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ABSTRACT 
We present molecular dynamics simulation evidence for a freezing transition from liquid silicon to quasi-two- 
dimensional (quasi-2D) bilayer silicon in a slit nanopore. This new quasi-2D polymorph of silicon exhibits a 
bilayer hexagonal structure in which the covalent coordination number of every silicon atom is four. Quantum 
molecular dynamics simulations show that the stand-alone bilayer silicon (without the confinement) is still 
stable at 400 K. Electronic band-structure calculations suggest that the bilayer hexagonal silicon is a quasi-2D 
semimetal, similar to a graphene monolayer, but with an indirect zero band gap. 
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Low-dimensional silicon nanostructures are known 
to possess properties that are markedly different 
from the bulk. Silicon nanowires, for example, can 
exhibit notable quantum-size effects if the carriers are 
confined to dimensions less than the de Broglie 
wavelength [1]. To exploit this novel quantum-size 
effect, considerable attention has been devoted to 
developing and fabricating low-dimensional silicon  
nanostructures.  

Bulk silicon possesses a cubic diamond structure in 
which every Si atom has four nearest neighbors. In 
the solid state (ambient conditions) silicon is a semi- 
conductor, whereas in the liquid state silicon is a metal 
with a typical coordination number of 6–7 [2, 3]. It is 
known that silicon and ice Ih share some similarities 
in structural transitions [4]. For example, both silicon 
and ice Ih belong to the “tetrahedral network” family 

as both have the cubic diamond structure in the solid 
state. Upon melting, both silicon and ice Ih shrink in 
volume. More interestingly, when confined to a quasi- 
one-dimensional (quasi-1D) nanopore (e.g., a carbon 
nanotube) both liquid silicon and water can freeze 
into single-walled polygonal nanotubes below their 
melting points [5, 6]. The existence of single-walled 
polygonal ice nanotubes has been recently confirmed 
experimentally [7–10] and single-walled hexagonal 
silicon nanotubes containing a metal dopant have also  
been fabricated in the laboratory [11].  

This prompts a question: if the liquid silicon is 
confined to a slit nanopore can new polymorphs of 
quasi-2D silicon form on freezing, as is observed for 
liquid water [12–14]? In this article, we report molecular 
dynamics simulation evidence for the formation of a 
bilayer hexagonal silicon polymorph on freezing liquid 
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silicon in a slit nanopore. Moreover, we performed a 
quantum molecular dynamics simulation of stand- 
alone bilayer silicon at 400 K to confirm its structural 
stability. Electronic and phonon properties of the new 
quasi-2D polymorph of silicon were computed based on  
density functional theory (DFT) calculations [15–17]. 

In a previous study, we performed a classical mole- 
cular dynamics (MD) simulation of the freezing of 
liquid silicon in a nanoscale slit [18]. The simulation 
system consists of a slit nanopore with two planar 
walls which were assumed to be smooth and rigid. The 
wall–wall separation was set to accommodate just two 
layers of silicon. The Stillinger–Weber potential model 
[19] was used for the silicon and the 9–3 Lennard–Jones 
(LJ) potential for the silicon–wall interaction. Through 
the MD simulation of the freezing transition, we 
observed that the lower temperature solid phase was 
indeed a bilayer hexagonal silicon polymorph (Fig. 1). 
To show that the formation of the bilayer silicon is 
independent of the models employed for the silicon 
and slit pore, we performed two new MD simulations. 
First, we used the Tersoff potential model of silicon 
[20] and the 9–3 LJ potential for the nanopore. The 
constant lateral-pressure and temperature ensemble 
was adopted [12–15]. The lateral area of the simulation 
cell was allowed to change and the lateral pressure was 
set to be 50 MPa. The periodic boundary conditions 
were applied only in the lateral directions (x and y) 
parallel to the two walls. The width of the slit nano- 
pore was fixed at 8.08 Å. The simulation cell contained  

 
Figure 1 A quasi-2D bilayer hexagonal silicon polymorph formed 
spontaneously in a nanoscale slit at 1659 K. The Stillinger– 
Weber potential was employed for silicon 

512 Si atoms. Initially, the liquid silicon was equilibrated 
at 3018 K, followed by an instantaneous temperature 
decrease to 2137 K. A bilayer hexagonal silicon poly- 
morph was observed after a few million MD steps (each 
MD time step was 0.3 fs). This quasi-2D hexagonal 
structure typically contains a few topologic defects such 
as pentagons and heptagons, a dominant structural 
feature in bilayer amorphous ice [13, 14]. Next, we 
performed a MD simulation using a structured wall, 
that is, a monolayer carbon graphene. A total of 2 × 
384 = 768 C atoms and 308 Si atoms were included in 
the simulation cell. The Tersoff C/Si potential para- 
meters [15] were used to describe the C/Si interaction. 
The lateral dimensions of the simulation cell were fixed 
at 34.95 Å × 29.87 Å. The width of the nanopore was 
fixed at 7 Å. Liquid silicon was initially equilibrated at 
3018 K and then the temperature was instantaneously 
reduced to 1886 K. Again, the bilayer silicon formed 
spontaneously between the two structured walls. A 
snapshot of the bilayer hexagonal silicon is shown in 
Figs. 2(a) and 2(b) (top and side view, respectively), 
and snapshots of liquid silicon are shown in Figs. 2(c) 
and 2(d).  

