions, thereby improving NUE (Cassman et al., 2002). Sensors 
can be an effective indicator of in-season crop need as they 
serve to integrate the conditions and stresses that have already 
occurred during the early growing season. Crop canopy 
sensors are designed to detect specific wavelengths of light 
reflected from crop canopies. These wavelengths are combined 
to form vegetation indices that are correlated with specific 
crop conditions of interest. The normalized difference vegeta-
tion index (NDVI) was developed to quantify living biomass 
and as such is the most widely recognized vegetation index 
(Hatfield et al., 2008). Other indices such as the chlorophyll 
index (CI) and normalized difference red-edge (NDRE) index 
are considered more useful in terms of characterizing crop N 
status because they are not subject to red waveband saturation 
as with NDVI (Gitelson and Merzlyak, 1995). Crop vegeta-
tion indices are typically used to generate field maps that illus-
trate spatial variability in crop vigor. Shanahan et al. (2001) 
showed that several of these indices were well correlated with 
corn yields, especially once crop growth was adequate to mini-
mize soil reflectance.

Another application of vegetation indices generated from 
crop canopy sensor data is the transformation into algo-
rithms for making fertilizer N recommendations. Several 
sensor-based algorithms have been developed in recent years. 
Algorithms that are based on remote or proximal sensing 
data use the crop as a biological indicator of soil N supply that 
includes residual soil N and mineralized N within the root 
zone. As such, excess soil N renders the crop non-responsive in 
terms of biomass and leaf chlorophyll content, however, mod-
est applications of pre-plant N can be used to render the crop 
sensitive to N status at the time when in-season N application 
is planned (Miao et al., 2009; Solari et al., 2008). Additionally, 
these algorithms are generally linked to the features of a given 
sensor. For example, scientists at Oklahoma State University 
developed the GreenSeeker (N-Tech Industries, Ukiah, CA) 
active sensor that utilizes modulated red and near infrared 
(NIR) wavebands to quantify the amount of bare soil in wheat 
fields early in the growing season (Raun et al., 2002). Their 
algorithm was based on the relationship between sensor data 
collected early in the growing season and the yield attained 
across years and locations. Current-year sensor-generated 
vegetation index values were used in this general relationship 
to predict yield potential and expected nutrient removal rates 
to generate an N recommendation. This sensor and algorithm 
approach has been extended to other crops, including corn. 
Because this sensor uses the red waveband reflectance, sensitiv-
ity to true differences in crop vigor (chlorophyll content and 
biomass) can be negated by the insensitivity of red waveband 
reflectance when the leaf area index (LAI) exceeds about 2.0 
or canopy closure (Gitelson et al., 1996).

Sensors with capability to use the red-edge waveband reflec-
tance retain good sensitivity over a wider range of applications. 
Holland Scientific (Lincoln, NE) developed a series of active 
crop canopy sensors to avoid the red waveband saturation limi-
tation by including red-edge reflectance. Concurrently, they 
developed a general algorithm that is based on the biological 
response of crops to soil N supply (Holland and Schepers, 2010). 
This algorithm requires the user to estimate the optimum nitro-
gen rate (ONR) which takes into account other N sources avail-
able to the crop (previously applied N, N credits from a previous 
crop, manure application, and irrigation water N). Crop N 
uptake at a given growth stage is estimated based on phenologic 
information.

Crop simulation modeling has also been identified as an 
approach for precision N management and has potential to 
synchronize fertilizer N application with crop N demand, 
thereby potentially increasing NUE (Cassman et al., 2002; 
Ferguson et al., 2002; Kersebaum, 1995). Although many exist-
ing crop simulation models, such as CERES-Maize in DSSAT 
(Jones et al., 2003), APSIM (Keating et al., 2003), WOFOST 
(Supit and Van der Goot, 2003), and CropSys (Stöckle et al., 
2003) have functions to account for crop biomass accumula-
tion and yield growth in response to N availability in a corn 
crop, they were not designed to support pre-plant or in-season 
decisions about fertilizer N management. Specific simula-
tion models for pre-plant and in-season N management for 
crops like corn also have been developed. Three such examples 
include the QUEFTS model (Janssen et al., 1990; Smaling and 
Janssen, 1993), the Adapt-N model (Melkonian et al., 2008), 
and the Maize-N model (Setiyono et al., 2011). The QUEFTS 
model was developed for corn based on data from eastern 
Africa and can provide recommendations for nutrients includ-
ing N, P, and K. The model primarily requires information 
about soil nutrients and SOM, soil pH, and pricing informa-
tion for the corn crop and fertilizers to predict optimum rates 
for N, P, K, and expected corn yield. The Adapt-N model was 
developed using the N management scheme from Melkonian et 
al. (2005, 2007), and corn growth and N uptake from Sinclair 
and Muchow (1995). It uses gridded weather data (5 by 5 km) 
and has functions to account for N losses through leaching. 
The Maize-N model adopts the functions from the Hybrid-
Maize model (Yang et al., 2006) for maize yield prediction, 
and Yang and Janssen (2000) for SOM mineralization and 
generic response of corn yield to N uptake. This model has been 
validated in experiments in central Nebraska, eastern South 
Dakota, and western Nebraska, including both irrigated and 
rainfed systems (Setiyono et al., 2011). The economic optimum 
nitrogen rate (EONR) simulated by Maize-N and the EONR 
generated with more empirical university N recommendation 
approaches were compared to actual observed EONR; EONR 
simulated by Maize-N was found to have greater accuracy than 
the university N recommendation approaches as shown by 
lower RMSE and mean error (ME).

The objective of this study was to evaluate canopy reflectance 
sensing and crop modeling approaches for determining in-sea-
son maize N rates over a multi-state region. Additionally, the 
study investigated the effects of hybrid and population on these 
two N recommendation strategies.
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Table	1.	Characteristics	of	research	sites	and	cropping	information	including	site	yield	potential	classification,	predominant	soil	sub-
group	and	texture,	organic	matter,	extractable	P	and	K,	soil	pH,	residual	NO3–N	and	previous	crop	in	Nebraska	(NE),	Missouri	(MO),	
and	North	Dakota	(ND).	Samples	were	taken	before	seeding.

