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Quantitation of ortho-cresyl phosphate adducts
to butyrylcholinesterase in human serum by
immunomagnetic-UHPLC-MS/MS
Darryl Johnson,a Melissa D. Carter,b* Brian S. Crow,b Samantha L. Isenberg,a

Leigh Ann Graham,a H. Akin Erol,a Caroline M. Watson,a

Brooke G. Pantazides,b Marcel J. van der Schans,c Jan P. Langenberg,c

Daan Noort,c Thomas A. Blake,b Jerry D. Thomasb and Rudolph C. Johnsonb

Tri-ortho-cresyl phosphate (ToCP) is an anti-wear, flame retardant additive used in industrial lubricants, hydraulic fluids and gas-
oline. The neurotoxic effects of ToCP arise from the liver-activatedmetabolite 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one
(cresyl saligenin phosphate or CBDP), which inhibits esterase enzymes including butyrylcholinesterase (BChE). Following BChE ad-
duction, CBDP undergoes hydrolysis to form the aged adduct ortho-cresyl phosphoserine (oCP-BChE), thus providing a biomarker
of CBDP exposure. Previous studies have identified ToCP in aircraft cabin and cockpit air, but assessing human exposure has been
hampered by the lack of a laboratory assay to confirm exposure. This work presents the development of an immunomagnetic-
UHPLC-MS/MSmethod for the quantitation of unadducted BChE and the long-term CBDP biomarker, oCP-BChE, in human serum.
Themethod has a reportable range from 2.0ng/ml to 150ng/ml, which is consistent with the sensitivity ofmethods used to detect
organophosphorus nerve agent protein adducts. The assay demonstrated high intraday and interday accuracy (≥85%) and preci-
sion (RSD≤ 15%) across the calibration range. The method was developed for future analyses of potential human exposure to
CBDP. Analysis of human serum inhibited in vitro with CBDP demonstrated that the oCP-BChE adduct was stable for at least
72h at 4, 22 and 37 °C. Compared to a previously reported assay, this method requires 75% less sample volume, reduces analysis
time by a factor of 20 and demonstrates a threefold improvement in sensitivity. Published 2015. This article is a U.S. Government
work and is in the public domain in the USA.

Additional supporting information may be found in the online version of this article at the publisher’s web site.

Keywords: tri-ortho-cresyl-phosphate; butyrylcholinesterase; cresyl saligenin phosphate; Jamaica ginger paralysis; organophosphate-
induced delayed neuropathy

Introduction

Tricresyl phosphate (TCP) is an organophosphorus additive used in
a variety of applications including industrial lubricants, hydraulic
fluids and gasoline.[1,2] Commercial TCP consists of a mixture of
ten positional cresyl isomers.[3] The mono-, di- and tri-ortho isomers
are considered to be the most harmful, exhibiting neurotoxic
properties.[4] Tri-ortho-cresyl phosphate (ToCP) has been the most
extensively studied ortho isomer.[5] Human exposure to ToCP has
been shown to cause peripheral nerve damage and degeneration
of the spinal cord.[6] The most infamous case of human exposure
to ToCP occurred in the United States in 1930. Consumption of
Jamaica Ginger extract (‘Jake’) that had been adulterated with ToCP
led to a condition known as ‘Jamaica Ginger Paralysis’ or ‘Jake Leg’.
Approximately 50 000 Americans became paralyzed and for most,
their paralysis was permanent.[7,8] Other widespread cases of ToCP
poisoning include the consumption of adulterated cooking oil in
Morocco in 1959 causing the paralysis of approximately 10 000
people, and themost recent exposure occurred in 1995 from inges-
tion of flour tainted with ToCP.[9,10]

Most industrial uses of TCP were discontinued by 2002; however,
it is still used in jet engine lubricating oils and hydraulic fluids for its
anti-wear and flame retardant properties.[11] Human exposure to

ToCP can potentially occur from aircraft bleed air systems which
supply fresh air throughout the cabin. In a bleed air system, hot,
compressed air is pulled from bleed ports in the compressor stage
of the engine. The air is then cooled and circulated throughout the
cabin. Engine seals responsible for preventing engine oil from
leaking out of the compressor zone can malfunction due to age,
stress or wear. If this occurs, engine oil can leak out of the compres-
sion zone and into the bleed air system.[12–14] Previous studies have
identified the presence of TCP and ToCP in cabin and cockpit air, as
well as in the plane’s air duct system.[14–19] Other reports have fo-
cused on the effects of human exposure to contaminated cabin
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air; however, establishing a causal link with ToCP exposure has
been difficult without an analytical test with the specificity to con-
firm exposure.[13,20,21]