Site	ID
Site	yield	
potential

Predominant	 
soil	subgroup

Soil	
texture†

Soil	
organic	
matter

Extractable	
P

Extractable	
K pH NO3–N

Previous	
crop

g	kg–1 ––––––	mg	kg–1	–––––– mg	kg–1	for	top	
0.6096	m

MOLT12 moderate Vertic	Epiaqualfs SiL 26 11	B1P‡ 60 5.7 5.3 soybean
NECC12 high Pachic	Udertic	Argiustolls SiL 39 27	M3P§ 482 6.4 18.3 corn
NEMC12 moderate Cumulic	Haplustolls SL 17 41	M3P 326 6.7 9.3 corn
NDDN12 high Typic	Epiaquerts SiCL 53 32	OP¶ 600 7.6 6.3 corn
NDVC12 moderate Calcic	Hapludolls L 36 10	OP 300 6.3 10.1 wheat
MOTR13 high Fluventic	Hapludolls SiL 19 29	B1P 150 6.8 2.8# soybean
MOBA13 moderate Vertic	Epiaqualfs SiC 19 11	B1P 76 6.8 2.8# soybean
NECC13 high Udic	Argiustolls SiL 28 23	M3P 428 6.4 3.8 soybean
NEMC13 moderate Oxyaquic	Haplustolls SL 21 29	M3P 212 7.5 8.9 corn
NDAR13 high Typic	Epiaquerts SiCL 34 5	OP 120 8.0 9.2 soybean
NDVC13 moderate Calcic	and	Pachic	Hapludolls SL 36 19	OP 160 6.4 15.7 wheat
†	SiL	=	silt	loam,	SL	=	sandy	loam,	SiCL	=	silty	clay	loam,	L	=	loam,	SiC	=	silty	clay.
‡	B1P	=	Bray	1-P	Extract.
§	M3P	=	Mehlich-3	Extract.
¶	OP	=	Olsen	Extract.
#	Estimated	value.

Table	2.	Monthly	precipitation	totals	and	average	temperature	for	each	site	in	Nebraska	(NE),	Missouri	(MO),	and	North	Dakota	
(ND).	Irrigation	values	are	included	with	monthly	precipitation	totals	for	sites	indicated	as	irrigated.

Site	ID April May June July Aug. Sept. Total
Precipitation	and	irrigation

—————————————————————————–	mm	———————————————————————
MOLT12† – 1.3	(5/13)‡ 30.7 95.5 48.3 38.9	(9/19)§ 214.6
NECC12† 49.5	(4/1)‡ 117.0 73.7 62.8 47.0 13.7	(9/30)§ 363.7
NEMC12† 2.8	(4/1)‡ 122.7 44.5 7.9 31.2	(8/28)§ – 449.8
NDDN12 – 3.3	(5/25)‡ 79.0 41.7 25.1 8.4	(9/22)§ 157.48
NDVC12 – – 99.3	(6/1)† 21.3 37.1 11.9	(9/22)§ 169.7
MOTR13 – 155.7	(5/1)‡ 159.0 66.3 94.5 80.3	(9/30)§ 555.7
MOBA13 – 265.2	(5/1)‡ 47.0 41.1 44.7 42.9	(9/30)§ 441.0
NECC13† 57.9	(4/1)‡ 198.4 18.3 274.6 199.9 35.8	(9/30)§ 784.9
NEMC13† – 103.4	(5/1)‡ 50.5 116.6 88.6 87.9	(9/30)§ 447.0
NDAR13 – 49.0	(5/28)‡ 286.5 26.9 49.8 94.7	(9/23)§ 507.0
NDVC13 – 59.7	(5/20)‡ 107.2 34.5 20.8 73.7	(9/30)§ 295.9

Average	temperature
————————————————————°C	—————————————————————–

MOLT12 21.4	(5/13)‡ 24.6 29.1 25.4 20.4	(9/19)§
NECC12 12.7	(4/1)‡ 18.7 23.1 25.9 21.9 17.8	(9/30)§
NEMC12 12.6	(4/1)‡ 18.4 22.9 26.2 22.1	(8/28)§ –
NDDN12 – 19.0	(5/25)‡ 7.5 7.5 20.1 14.8	(9/22)§
NDVC12 – – 20.2	(6/1) 24.1 20.1 14.8	(9/22)§
MOTR13 – 16.9	(5/1)‡ 22.3 23.5 23.3 20.7	(9/30)§
MOBA13 – 16.9	(5/1)‡ 22.3 23.5 23.3 20.7	(9/30)§
NECC13 7.0	(4/1)‡ 15.5 22.0 23.1 23.2 20.5	(9/30)§
NEMC13 – 15.7	(5/1)‡ 21.6 23.1 23.5 20.5(9/23)§
NDAR13 – 18.3	(5/28)‡ 19.6 7.6 20.7 16.9	(9/23)§
NDVC13 – 21.4	(5/20)‡ 18.7 21.4 20.8 16.7	(9/30)§
†	Indicates	sites	with	irrigation.
‡	Indicates	start	date	of	data	collection.
§	Indicates	end	date	of	data	collection.
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Materials and Methods
During 2012 and 2013 a total of 12 field sites were chosen: two 