The neurotoxic effects from ToCP exposure arise from a liver-
activated metabolite rather than the parent compound.[4] ToCP is
metabolized to 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one
(cresyl saligenin phosphate or CBDP) by cytochrome P450
(Scheme 1).[22] CBDP inhibits carboxylesterases, neurotoxic ester-
ase, acetylcholinesterase and butyrylcholinesterase (BChE).[23,24]

CBDP forms a covalent adduct to the active serine site (Ser198) of
BChE. A study of the kinetics of adduct formation showed that
CBDP was a potent BChE inhibitor (ki = 1.6×10

8M�1min �1).[25]

As illustrated in Scheme 1, the initial adduct formed is a derivative
of CBDP and within seconds, aging occurs to produce o-cresyl
phosphoserine BChE (oCP-BChE).[25,26] The resulting +170 amu
oCP-BChE adduct was identified in earlier studies following the re-
action of CBDP with BChE.[24–26] This work established oCP-BChE
as a potential biomarker for CBDP exposure, and by extension, ToCP
exposure.
In 2011, Marsillach et al. demonstrated that an immunomagnetic

separation could be used to purify BChE and CBDP-adducted
BChE from human serum.[24] The immunomagnetic separation
was later applied to a biomonitoring study of blood collected from

jet airline passengers. The study monitored for the presence of
phosphoserine BChE, a generic biomarker of organophosphate ex-
posure, and low exposure levels were reported (0.05 to 3% inhibi-
tion of plasma BChE).[27] The group later developed an assay to
detect the more specific adduct oCP-BChE. Improvements were
also made to the BChE purification strategy to reduce sample
volume, and electrospray ionization was integrated into the assay
for improved reproducibility. The assay’s sensitivity was reported
as 0.1% oCP-BChE in blood; however, the method required lengthy
analysis timesmaking it undesirable for high-throughput analysis.[28]

Until now, a high-throughput method for the quantitation of
oCP-BChE adducts in clinical samples was unavailable. This work
addresses this need and presents the development of a high-
throughput immunomagnetic UHPLC-MS/MS method for the
quantitation of oCP-BChE adducts in human blood matrices.

Materials and methods

Materials

The following synthetic unlabeled and stable isotopically labeled
peptideswere obtained fromTNO (Rijswijk, The Netherlands): BChE:
synthetic unlabeled butyrylcholinesterase nonapeptide (FGESAGAAS);
BChE*: isotopically-labeled BChE nonapeptide (13C9-FGESAGAAS);
oCP-BChE: synthetic unlabeled o-cresyl phosphoserine BChE
nonapeptide (FGES[oCP]AGAAS); oCP-BChE*: isotopically labeled
oCP-BChE nonapeptide (13C9-FGES[oCP]AGAAS). Peptide amino
acid analysis (AAA) was performed at Midwest Bio-Tech, Inc.
(Fishers, IN, USA) and determined to be the following: BChE:
68.0%; BChE*: 62.3%; oCP-BChE: 53.3%; oCP-BChE*: 75.7%. BChE
monoclonal antibodies from clone 3E8 were purchased from
ThermoFisher Affinity Bioreagents (Rockford, IL, USA). HPLC grade
acetonitrile and deionized water were commercially available
from Tedia (Fairfield, OH, USA). Formic acid (98%), phosphate
buffered saline with Tween 20 (PBST) dry powder, dimethyl
pimelimidate dihydrochloride (DMP), 0.2M tris buffered saline
(TBS) 10× concentrate, triethanolamine buffer solution and pepsin
from porcine gastric mucosa were all purchased from Sigma
Aldrich (St. Louis, MO, USA). Dynabeads Protein G were obtained
from Life Technologies (Carlsbad, CA, USA). KingFisher 96 Flex mi-
croplates (200μl), KingFisher 96 tip combs for deep well magnets,
KingFisher Flex microliter deepwell 96 plates (v-bottom), protein
precipitation plates, PCR foil and easy pierce 20-μm heat sealing
foil were purchased from Fisher Scientific (Rockford, IL, USA).
Nonsterile MultiScreen HTS HV 0.45-μm opaque filter plates were
purchased from EMD Millipore (Billerica, MA, USA). Sample con-
centration used a Porvair MiniVap Blowdown Evaporator (Porvair
Sciences, Wrexham Wales, UK).

Stock solutions and quality control (QC) materials

Synthetic BChE and oCP-BChE peptide calibrators were made fol-
lowing amino acid content analysis. Stock solutions were made
for each native and isotopically labeled standard (1.00mg/ml) in
0.1% formic acid and stored at �70 °C. Native peptide stock solu-
tions were combined and diluted in 0.1% formic acid to prepare
the eight calibrators. The isotopically labeled stock solutions were
combined to prepare a single internal standard solution at a
concentration of 500 ng/ml. Commercial pooled human serum
adducted with sarin was obtained from Battelle Memorial Institute
(Columbus, OH) and served as a matrix blank. Sarin-inhibited serum
was selected since it was nearly depleted of the unadducted BChE

Scheme 1. Metabolism of ToCP and formation of the o-cresyl
phosphoserine (oCP) adduct on human BChE active site serine-198.
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protein (back-calculated concentration of BChE in matrix blank se-
rum was below the method’s lowest reportable limit) and did not
provide interference in the detection of oCP-BChE calibrators. Qual-
ity control (QC) materials for BChE consisted of commercial unex-
posed pooled human serum purchased from TNO for the mid-
level QC and synthetic BChE peptide spikes into matrix blank serum
for low- and high-level BChE QC samples. oCP-BChE QC materials
consisted of commercial pooled human serum exposed to CBDP
(TNO) for the low-level QC and synthetic oCP-BChE peptide spikes
into matrix blank serum for mid- and high-level QC samples. The
method QC materials used blood products acquired from commer-
cial sources, and the work did not meet the definition of human
subjects as specified in 45 CFR 46.102 (f). The commercial blood
products were screened for regulatory pathogens prior to commer-
cial sale.

Convenience sample set

A commercial convenience set of 96 individual human sera prod-
ucts were purchased from Tennessee Blood Services (Memphis,
TN) to evaluate baseline level responses in a population in which
exposure was not expected. The method used blood products ac-
quired from commercial sources, and the work did not meet the
definition of human subjects as specified in 45 CFR 46.102 (f). The
commercial blood products were screened for regulatory patho-
gens prior to commercial sale.

Sample preparation

Pantazides et al. previously described optimization of the
immunomagnetic separation and pepsin digest.[29] A recovery of
approximately 90% of unadducted BChE in serum was reported,
and similar recoveries were observed for BChE inhibited by organ-
ophosphorus compounds similar to oCP- (GB and VX). Pepsin diges-
tion parameters were also optimized, reporting that the BChE
protein is fully digested into the nonapeptide (FGES198AGAAS)within
30min. Synthetic native and isotopically labeled nonapeptides
were stable in these digestion conditions for up to 2 h.[29]

Samples were prepared as described by Pantazides et al.,[29] with
a modification made to the immunomagnetic purification. Incuba-
tion time was reduced to 45min, which did not alter protein extrac-
tion efficiency. Briefly, immunomagnetic beads were prepared by
applying a DynaMag-15 magnet to 2ml of Dynabeads Protein G.
The supernatant was removed, and beads were resuspended in
4ml of PBST. After vortex mixing, the PBST was removed and
discarded. This wash step was repeated twice. Magnetic beads
were then resuspended in 8ml PBST and combined with 400μg
of BChE monoclonal antibody. The mixture was subjected to rota-
tion on a Dynal SampleMixer (speed 20) overnight at room temper-
ature. The following day, the supernatant was removed, and 4ml
aliquots of triethanolamine buffer were added to the magnetic
beads. The triethanolamine buffer was removed and discarded,
and this wash step was repeated once. A 4ml aliquot of 27mg
DMP in 5ml triethanolamine buffer was then added to the beads
and allowed to rotate (speed 20) on the Dynal Sample Mixer for
30min at room temperature. The supernatant was then removed,
and magnetic beads were resuspended in 4ml of TBS. After
15min of rotation (speed 20) at room temperature, TBS was re-
moved and discarded. The magnetic beads were then washed
twice in 2ml of PBST. Following two PBST washes, 1.9ml aliquots
of PBST were added to the beads. The magnetic bead suspension
was stored at 4 °C until use or up to 3months.

Following magnetic bead preparation, 125μl aliquots of serum
(either matrix blank, QC for BChE or QC for oCP-BChE) were pipet-
ted into a multiscreen HTS HV 0.45μm opaque filter plate and cen-
trifuged at 3000 g for 5min at 20 °C to remove any fibrous tissue.
After centrifugation, 75μl aliquots of filtered serum were trans-
ferred to a 96-well KingFisher deep-well plate. To wells receiving
calibrators, 75μl aliquots ofmatrix blankwere added to address po-
tential matrix effects. A plate containing BChE antibody-conjugated
magnetic beads was prepared by adding 50μl aliquots of beads
into all corresponding serum-containing wells of a 96-well King-
Fisher shallow-well plate. A ThermoScientific KingFisher Flex mag-
netic particle processor was used to transfer the BChE antibody-
conjugated magnetic beads to the wells containing filtered serum.
BChE protein was bound to antibody-conjugated magnetic beads
by shaking with an Eppendorf MixMate at 1400 rpm for 45min at
room temperature. The KingFisher was then used to transfer the
protein-bound beads through three deep-well wash plates contain-
ing 500μl PBST, and then to a 96-well KingFisher shallow-well diges-
tion plate. Each well of the digestion plate contained 10μl of
2mg/ml pepsin and 10μl of 500ng/ml isotopically labeled internal
standard solution to give a final internal standard concentration of
58.8 ng/ml for BChE* and oCP-BChE*. The digestion plate also
contained 75μl of calibrator solution (2, 4, 8, 16, 32, 63, 125 or
150ng/ml of BChE and oCP-BChE synthetic peptides) or 75μl of
0.6% formic acid for QC and matrix blank samples. The digestion
plate was maintained at 37 °C and mixed at 1000 rpm for 10 s per
min for 30min on an Eppendorf Thermomixer. Following digestion,
the KingFisher was used to remove beads from the sample. Acetoni-
trile aliquots of 285μl were added to a 0.2μm filter, Pierce 2ml pro-
tein precipitation plate. The digested samples were then manually
added to the protein precipitation plate. A vacuum manifold was
used to filter the samples through the protein precipitation plate
and into a 96-well KingFisher deep-well plate. Samples were then
dried to completeness under nitrogen pressure at 60 °C. Dried sam-
ples were resuspended in 75μl of 0.6% formic acid for MS analysis.