each year in Nebraska (NE), Missouri (MO), and North Dakota 
(ND) (Table 1). For each state, a site with expected high and mod-
erate yield potential was chosen. Nebraska sites in 2012 and 2013 
were fully irrigated. In 2012, Missouri sites received limited irriga-
tion to keep the crop alive during drought conditions. Due to the 
severe drought along with uneven sprinkler irrigation following 
the in-season N application, one MO site in 2012 was considered 
to be unreliable and was discarded, therefore data are presented 
and discussed for only 11 sites. Growing season monthly precipita-
tion and irrigation totals and average temperature are presented for 
each site in Table 2. Each experimental site contained four replica-
tions of 16 treatments arranged in a randomized complete block 
design. Two hybrids were selected for each site; those used in MO 
and NE were characterized by having a high or low drought score, 
with low drought score indicating the crop is more susceptible to 
drought. Each hybrid was planted at two seeding rates (Table 3). 
Four N treatments were implemented: unfertilized check, non-
limiting N reference, sensor-based, and model-based; these are 
hereafter referred to as check, reference, sensor, and model, respec-
tively. The check received no N during the study. The reference 
received an N rate considered to be non-limiting to yield for the 
site. The reference rate was 269 kg ha–1 for MO sites, 224 kg ha–1 
for ND sites, and ranged from 268 to 280 kg ha–1 for NE sites. 
The sensor and model treatments received an initial N rate and 
an in-season N rate. The initial N rate for sensor and model treat-
ments was 56 kg ha–1 for MO sites, 0 kg ha–1 for ND sites, and 
84 kg ha–1 for NE sites. A researcher with previous experience in 
each state determined the initial N, with a goal of selecting an N 
rate that would not cause unrecoverable stress before the in-season 
N application. In-season N applications were applied to both 
model and sensor treatments at the time of crop canopy sensing, 
typically at the V8–V10 growth stage. Nitrogen uptake is maxi-
mized and N loss reduced when fertilizer is applied at the begin-
ning of the rapid crop growth period, roughly between the V9 and 
V18 growth stage for corn (Scharf and Lory, 2006). In-season N 
applications were applied to the sensor treatment using recommen-
dations from the Holland and Schepers sensor algorithm (Holland 
and Schepers, 2010), and to the model treatments using Maize-N 
(Yang et al., University of Nebraska-Lincoln, 2008).

Crop canopy reflectance data were collected from all treat-
ment plots before the in-season N fertilizer application of 
sensor and model treatments. Data were collected using 
a RapidSCAN CS-45 Handheld Crop Sensor (Holland 
Scientific, Lincoln, NE) oriented in the nadir position and at 
least 0.6 m above the crop canopy. The sensor uses a polychro-
matic modulated light source and three photodetector mea-
surement channels: 670, 730, and 780 nm. Sensor values were 
recorded at 1 Hz and walking speed through the plots resulted 
in collection of one sensor reading about every 25 cm for a 
total of about 61 readings for each row. Two rows per plot were 
scanned, from which an average NDRE value was calculated. 
This study used the NDRE index (Eq. [1]) as it includes wave-
lengths that have been previously found to be sensitive to chloro-
phyll content of plants (Scharf and Lory, 2009).

NDRE = (RNIR – RRED EDGE)/(RNIR + RRED EDGE)  [1]

where RNIR = near-infrared reflectance (780 nm) and 
RRED EDGE = red edge reflectance (730 nm).

The sufficiency index (SI) value was calculated for each plot 
by dividing the NDRE from the sensor treatment by the NDRE 
from the corresponding reference treatment of the same hybrid 
and plant population for each replication. The SI was then used 
in the modified algorithm by Holland and Schepers (2010, 
modified 2012) to determine an N application rate. In addition 
to the user providing the SI, this algorithm requires the user to 
input three other variables: crop growth stage, amount of N fer-
tilizer applied before crop sensing and in-season fertilization, and 
user-predicted ONR. For this study, the user-predicted ONR 
was calculated using algorithms developed by the University of 
Nebraska-Lincoln and North Dakota State University for pro-
ducers applying a uniform rate of N (Shapiro et al., 2003; D.W. 
Franzen, personal communication, 2013).

For the Maize-N model treatments, soil properties, weather 
data, and site management information were input into the soft-
ware. Among other soil properties, the model requires that the 
user input percent soil organic carbon (SOC). Percent SOM was 
determined for all sites using the loss on ignition (LOI) method 
and these values were converted to percent SOC. The model 
uses this information to estimate N mineralization from SOM. 

Table	3.	Hybrid	and	planting	population	treatments	for	each	site	in	Nebraska	(NE),	Missouri	(MO),	and	North	Dakota	(ND).

Site	ID
Hybrid† Planting	population

A B Low	rate High	rate
————		seeds	ha–1	————

MOLT12 Pioneer	33D49 Pioneer	1498 76,601 101,311
MOTR13 Pioneer	33D49 Pioneer	1498 76,601 101,311
MOBA13 Pioneer	33D49 Pioneer	1498 76,601 101,311
NDDN12 Pioneer	39N99 Pioneer	8906	HR 79,072 103,782
NDVC12 Pioneer	39N99 Pioneer	8906	HR 79,072 103,782
NDAR13 Pioneer	39N95	AM Pioneer	8906	HR 79,072 103,782
NDVC13 Pioneer	39N95	AM Pioneer	8906	HR 79,072 103,782
NECC12 Pioneer	33D49 Pioneer	1498 79,072 103,782
NEMC12 Pioneer	33D49 Pioneer	1498 79,072 103,782
NECC13 Pioneer	33D53	AM Pioneer	1498	AM 79,072 103,782
NEMC13 Pioneer	33D53	AM Pioneer	1498	AM 79,072 103,782
†	For	NE	and	MO	sites,	hybrid	A	has	a	lower	drought	score	and	hybrid	B	has	a	higher	drought	score.
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Maize-N Version 2008.1.0, which was used for the 2012 growing 
season, did not take into account in-season 2012 weather data to 
determine mineralized N (only historic, long-term weather data 
were used to predict mineralization). For 2013, Version 2013.2.0 
was used which contains updates allowing the model to utilize 
current-year weather data to estimate the amount of N mineral-
ized from the termination of the previous crop to the time in-sea-
son N application occurs. Long-term weather data was then used 
to predict mineralization of N for the remainder of the season, 
based on historical trends. One simulation run was made for 
each unique hybrid and population treatment combination. For 
site MOTR13, the economically optimum N rate and in-season 
N recommendation were incorrectly reduced by 18 kg N ha–1 
due to an error in N credits applied for the model input values.