UHPLC-MS/MS

BChE and oCP-BChE levels were determined in human serum
using an Agilent 1290 Infinity LC system coupled with an Agilent
6490 Triple Quadrupole mass spectrometer (Agilent, Santa Clara,
CA). The mass spectrometer utilized a jet stream ionization inter-
face, with sample analysis conducted in positive ionization mode.
The instrument was tuned and calibrated bimonthly over a mass
range of m/z 50–1400, using the Agilent ESI tuning mixture (P/
NG1969). Samples (3μl) were injected onto a Waters Acquity
UPLC HSS PFP column (1.8μm, 1.0mm×50mm) (Waters, Milford,
MA). Column compartment temperature was set to 60 °C, and
autosampler temperature was 10 °C. Mobile phases consisted of
0.1% formic acid in (A) water and (B) acetonitrile. Gradient condi-
tions increased mobile phase B concentration from 2% to 60%
over 1.33min, followed by a reequilibration of the chromatograph
at 2% B for 0.66min, producing a total analysis time of 2min per
sample. Flow rate was held constant at 300μl/min. The following
parameters were used with the jet stream ionization source: dry-
ing gas temperature=225 °C; drying gas flow=11 l/min;
nebulizer = 60psi; sheath gas temperature= 350 °C; sheath gas
flow=11 l/min; capillary voltage=6000V; nozzle voltage=2000V;
iFunnel high pressure RF=210V; iFunnel low pressure
RF=120V; fragmenter voltage=250V. The mass spectrometer
was operated in dynamic multiple reaction monitoring mode at
‘unit’ resolution of 0.7 amu full width at half-maximum height,
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with a cycle time of 100ms. Detection of BChE peptides used the
following parameters: BChE quantitation ion m/z 796.3→ 691.3,
collision energy=25V, cell accelerator voltage=2.5V. BChE confirma-
tion ion m/z 796.3→ 620.3, collision energy=27V, cell accelerator
voltage=2.5 V. BChE* m/z 805.4→700.3, collision energy=25V,
cell accelerator voltage=2.5 V. Detection of oCP-BChE peptides
used the following parameters: oCP-BChE quantitation ion m/z
966.4→ 778.3, collision energy=34V, cell accelerator voltage=5V.
oCP-BChE confirmation ion m/z 966.4→673.3, collision
energy=36V, cell accelerator voltage=7V. oCP-BChE* standard m/
z 975.4→787.4, collision energy=34V, cell accelerator voltage=5V.

Data acquisition and processing

Data were acquired using MassHunter Workstation Software,
LC/MS Data Acquisition for 6400 Series Triple Quadrupole v.
B.06.00, Build 6.0.6025.3 SP3. Spectral analysis and quantitation
were carried out utilizing MassHunter Workstation Software
Quantitative Analysis v. B.06.00 SP01, build 6.0.388.1. Accuracy
was reported as percent relative error, % RE, where Ce is the exper-
imental concentration determined from the calibration curve, and
Ct is the theoretical concentration:

% RE ¼ Ce � Ct

Ct
x 100

The percentage relative standard deviation, % RSD, was calcu-
lated as a measure of assay precision, where Cavg is the average cal-
culated concentration and SD is the standard deviation.

% RSD ¼ SD

Cavg
x 100

Peak area ratios of BChE/BChE* and oCP-BChE/oCP-BChE* pep-
tides were plotted against the expected concentration to construct
calibration curves from eight BChE and oCP-BChE peptide calibra-
tors in matrix blank serum. Each calibrator was injected (n=32)
and validated over the range of 2.0–150ng/ml. QC material charac-
terization was completed over the course of 4 and a half weeks dur-
ing method validation (n= 32) and performed by five laboratory
analysts.