In-season N was applied to model and sensor treatments using 
different N sources and application methods for each site. For 
the model treatments, the same N rate was applied to a given 
treatment (hybrid and population combination) in all replica-
tions of a given site. In contrast, for the sensor treatments, N 
rate was applied to each hybrid and population treatment based 
on the N need indicated in each replication. It should be noted 
that although the sensor method varied the rate on a finer spatial 
scale (among replications in this case), the model approach does 
have the ability to incorporate a variable rate approach, but on 
a coarser spatial scale. The model allows for adjustments in N 
recommendation due to soil type and SOC. However, for the 
size of plots in the study, spatially dense SOC data was not avail-
able to trigger such a change within the treatment area, nor were 
soil texture variations great enough to adjust in the model. In 
MO, Super-U (46% N granular urea with urease and nitrifica-
tion inhibitors) was broadcast by hand application. For NE sites, 
UAN (32%) was surface applied in bands between crop rows. 
Similarly, at ND sites, UAN (28%) was applied in bands using 
a walk behind applicator with streaming drop nozzles. Upon 
physiological maturity, corn from all plots was harvested either 
by hand or using small plot combines. Partial factor productiv-
ity for nitrogen (PFPN) was calculated by dividing grain yield 
by total fertilizer N rate. Agronomic efficiency (AE) was cal-
culated by taking the difference in yield between the fertilized 
treatment and the check and dividing by total N application. 
A comparison of net profit across the N strategies was made 
by assuming corn could be sold for US$0.20 kg–1 ($5.00 bu–1) 
and that N fertilizer costs $1.10 kg–1 ($0.50 lb–1). The yield for 
each plot was multiplied by the market price and the amount 
of fertilizer applied to each plot was multiplied by the unit cost 
of fertilizer. Fertilizer cost was subtracted from grain price to 
determine the net return in $ ha–1. The data were analyzed using 
the GLIMMIX procedure in Statistical Analysis System (SAS) 
9.2 (SAS Institute, 2008). Mean separation test was done using 
Fisher’s LSD (a = 0.05).

To estimate the agronomic ONR, a linear-plateau response 
curve representing yield as a function of N rate was derived 
using the N rates and corresponding yields; unique linear-
plateau relationships were created for each site. The high N 
reference was assumed non-limiting for N and thus used to 
generate the plateau of the response relationship. Tests of 
statistical differences (a = 0.05) due to plant population and 
hybrid for the reference treatments were determined using the 
GLM procedure in SAS. If a significant difference in plateau 

yield occurred for plant population or hybrid, then individual 
means for these treatments were used to create separate pla-
teaus to reflect different mean values. If no statistically sig-
nificant differences were found for plant population or hybrid 
for the reference, the overall mean of the reference was used 
to define the plateau. For the linear part of the linear-plateau 
relationship, the check, sensor, and model treatment N rates 
and associated yield response results were used. The yield of the 
check established the linear model intercept. The model and 
sensor N rate and yields were utilized to determine the slope of 
the linear function. Stepwise linear regression (a = 0.05) was 
used to test for significant intercept and slope differences, as 
impacted by plant population and/or hybrid treatments. This 
procedure allowed for unique linear models to be generated 
when significant differences occurred with no N and/or with N 
additions. Optimum N rate for all unique combinations of the 
linear-plateau models was determined by solving for the joint of 
the linear-plateau model, as follows:

ONR =  (plateau – a)/b  [2]

where a = the linear regression intercept and b = the linear 
regression slope.

Using this approach, ONR was determined for 8 of the 11 
sites. A reliable estimate of ONR could not be determined for 
the remaining three sites due to lack of N response primarily 
because of drought. For the eight sites, ONR was compared 
graphically to the actual N applied for both the model and 
sensor treatments to examine which treatment best predicted 
ONR. Linear regressions of ONR relative to both the model 
and sensor N recommendation approaches were determined 
using the REG procedure in SAS. The intercept was set to 0. 
Adjusted coefficient of determination values (r2) are presented.

results and disCussion
in-season nitrogen recommendations

In-season N applications recommended by the Maize-N 
model and Holland and Schepers sensor-based algorithm are 
summarized for each site, averaged across hybrid and popula-
tion treatments (Table 4). For the majority of sites, in-season N 
rates for the model approach were higher than in-season N rates 
for the sensor approach. Over all sites, the crop model approach 
recommended on average 60.7 kg N ha–1 more than the canopy 
sensing approach. For one site, NECC12, no in-season N appli-
cation was recommended using the sensor approach. At only two 
sites did the sensor approach recommend more in-season N than 
the crop modeling approach (sites MOBA13 and NDVC13). 
The model approach did not recommend any N application at 
NDVC13 largely due to high levels of soil nitrate being input 
into the model. The relatively low recommended N rates from 
canopy sensing ( x  = 43.5 kg ha–1) indicates NDRE values of 
the corn to be fertilized was not much different than NDRE 
values of the reference. For site MOTR13, the in-season N rate 
for the model approach was erroneously reduced by 18 kg ha–1. 
This resulted in the total N rate for the model treatments being 
13 kg ha–1 lower than the N rate for the reference rather than 
5 kg ha–1 higher than the reference N rate.

Maize-N recommendation of EONR is, among other factors, 
dependent on the model’s ability to predict N mineralization 
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from SOM. Nitrogen mineralization was expected to vary by 
site because each site had unique SOM content and weather 
conditions controlling N mineralization. The predicted N min-
eralization from SOM is shown for the two different versions 
of Maize N for all field trials of this study (Fig. 1). In general, 
increases in site SOM resulted in increased predicted N miner-
alization (Myrold and Bottomley, 2008). Two exceptions were 
the two 2012 ND sites where predicted N from mineralization 
was <30 kg N ha–1 yr–1. Although the 2012 ND sites had some 
of the highest SOM measured, the Maize-N estimated N con-
tribution from SOM mineralization was the lowest of all sites; 
the result of this lower N credit was higher N recommendations 
for the 2012 ND sites. These results demonstrate how the crop 
model accounted for factors influencing mineralization such as 
temperature and the duration from the end of the last crop to the 
completion of the current crop season.