Safety considerations

The analysis of BChE and oCP-BChE peptides posed no greater risk
to analysts than general peptide analyses. Universal safety precau-
tions were followed for handling biological specimens such as
blood products.

Results and discussion

Detection and separation

Fragmentation of synthetic BChE and BChE* peptides resulted in
the predominant product ions m/z 691.3 and 700.3, respectively
(Fig. 1A and Supplemental Fig. 1A). Likewise, fragmentation of syn-
thetic oCP-BChE and oCP-BChE* peptides yielded the product ions
m/z 778.3 and 787.4 (Fig. 1B and Supplemental Fig. 1B). Quantitation
of BChE peptides was based on the transitionm/z 796.3→691.3 and
confirmation by transition m/z 796.3→620.3. BChE* peptides were
analyzed monitoring the transition m/z 805.4→ 700.3. For oCP-
BChE peptides, quantitation was based on the transition m/z
966.4→ 778.3. This fragment was the result of β-elimination of
oCP from Ser-198, yielding a dehydroalanine. To confirm the

presence of oCP-BChE, the transitionm/z 966.4→ 673.3 was used,
resulting from the loss of cresyl phosphate and collision induced
fragmentation to the b8 ion. oCP-BChE* peptides were measured
with transitionm/z 975.4→ 787.4. A similar fragmentation pattern
was previously reported for organophosphorus nerve agent ad-
ducts to BChE.[30] In-source fragmentation was not observed for
BChE, BChE*, oCP-BChE or oCP-BChE* peptides.

A linear gradient of increasing mobile phase B concentration
from 2% to 60% B over 1.3min was used for the reversed-phase
UHPLC separation. Under these conditions the unadducted BChE
peptide was retained for 0.66min and the oCP-BChE peptide for
0.81min. To account for matrix effects expected in clinical sample
analysis, calibrators were processed in a matrix blank serum with
no reportable amounts of unadducted BChE (back-calculated con-
centration of BChE in matrix blank serum was below the method’s
lowest reportable limit). Extracted ion chromatograms collected
for the matrix blank, lowest calibrator and highest calibrator for
each analyte are presented (Fig. 2). The peak signal intensity of
the lowest calibrator was 3 times higher than the matrix blank
for the BChE peptide and 5 times higher for the oCP-BChE
peptide.

To demonstrate the applicability of this assay for clinical sample
analysis, extracted ion chromatograms of uninhibited human se-
rum and human serum exposed to CBDP are presented in Supple-
mental Figures. The extracted ion chromatogram of unexposed
BChE is shown, and no false-positive identification of oCP-BChE is
observed (supplemental Fig. 2A). An extracted ion chromatogram
of human serum spiked with CBDP (supplemental Fig. 2B) shows
the presence of the oCP-BChE peptide.

Linearity

The peak area ratios of BChE/BChE* peptides were linearly propor-
tional to the concentration of unadducted BChE over the range of
2.0–150ng/ml with a coefficient of determination of R2 = 0.9934
and a line equation of y=0.0090x (±0.0005) + 0.0064 (±0.0047).
Likewise, the peak area ratios of oCP-BChE/oCP-BChE* peptides
were linearly proportional over the concentration range of
2.0–150ng/ml. The reportable coefficient of determination of
R2 = 0.9927 with a line equation of y=0.0407x (±0.0069)� 0.0237
(±0.0195). The reportable concentration range is consistent with
methods used in the quantitation of organophosphorus nerve
agent adducts to BChE in clinical samples and the abundance of
unadducted BChE in the general population (40–80nM in
plasma).[29–33] The Taylor calculation was used to determine the
theoretical limit of detection (LOD) for BChE at 1.19ng/ml.[34]

For oCP-BChE, the theoretical LOD was 1.89ng/ml. The lowest
calibrator for this method, 2.0 ng/ml, was the lowest reportable
limit for both analytes (see Fig. 2). This corresponded to an on-
column mass of 6 pg based on a 3μl injection volume. In 2014,
Schopfer et al. reported a LOD of 4.0 ng/ml for oCP-BChE with a
5μl injection volume.[28] Based on the on-column injection mass,
our method demonstrated a greater than threefold improvement
in sensitivity. The enhanced sensitivity could be attributed to an
efficient BChE purification technique and the use of a triple quad-
rupole mass spectrometer operated in multiple reaction monitor-
ing mode.

Recovery and matrix effects

Ideally, an isotopically labeled protein would be used to measure
losses occurring during sample preparation; however, a protein
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standard is not currently available. Calibrator and internal standard
peptides were added at the earliest possible step since anti-BChE
beads would not capture calibrators. To assess the extraction effi-
ciency of BChE and oCP-BChE peptides during sample preparation,
calibrators were added to matrix blank serum either before pepsin
digestion (‘Processed’) or immediately prior to UHPLC-MS/MS anal-
ysis (‘Unprocessed’). The ‘Processed’ samples were representative
of the sample preparation technique used for peptide calibrators
in this analysis. The average peak areas (n=4) from processed
and unprocessed samples were used to calculate recovery. As
shown in Table 1, recovery for both analytes was measured at
low, mid and high calibrator levels. The mean percentage recovery
was ≥65% for BChE and ≥70% for oCP-BChE peptides. A few poten-
tial sources of sample loss include nonspecific pepsin digestion and
peptide adsorption to plastic surfaces.[35]

Matrix effects were evaluated by comparing the average peak
areas of ‘unprocessed’ calibrators in matrix blank serum and in sol-
vent solution. Matrix effects for BChE were evaluated using the
highest calibrator (150 ng/ml) so that the contribution of endoge-
nous BChE in the matrix blank would be less than 1% of the peak
area. The ion suppression of BChE from matrix effects was

determined to be 8%. For oCP-BChE, matrix effects accounted for
an approximate 17% reduction in mean peak area.

Stability and ruggedness

The effects of storage were evaluated by measuring peak area ra-
tios of BChE/BChE* peptides and oCP-BChE/oCP-BChE* peptides
following cycles of freeze–thaws from �70 °C to 22 °C. Synthetic
BChE and oCP-BChE calibrators were subjected to 13 freeze–thaw
cycles in order to evaluate long-term storage and use. Both BChE
and oCP-BChE peptides were found to be stable ± 10% of theoret-
ical concentration. Stability of internal standards was also evaluated,
with BChE* and oCP-BChE* peptides subjected to 50 freeze–thaw
cycles. The peak area of each internal standard was measured
and found to be stable with a %RSD ≤ 10%.

To assess temperature effects on the analytical response ratio of
BChE and oCP-BChE calibrators, peptides were allowed to stand for
0, 4, 8 and 24h at 4, 22 and 37 °C prior to UHPLC-MS/MS analysis.
The average response ratios (n=4) obtained at successive time
points are presented in Fig. 3. All mean values were within ± 10%

Figure 1. Chemical structures and product ionmass spectra of the precursor ions of synthetic peptides (A) BChE ([M +H]+m/z 796.3); (B) oCP-BChE ([M+H]+

m/z 966.4). Fragmentation spectra were collected scanning themass range ofm/z 500–1000, using a collision energy of 27 V for BChE and 34 V for oCP-BChE.
The dashed lines for each structure denote the proposed sites of fragmentation. The peptide sequence shown is FGESAGAAS.
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of the initial value for up to 24h at all temperatures for BChE and
oCP-BChE; however, variability of the oCP-BChE calibrator does
increase at the 24-h mark (RSD approaching 20%), indicating that
peptides should be stored at or below �20 °C when not in use.

The effects of storage were also evaluated for QC materials.
Unexposed pooled serum (QC mid for BChE) and CBDP-inhibited
serum (QC low for oCP-BChE) were allowed to stand for 0, 4, 8, 24,
48 and 72h at 4, 22 and 37 °C prior to UHPLC-MS/MS analysis. In

Figure 2. Extracted ion chromatograms of matrix blank serum containing (A) No synthetic BChE peptide added, peak produced from minor matrix
contribution; (B) 2 ng/ml BChE (6 pg injection); (C) 150 ng/ml BChE (450 pg injection); (D) No synthetic oCP-BChE peptide added; (E) 2 ng/ml oCP-BChE
(6 pg injection); (F) 150 ng/ml oCP-BChE (450 pg injection). Detection of BChE was based on the transition m/z 796.3→ 691.3. oCP-BChE used
transition m/z 966.4→ 778.3, and quantitation was calculated from the peak area response ratio of BChE/BChE* or oCP-BChE/oCP-BChE*. The
dashed lines indicate the chromatographic peak height.

Table 1. Recovery of BChE and oCP-BChE from serum at low-, mid- and high-level calibrators added prior to pepsin digestion (‘processed’) or immedi-
ately before UHPLC-MS/MS analysis (‘unprocessed’)

Calibrator (ng/ml) Processed Unprocessed

BChE Mean area % RSD Mean area % RSD % Recoverya σb

2.0 863 (±97) 11 1178 (±93) 7.9 73 0.1

16 4871 (±526) 11 7440 (±980) 13 65 0.2

150 48 391 (±2327) 4.8 70 169 (±12 022) 17 69 0.2

oCP-BChE

2.0 440 (±27) 6.0 625 (±69) 11 70 0.1

16 3683 (±584) 16 5089 (±317) 6.2 72 0.2

150 45 424 (±3707) 8.2 58 291 (±1757) 3.0 78 0.1

a% Recovery = [(mean processed area) / (mean unprocessed area)] × 100.
bσ % Recovery = [(σun /meanun)

2 + (σproc /meanproc)
2]1/2.