Nitrogen Strategy Main Effects on Yield, 
Partial Factor Productivity of Nitrogen, 

Agronomic Efficiency, and Profit

The effects of N recommendation strategies are presented for 
yield, PFPN, and AE (Table 4). In a few cases, interactions were 
observed between N recommendation strategy and hybrid and/
or population, but due to lack of any meaningful agronomic 

Table	4.	In-season	N	application	rates	for	model	and	sensor	N	strategies	for	all	site-years.	Nitrogen	strategy	main	effects	of	grain	
yield,	agronomic	efficiency,	partial	factor	productivity	of	N,	and	net	return	for	all	site-years	in	Nebraska	(NE),	Missouri	(MO),	and	
North	Dakota	(ND).

N 
treatments NEMC12 NECC12 MOLT12 NDDN12 NDVC12 NEMC13 NECC13 MOTR13 MOBA13 NDAR13 NDVC13

In-season	N	application	rate
——————————————————————————-	kg	ha–1	—————————————————————————

Model 81 25 76 198 198 120 103 200 54 83 0
Sensor 13 0 40 82 47 35 21 35 74 59 59

Grain	yield
——————————————————————————	Mg	ha–1	——————————————————————–——

Check 14.3b† 15.0a 3.27b 4.15b 7.55b 7.76c 9.84b 5.11d 2.41c 7.11a 5.63a
Model 15.2a 15.1a 6.04a 5.16ab 8.49ab 13.8a 12.6a 15.1b 7.25b 7.93a 6.05a
Sensor 15.8a 15.8a 5.66a 4.53b 7.74b 12.4b 12.5a 11.6c 7.74a 7.66a 6.79a
Reference 15.4a 15.5a 5.66a 5.85a 9.25a 13.9a 12.9a 16.0a 8.02a 7.55a 7.09a

Agronomic	efficiency
——————————————————————		kg	grain	increase	kg	N–1	——————————————————————

Model 5.74b 1.15a 20.9a 6.27a 4.52a 29.5b 15.0b 38.7b 44.1a 9.94a –
Sensor 15.8a 9.15a 27.5a 14.5a 7.75a 38.9a 26.3a 77.7a 41.2a 8.19a 19.8a
Reference 4.06c 1.59a 8.92b 8.61a 7.69a 22.8c 10.9c 39.3b 20.0b 1.93a 6.52b

Partial	factor	productivity	of	N
————————————————————————	kg	grain	kg	N–1	———————————————————————

Model 92.20b 139.5b 45.40b 25.96b 42.79b 67.49b 67.60b 59.45b 65.88a 96.30b –
Sensor 164.6a 187.4a 59.34a 47.86a 144.5a 106.8a 121.3a 140.7a 59.85b 133.4a 116.4a
Reference 57.01c 55.05c 20.13b 25.97b 41.24b 51.64c 45.95c 57.10b 28.57c 33.61c 31.57b

Net	return
——————————————————————————	$	ha–1—————————————————————————

Check 2803b 2949ab 618c 816a 1480a 1525c 1932c 1003d 472c 1398a 1105a
Model 2808b 2851bc 994a 794a 1446a 2485a 2273ab 2691b 1304ab 1466a 1189a
Sensor 2989a 3007a 974a 802a 1462a 2307b 2348a 2180c 1376a 1439a 1268a
Reference 2722b 2728c 801b 899a 1573a 2438a 2226b 2841a 1267b 1236b 1146a
†	Within	columns,	means	followed	by	the	same	letter	are	not	significantly	different	according	to	LSD	(0.05).

Fig.	1.	Comparison	of	site	soil	organic	matter	(SOM)	to	the	
predicted	N	mineralization	from	SOM	using	Maize-N	Version	
2008.1.0	(open	symbols)	and	2013.2.0	(filled	symbols)	for	Missouri	
(MO),	North	Dakota	(ND),	and	Nebraska	(NE)	sites.
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explanations among these interactions, only the main effects 
of N recommendation strategy are presented. As would be 
expected, yield was lowest with no N fertilization (average over 
all sites: 7.4 Mg ha–1). Exceptions included NECC12, NDAR13, 
and NDVC13 sites where results show little N was needed for 
optimal yield. The reference rate generally produced the highest 
yields (average over all sites: 10.6 Mg ha–1). The sensor approach 
produced yields lower than the modeling approach at two sites 
(NEMC13, MOTR13) and yields lower than the reference at 
four sites (NDDN12, NDVC12, NEMC13, MOTR13). The 
model approach produced yields lower than the sensor approach 
at one site (MOBA13) and yields lower than the reference at two 
sites (MOTR13 and MOBA13).

For 1 site-year (MOTR13), growing conditions were excep-
tional and both the model and sensor N rates limited yield. 
However, at this site the in-season N rate for the model approach 
was erroneously reduced by 18 kg ha–1. With the model approach 
only yielding 0.9 Mg ha–1 less than the reference, the correct N 
rate may have resulted in yield similar to the reference. At the 
ND sites in 2013, response to any N application was nonexistent 
which is attributed to factors other than N generally limiting crop 
production. High yields for the check treatment at the NE sites 
in 2012 are explained by unusually high rates of mineralization 
of N in the spring before planting, but after pre-plant soil samples 
accounted for residual soil N, which reduced response to fertil-
izer N. A comprehensive study in NE (Dobermann et al., 2011) 
found N mineralized from SOM during the growing season 
ranged from 15 to 35 kg Mg–1 SOM. At these two sites, the sen-
sor approach had a lower N rate than the model approach; how-
ever yield was not significantly different. Under these conditions, 
canopy sensing worked well and N application was appropriately 
reduced, resulting in no yield decrease compared with the refer-
ence. Over all site years combined, the model did a better job of 
protecting yield potential compared to the sensor approach with 
the Holland and Schepers 2010 algorithm. In part, this is due to 
the version of the Holland and Schepers algorithm used, which 
allowed the N recommendation to be 0 kg ha–1. More recent 
versions of the Holland and Schepers algorithm maintains a base 
recommendation even when crop stress is not detected. While 
maintaining a base recommendation above 0 kg ha–1 may have 
improved yields at some sites, it would have also reduced the suc-
cess of the sensor approach at NECC12 where no N application 
was recommended.