Mean and standard deviation of processed and unprocessed samples are calculated from the peak area of the processed or unprocessed (n= 4 for each).
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unexposed pooled serum, BChE was found to be stable at all three
temperatures for at least 72h. The mean BChE concentration at
each time/temperature point (n=4 for each) was found to be
within two standard deviations of the BChE concentration deter-
mined during QC characterization (see Accuracy and precision).
For CBDP-inhibited serum, oCP-BChE was found to be stable at all
temperatures for at least 72 h. The mean oCP-BChE concentration
was within two standard deviations of the oCP-BChE concentration
determined during QC characterization (see Accuracy and preci-
sion) for each time/temperature point (n=4 for each). A previous
study stated the oCP-BChE adduct is unstable; however, our results
demonstrate oCP-BChE in serum is stable for at least 3 days at 4, 22
and 37 °C.[36] Differences in sample preparation and analysis tech-
niques could account for differences in adduct stability.

Ruggedness testing was conducted by evaluating changes in
the following analysis parameters: column temperature, collision
energy, slope of the LC gradient, LC flow rate and analytical column
lot (three different product lots tested). Evaluation was based on
the calculated concentration accuracy for each analyte when
ruggedness parameters were individually changed to ±10% of the
optimized value. For example, the assay’s 60 °C column tempera-
ture was also evaluated at 54 °C and 66 °C. Accuracy was found to
be within ±15% of the theoretical concentrationwhen column tem-
perature, LC gradient slope and LC flow rate were examined above
and below the method’s optimized settings. The use of LC columns
from multiple product lots showed no impact in assay accuracy.
Changes to the collision energies of each analyte did show signifi-
cant impact on method accuracy with error exceeding 20%.

Accuracy and precision

The intraday and interday accuracy and precision for the quantita-
tion of BChE and oCP-BChE peptides were determined over four
and a half weeks. Five analysts participated inmethod validation, an-
alyzing two calibration curves and corresponding QCs per day (16
different days of analysis, 32 total runs). Data collected at the begin-
ning, middle and end of method validation are shown for 2.0 ng/ml
(low-), 16 ng/ml (mid-) and 150ng/ml (high-) level calibrators. The in-
traday % Error for BChE peptides was ≤7.8% for the low-, ≤4.1% for
the mid- and ≤4.4% for the high-level calibrators. Corresponding %
RSDs were ≤14%, ≤9.8% and ≤6.9% at the low-, mid- and high-level
calibrators (Table 2). Likewise, the intraday% Error for oCP-BChE pep-
tides was ≤16%, ≤10% and ≤6.0% (Table 3). Intraday % RSD for oCP-
BChE peptides was ≤13%, ≤5.8% and ≤8.9%. Analysis of interday ac-
curacy for BChE peptides demonstrated a % Error of ≤0.9%, ≤0.5%
and ≤3.3%, with corresponding interday % RSD of 9.5%, 6.8% and
3.3%. For oCP-BChE peptides, the interday % Error was ≤8.9%,
≤5.8% and ≤3.8%, and the resultant interday % RSD was 9.9%,
5.4% and 4.9%. The method’s accuracy and precision follow the
guidelines in the FDA’s guidance for bioanalytical method validation
and thus show applicability for the analysis of clinical samples.[37]

A low-, mid- and high-level QC was used for each analyte
covering the method’s calibration range. The BChE mid-level QC
was pooled uninhibited serum. Our assay determined the mean
concentration of BChE in the mid-level QC was 36.2 (±4.80) ng/ml
with a RSD=13% (n=32). These results were in agreement with
themeasured BChE concentration fromour analysis of a commercial
convenience set and results obtained by Pantazides et al.[29] Syn-
thetic BChE peptide spikes in matrix blank serum were used for
QC samples near the upper and lower range of the calibration curve
(accuracy ≥ 96%, RSD < 15%). For oCP-BChE, the low-level QC was
made by exposing pooled human serum to CBDP. The mean con-
centration of oCP-BChE in the exposed serum sample was 12.2
(±1.83) ng/ml with a RSD=15% (n = 32). Synthetic peptide spikes
into matrix blank serum were used as mid- and high-level oCP-
BChE QCs (accuracy ≥ 92%, RSD < 15%). The precision of QC ma-
terials compared favorably with other reported assays monitoring
organophosphorus compound adduction to BChE.[29,33,38]

Application to commercial convenience set

A convenience set of commercially available individual serum sam-
ples was purchased to assess levels of unadducted BChE and oCP-
BChE, if any. The mean BChE concentration of the 96 samples ana-
lyzed was 37.7 ng/ml (±10.7) with a range of 18.8 to 67.0 ng/ml.
These results were similar to the mean BChE concentration
reported by Pantazides et al. following analysis of 192 commercially
purchased serum samples.[29] For oCP-BChE, all samples were
found to be lower than the assay’s lowest reportable limit with no
evidence of peaks detected.

Thus far, the +170 amu BChE adduct observed in this work has
only been reported following in vitro reaction of BChE with
CBDP.[24–28] This suggests that oCP-BChE can be used as a
biomarker of CBDP exposure. Previous studies have used
phosphoserine BChE as a biomarker of CBDP; however, this adduct
is not specific to CBDP exposure alone. For example, the organo-
phosphorus nerve agent tabun also adducts to BChE, and acid hy-
drolysis can yield the same phosphoserine adduct.[39] Comparison
of this method to previous reports for oCP adduct detection shows
that the current work yields a greater than threefold improvement in
sensitivity based on the on-column injection mass of the adducted

Figure 3. Stability of BChE and oCP-BChE peptide calibration standards in
0.1% formic acid buffer at 4, 22 and 37 °C. The peptides were incubated at
the desired temperature for 0, 4, 8 and 24 h. Following incubation,
peptides were added to matrix blank serum just prior to pepsin digestion.
The calculated BChE and oCP-BChE concentrations and % peptide
remaining is plotted (n= 4); error bars represent ±SD.
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peptide. This method also required 75% less sample volume than
the previously reported methods.[27,28] This is significant when sam-
ple volume is limited, such as in the analysis of pediatric samples.

Conclusions

This method was developed to address the current need for a
quantitativemethod to confirm human exposure to CBDP in clinical

samples using the biomarker oCP-BChE. The oCP adduct was not
observed in the commercial convenience set analyzed and to-date
has only been identified following the in vitro reaction of BChE with
CBDP. The immunomagnetic-UHPLC-MS/MS method provides
quantitation of both unadducted BChE and oCP-BChE over a con-
centration range of 2.0 to 150ng/ml. The sensitivity of this method
is consistent with similar methodologies used in the detection of or-
ganophosphorus nerve agent adducts in serum. The assay demon-
strated high intraday and interday accuracy and precision of

Table 2. Intraday and interday accuracy and precision for BChE calibrators in human serum

BChE Intradaya Interdayb

Day AVG (ng/ml) % Errorc % RSD AVG(ng/ml) % Errorc % RSD

2.0 ng/ml

1 1.87 �6.75 4.93 2.02 0.833 9.50

15 2.03 1.5 13.2

32 2.16 7.75 6.23

2.17d 8.61d 15.1d

16 ng/ml

1 16.7 4.06 9.77 16.1 0.417 6.76

15 15.8 �1.25 4.94

32 15.8 �1.25 8.06

15.4d �3.53d 9.58d

150 ng/ml

1 144 �4.33 1.48 145 �3.22 3.33

15 145 �3.33 6.83

32 147 �2.00 0.962

153d 1.67d 7.09d

aIntraday AVG, % Error and % RSD, n= 2 for each day.
bInterday AVG, % Error and % RSD, n= 6 for each calibrator level (average from day 1, 15 and 32).
c[(AVG calculated conc.� theoretical conc.) / theoretical conc.] × 100.
dAVG, % Error and % RSD are calculated from the complete method validation (n= 32).

Table 3. Intraday and interday accuracy and precision for oCP-BChE calibrators in human serum

oCP-BChE Intradaya Interdayb

Day AVG (ng/ml) % Errorc % RSD AVG (ng/ml) % Errorc % RSD

2.0 ng/ml

1 2.32 15.8 3.36 2.18 8.83 9.92

15 2.00 0.00 12.4

32 2.22 11.0 10.8

2.42d 21.1d 11.5d

16 ng/ml

1 14.4 �10.0 1.96 15.1 �5.73 5.44

15 15.9 �0.938 5.80

32 15.0 �6.25 3.77

14.7d �8.34d 7.67d

150 ng/ml

1 150 0.333 0.470 156 3.78 4.87

15 158 5.00 1.35

32 159 6.00 8.89

154d 2.37d 5.63d

aIntraday AVG, % Error and % RSD, n= 2 for each day.
bInterday AVG, % Error and % RSD, n= 6 for each calibrator level (average from day 1, 15 and 32).
c[(AVG calculated conc.� theoretical conc.) / theoretical conc.] × 100.
dAVG, % Error and % RSD are calculated from the complete method validation (n= 32).
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calibration standards. Analysis of pooled uninhibited serum and
CBDP-inhibited serum QC materials over four and half weeks dem-
onstrated high assay precision in accordancewith FDA guidance for
bioanalytical methods. Our results also demonstrated the oCP-BChE
adduct is stable in serum for at least 72 h at 4, 22 and 37 °C. This
work is the first quantitative high-throughput assay reported for
the measurement of oCP-BChE in human serum.
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