Agronomic efficiency and PFPN were generally lower with 
the reference than the two N management approaches that 
were evaluated (Table 4). This would be expected since the 
amount of N applied for the reference was expected to be more 
than the crop needed. Agronomic efficiency of the sensor 
approach tended to be higher than the model approach; how-
ever, it was only significantly higher at four sites (no compari-
son can be made for NDVC13 as there was no N application 
for the model approach). Similarly, the sensor approach had a 
higher PFPN than the model approach at 9 of 10 sites (again 
no comparison can be made for NDVC13). For Nebraska sites 
this difference was attributed to high levels of N mineraliza-
tion resulting in high yields, even for the check treatment that 
received no N application. The sensor approach appropriately 
reduced the in-season N recommendation at these sites, while 
the model did not. It should be noted that the model Version 

2008.1.0 was used in 2012, which lacked the capability of 
adjusting for the effect of weather on mineralization up to the 
time of fertilization. Use of the updated Version 2013.2.0 in 
this case would have improved the in-season N recommenda-
tion by appropriately lowering the N rate (for all sites and treat-
ment combinations collectively, Version 2013.2.0 generated 
an N rate that ranged from 0 to 36 kg lower and averaged 9 kg 
lower than Version 2008.1.0). For NEMC12 the rate with the 
updated version would have still been higher than the sensor 
rate, but for NECC12 the updated version would have resulted 
in an in-season N rate equal to the N rate prescribed by the sen-
sor approach and therefore would have likely had a PFPN equal 
to that of the sensor approach. Overall, when examining PFPN, 
the sensor approach is consistently higher than the model 
approach; this is likely due to the frequently lower N rates rec-
ommended by the sensor approach than the model approach. 
This is consistent with findings by Roberts et al. (2010) that 
documented higher N fertilizer recovery efficiency for treat-
ments with lower N fertilizer application rates. However, 
because the treatment with the highest PFPN often has the lowest 
N rate, in many cases there may be a corresponding yield reduction 
compared to treatments with a lower PFPN but higher N rate. For 
this reason, PFPN should not be solely considered as an evaluation 
of the effectiveness of an N management strategy. Higher PFPN is 
desirable within a context where yield is not negatively impacted.

Net return was used to evaluate profitability of the model and 
sensor treatments (Table 4). Net returns for model and sensor 
treatments were equivalent in 7 of the 11 site-years. The sensor 
approach was significantly more profitable than the model at 
two sites (NEMC12 and NECC12) and more profitable than 
the reference at six sites. The increased profitability of the sen-
sor approach over the model approach for these two NE sites 
was due to lower in-season N recommendations for the sensor 
N strategy and comparable yields. However, as was previously 
mentioned, use of the updated version of the Maize-N model 
would result in lower N recommendations for these two sites. 
For NECC12 the N recommendation would be identical to that 
of the sensor, and the difference in profitability between the 
model and sensor approaches at these sites would be expected to 
be nonexistent. For NEMC12, the N recommendation would 
still be higher than that of the sensor, but the difference in 
profitability between the model and sensor approaches would 
be expected to be decreased. The model approach was signifi-
cantly more profitable than the sensor at two sites (NEMC13 
and MOTR13) and more profitable than the reference at two 
sites. One site (MOTR13) had a large decrease in profitability 
for both the model (loss of $150 ha–1) and the sensor (loss of 
$661 ha–1) compared to the reference; this decrease in profit was 
due to insufficient N rate for the model and sensor treatments. 
Over all site-years combined, there was not a clear trend for 
profitability of these varying approaches.

In summary, there were six sites where the sensor treatment 
had yields that were not significantly lower than the reference 
treatment and had the highest PFPN (NEMC12, NECC12, 
MOLT12, NECC13, NDAR13, and NDVC13). In general, 
this situation occurred where the site was not highly responsive 
to N applications. This may be due to unpredictable condi-
tions resulting in reduced yield, such as drought, or condi-
tions resulting in N being available from other sources such as 
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residual soil N, irrigation water, or through N mineralization 
of SOM. Dry conditions resulted in lower yields for MOLT12, 
NDAR13, and NDVC13, therefore introducing a more limit-
ing factor (water) and reducing N requirements for these sites. 
In the case of NEMC12 and NECC12, high N mineralization 
and lack of conditions contributing to N loss was suspected, 
resulting in these sites being less responsive to fertilizer N. In 
the case of NEMC12 and NECC12 sites it is clear the sensor 
performed better as it recommended lower N rates, had higher 
yield, greater profit, and greater NUE. In 2013, the model 
performed better at sites NEMC13 and MOTR13 where the 
model approach had significantly higher yields and profitability 
than the sensor approach. At these site yields were high and the 
sensor approach did not provide enough N to maximize yields.

evaluating nitrogen Management approaches 
with optimal nitrogen rate determination

The ONR values derived using the linear-plateau model are 
provided for each site in Table 5. Cerrato and Blackmer (1990) 
compared various models that are often used to describe the corn 
yield response to N fertilizer relationship. They concluded that 
the quadratic-plateau model best described the yield response to 
N fertilizer application in the study. The linear-plateau model 
predicted maximum yields similar to the quadratic-plateau 
model, however at the point of inflection, they found yields may 
be overestimated resulting in EONR values that are too low. 
While the authors acknowledge the limitation associated with 
the linear-plateau model, it was used due to the limited quantity 
and range of N rates available to model the yield response to N 
fertilizer relationship. Where significant differences due to plant 
population and/or hybrid occurred, ONR was adjusted accord-
ingly. For three sites (NDDN12, NDVC12, and NDVC13) for 
some or all treatment combinations there was no N fertilizer 
response due to factors such as drought, therefore these sites were 
eliminated from this analysis. Sites NECC12 and NEMC12 
were also non-responsive to fertilizer for some or all treatment 
combinations. However, this is attributed to high levels of N 
mineralization before the growing season, therefore these sites 
were included in the subsequent analysis.

Using the linear-plateau estimated ONR, the total N applied 
by both the model and sensor treatment approaches can be 
compared. Figure 2 illustrates the relationship between the 
estimated ONR and the total N applied using either the sensor 
or modeling strategy. The diagonal line represents the location 

on the graph where total N recommended and applied matches 
the linear-plateau estimated ONR. Points falling below this 
line are sites where the total N applied was in excess of the 
optimum, and points falling above this line are sites where the 
total N applied was less than the calculated optimum. Points at 
a greater distance from the line indicate greater variation from 
the estimated ONR. A linear regression of the data points with 
an intercept of 0 was fit and is depicted with a dashed line on 
each graph along with the coefficient of determination.

The Maize-N model most closely approximates the linear-
plateau estimated ONR over these sites and tended toward 
over-recommendation of N (y = 0.851x). Additionally, the 
Maize-N model deviated less from ONR than the sensor 
approach, as indicated by the coefficient of determination. The 
sensor approach recommended N applications that tended to 
be lower than the linear-plateau estimated ONR, resulting 
in under-application of N and consequential yield loss. It is 
important to remember that the results of the sensor approach 
are dependent on the algorithm used to convert sensor reflec-
tance measurements into an N recommendation rate (in 
this case the Holland and Schepers 2010 sensor algorithm). 
Alternative or modified sensor algorithms should be evaluated 
to determine which algorithms produce the best results for 
specific geographic locations. Additionally, N recommenda-
tions would ideally be closer to the ONR than they were in this 
analysis, pointing to the need for further improvements in both 
the model and sensor approaches.

Effects of Plant Populations on Sufficiency 
Index (Normalized Difference Red Edge) and 

resulting nitrogen recommendations

Plant population has the potential to affect crop canopy 
sensor readings and consequently N recommendation rates. 
However, previous work showed that reflectance differences 
among hybrids had minimal impact on fertilizer N recom-
mendations (Sheridan et al., 2012), therefore having a reference 
strip of the same hybrid may not be critical. With this research 
we explored whether reference strips of differing plant popula-
tions are important in the determination of final in-season N 
recommendation. Because variable seeding rates are sometimes 
implemented in commercial crop production, it is important 
to determine the impact on N fertilizer recommendation when 
plant population is different between the reference strip and 
the portion of the field receiving in-season N application. Since 

Table	5.	Optimum	nitrogen	rate	(ONR)	values	derived	using	the	linear-plateau	model	for	sites	in	Missouri	(MO),	North	Dakota	(ND),	
and	Nebraska	(NE)	in	2012	and	2013.	Where	significant	differences	in	hybrid	and	plant	population	treatments	occurred,	unique	linear-
plateau	models	were	derived	resulting	in	unique	ONR	values	as	shown.

Linear-plateau	derived	ONR
Site	ID Hybrid	A,	low	population Hybrid	A,	high	population Hybrid	B,	low	population Hybrid	B,	high	population

—————————————————————–	kg	ha–1	—————————————————————
MOLT12 141 73 141 73
MOTR13 245 279 245 279
MOBA13 162 124 162 124
NDAR13 45 45 45 45
NECC12 0 0 0 0
NEMC12 0 0 132 132
NECC13 184 234 138 176
NEMC13 172 172 215 215
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plant biomass and leaf area index (LAI) are correlated with 
crop canopy reflectance, population differences may signifi-
cantly influence vegetation index values, and consequently SI 
and resulting N recommendation rates. Significant differences 
in NDRE were frequently seen for the plant population main 
effect (Table 6). The difference in recommended in-season N 
rate when there were significant NDRE differences for popula-
tion at the time of fertilization was examined. A SI was gener-
ated using NDRE values of the high population treatment 
for the SI denominator (reference crop), and low population 
treatment for the SI numerator (target crop) and vice-versa. 
Population treatments with the same hybrid were used to gen-
erate SI, thus reflectance differences based on hybrid were not 
simultaneously investigated. The SI generated with a reference 
crop of differing population than the target crop population 
was then used in the Holland–Schepers sensor algorithm to 
generate the N rate recommendation. This was compared with 
the N recommendation for the target crop if the equivalent 

population treatment was used as a reference. Nitrogen rates 
when the same population and opposing population were used 
for the reference and target crop are shown in Table 7.

The magnitude of difference in recommended N rate 
incurred by using alternate populations for the SI ranged from 
0 to 48.2 kg N ha–1. In most cases, using a reference of higher 
population than the target crop resulted in increased N rates. 
This would be expected as the apparent biomass of the higher 
population reference would be greater, resulting in higher 
NDRE values and consequently lower SI for use in the N rec-
ommendation algorithm. Conversely, using a reference of lower 
population than the target crop resulted in decreased N recom-
mendation. The NDDN12 site had an opposite response which 
is attributed to water stress at the time of sensing.

It is important to note that the difference of N recommen-
dation rate reported here would be expected to increase as 
variation in plant population increased. In this study, popula-
tion differences were at most 24,710 seeds ha–1. The practical 
significance of these N rate recommendation differences must 
be evaluated by the producer and be considered in accordance 
with the recommendation precision desired. Producers should 
be aware that using a higher plant population for the reference 
strip may result in greater N recommendations, and using a 
lower plant population for the reference strip may result in 
lower N recommendations. Those desiring to ensure that N 
recommendations are not limiting to crop yield should be 
advised to not use a reference strip of lower plant population 
than the remainder of the field.

Fig.	2.	Optimum	N	rate	(ONR)	derived	from	linear-plateau	model	
compared	to	total	N	applied	using	(a)	sensor	N	strategy	and	
(b)	model	N	strategy	for	sites	in	Missouri	(MO),	Nebraska	(NE),	and	
North	Dakota	(ND).	Markers	are	data	points	from	each	hybrid	and	
population	combinations	for	individual	replications.

Table	6.	Plant	population	treatment	means	for	normalized	dif-
ference	red	edge	(NDRE)	and	sufficiency	index	(SI)	for	sites	
in	Nebraska	(NE),	Missouri	(MO),	and	North	Dakota	(ND)	in	
2012	and	2013	where	plant	population	main	effect	is	significant	
at	P £	0.05.

Site	ID Low	population High	population
NDRE	at	time	of	N	application

NECC12 0.3970 0.4037
NEMC12 0.3481 0.3682
MOLT12 0.3783 0.3843
NDDN12 0.2269 0.2066
NDVC12 0.2925 0.3130
NECC13 0.4268 0.4339
NEMC13† 0.3485 0.3570
MOTR13 0.3681 0.3775
NDVC13 0.2154 0.2278

NDRE	following	application
NECC12 0.4631 0.4590
NDDN12 0.3189 0.3009
NECC13 0.4373 0.4438

SI	at	time	of	N	application
NECC13 0.9835 0.9668
NEMC13 0.9345 0.8866

SI	following	application
NEMC12 0.9886 0.9738
NEMC13† 0.9527 0.9411
NDAR13 1.0082 0.9890
†	Indicates	interaction	between	plant	population	and	hybrid	and/or	N	
strategy	is	present	at	this	site.
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ConClusions
Plant population in some cases had an impact on NDRE 

determined from crop canopy sensing. This indicates that it is 
desirable for the reference strip used for determination of SI to 
be of the same population as the target crop.

Over all site-years combined, yield was better protected by 
using the model approach than by using the sensor approach 
with the Holland and Schepers 2010 algorithm (model 
approach yielded lower than the reference at 2 of 11 sites 
compared to sensor approach which yielded lower than the 
reference at 4 of 11 sites). However, due to lower in-season N 
recommendations, the sensor approach was generally higher in 
NUE than the model approach. No clear trends in profitability 
were observed. In an ideal situation, N applications would be 
optimized without sacrificing yield. This clearly was the case 
for two NE sites in 2012 where the sensor approach appropri-
ately reduced N application. This demonstrates how the sensor 
approach is unique in its ability to be responsive to in-season 
growing conditions. The latest version of the Maize-N model 
approach has some ability to do this, as N recommendations 
account for expected mineralization of N that has occurred 
in that growing season based on in-season weather up to the 
time of fertilization. Additionally, the Maize-N model cur-
rently does not account directly for N losses through leaching, 
denitrification, or volatilization, however these N losses can 
be accounted for indirectly by adjusting N uptake efficiencies 
from various sources.

The model approach more closely estimated the linear-
plateau derived ONR than the sensor approach when data is 
combined across all sites. Additionally, the model-approach 
recommended N rates that tended toward over-application of 
N, resulting in fewer sites where yield was negatively impacted. 
For this reason, the model approach may be preferable to pro-
ducers as yield is better protected. Again, newer versions of sen-
sor algorithms maintaining a base N fertilizer recommendation 
regardless of the sensor reading potentially negate this concern 
with canopy sensing. However, with either method there are 
negative environmental implications of over-application that 
cannot be ignored.

It is important to consider the restrictions of both 
approaches. While both approaches are improvements over 
currently used recommendation systems, they are similarly 
limited in that they cannot fully predict the effects of weather 

on crop health and N availability from the time of in-season N 
application until harvest. For the crop canopy sensor approach, 
at the time of sensing, N may appear to be adequate in plants; 
however, this does not indicate if N supply will be sufficient 
through the remainder of the growing season. Changes such 
as N loss through leaching, volatilization, or denitrification or 
additions of N through mineralization that may occur in the 
remainder of the growing season are not accounted for, as they 
are not yet expressed in the crop.

User convenience of these approaches is also important 
to consider. It should be noted that Maize N requires more 
up-front information, such as soil residual N supplied by the 
operator. Another significant difference between the two 
approaches is the ease of making spatially variable recom-
mendations. The sensor approach rapidly incorporates spatial 
variability into its recommendation, while making spatially 
variable recommendations with the model is cumbersome and 
involves manually inputting different variables such as SOC, 
residual N, and soil texture. Both approaches are constrained 
by the user applying in-season N in a narrow window of time, 
a condition that may limit adoption where rainfall in the 
early growing season might prevent in-season N applications 
from occurring.

Both the model and sensor approaches have merit; a com-
bination of the two may provide the strongest, most informed 
N recommendation. For example, the crop canopy sensor 
can be used to provide real-time assessment of the crop status 
while a simulation model can assess expected additions and 
losses of N that are not yet reflected by the plant. The sensor 
approach may be able to identify real-time opportunities such 
as N losses reflected in the plant which the Maize-N model 
currently does not directly account for. Additionally, crop 
simulation models can be used to provide estimates of attain-
able yield, which is valuable for the sensor approach as most 
current sensor N recommendation algorithms require either 
an estimate of expected yield or of ONR. A model approach 
can also be used to fine-tune sensor-based recommendations 
according to variation in capacity of soils within a field to 
mineralize and supply N to the crop following the time of 
sensor-based N application. Combining model and sensor 
information may optimize in-season decision support for N 
recommendation.

Table	7.	Average	N	rate	recommendations	generated	using	sufficiency	index	(SI)	with	normalized	difference	red	edge	(NDRE)	values	
from	the	same	or	different	populations	of	target	and	reference	crops.	Fertilizer	recommendations	for	NDRE	values	were	used	with	
Holland-Schepers	algorithm	for	sensor	N	recommendations.	Sites	shown	in	Nebraska	(NE),	Missouri	(MO),	and	North	Dakota	(ND)	
in	2012	and	2013	where	significant	population	main	effect	differences	in	NDRE	at	the	time	of	fertilizing	occurred.

Site	ID
Average	N	rate	with	
matching	population

Average	N	rate	with	SI	from	high	population	
reference	and	low	population	target

Average	N	rate	with	SI	from	low	population	
reference	and	high	population	target

—————————————————————		kg	N	ha–1	—————————————————————————
NECC12 0 0 0
NEMC12 13.1 27.7 0
MOLT12 39.2 47.1 29.8
NDDN12 81.8 49.0 109.6
NDVC12 47.1 57.2 35.9
NECC13 21.3 44.8 1.26
MOTR13 34.8 58.3 13.5
NDVC13 59.4 59.4 58.3
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