To further confirm the stability of the bilayer hexa- 
gonal silicon polymorph, we performed a quantum 
MD simulation for a stand-alone bilayer silicon (without 
the confinement) using the CASTEP code [21]. The 
simulation cell contained 64 Si atoms. Temperature 
and pressure were constrained to be 400 K and zero, 
respectively, using the Nosé–Andersen method. For 
the quantum MD simulation, a DFT method within the 
generalized-gradient approximation with the Perdew– 
Burke–Ernzerhof (PBE) functional [22] was used 
together with the ultrasoft pseudopotential [23]. The 
kinetic energy cutoff was set to be 120 eV. The MD 
time step was 0.8 fs. A snapshot of the quantum MD 
simulation at 10 ps is shown in Fig. 3. No apparent 
structural distortion from the bilayer hexagonal 
structure was observed except for slight vibrational 
displacements of the silicon atoms from their ideal 
lattice positions. Although the bilayer hexagonal silicon 
is not the most stable thermodynamic phase at zero 
pressure and 400 K (the 3D cubic diamond phase is), 
this quantum MD simulation suggests that the bilayer 
silicon is still stable in a vacuum. Apparently, an 
appreciable free-energy barrier separates the bilayer  
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Figure 2 Top (a) and side (b) views of the bilayer hexagonal 
silicon, and top (c) and side (d) views of liquid silicon. The two 
walls are carbon graphene monolayers (gray color) 

phase from the most stable 3D diamond phase so that  
the bilayer phase is metastable at room temperature. 

Another piece of supporting evidence for the 
stability of the bilayer hexagonal structure in a vacuum 
was provided by DFT calculations of the harmonic 
vibrational frequencies of a series of finite-size bilayer 
hexagonal clusters with increasing size (see Fig. 4). To  

 
Figure 3 Top (a) and side (b) views of a snapshot of quantum 
MD simulations of bilayer hexagonal silicon at 10 ps. Blue lines 
denote the supercell. The supercell parameters are a = b = 16.60 Å, 
c = 14.7 Å, α = β = 90°, and γ = 120° 

 

Figure 4 Bilayer hexagonal clusters: (a) Si12H12, (b) Si26H18, 
(c) Si48H24, (d) Si74H30, and (e) Si84H32. Si atoms at the perimeter 
are passivated by hydrogen atoms. (f) An optimized structure of 
the core in (e) without hydrogen passivation. Green colored atoms 
in (f) indicate that the interior hexagonal bilayer cluster maintains 
the same geometric features as the 2D bilayer polymorph, even 
with the reconstruction occuring at the edge 

remove the “surface” reconstruction effect, all silicon 
atoms at the perimeter were passivated by hydrogen 
atoms. The bare silicon clusters themselves may be 
viewed as being cut out of the bilayer silicon by a 
perpendicular circular cut. As such, the coordination 
number of every Si atom is four-fold except for those 
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at the perimeter. The geometry of the clusters was first 
optimized using an all-electron DFT method with the 
gradient-correct Becke–Lee–Yang–Parr (BLYP) exch- 
ange correlation functional [24–26] and the double 
numerical basis sets and polarization function (DNP), 
implemented in the DMol3 software package [27–28]. 
Subsequent frequency calculations showed that all 
the finite-size hexagonal bilayer silicon clusters are 
local minima with no imaginary frequencies. Without 
the hydrogen passivation, the interior part of the 
hexagonal-bilayer clusters maintained the same geo- 
metric features as the 2D bilayer polymorph (see the 
green colored atoms in Fig. 4(b)), even though recon- 
struction occured at the edge of the cluster. Table 1 
shows the calculated HOMO–LUMO gaps of hexagonal 
bilayer silicon clusters with hydrogen passivation. It 
can be seen that as the size of cluster increases the 
HOMO–LUMO gap of the cluster decreases, con- 
sistent with the semimetallic behavior of the cluster  
when its size goes to infinity. 

Having demonstrated the stability of the bilayer 
hexagonal silicon polymorph, it is interesting to explore 
the electronic and phonon properties of this new 
quasi-2D polymorph of silicon. Note that the hexagonal 
structure of the bilayer silicon is very similar to that of 
a carbon graphene monolayer. The electronic properties 
of graphene monolayers have received considerable 
attention [29, 30] due to the close resemblance of their 
band spectrum to the Dirac spectrum for massless 
fermions [31–32]. The graphene form of carbon is a 
semimetal with (direct) zero band gap. Hence, it is 
interesting to investigate graphene-like silicon struc- 
tures [33–36]. To this end, we computed the band 
structures for both perfect bilayer hexagonal silicon 
and an artificial monolayer hexagonal silicon (silicon 
graphene), as shown in Figs. 5(a) and 5(b). The band 
structures were computed based on the DFT method 
with the PBE functional and the norm-conserving 
pseudopotential. The kinetic energy cutoff was set to 
be 330 eV. The Brillouin zone was sampled with (12 × 
12 × 1) k points of a Monkhorst–Pack grid [37]. For 
the bilayer silicon, the geometry was first relaxed 
until the stress tolerance criteria of 0.5 × 10–6 eV/atom 
total energy and 0.001 GPa were met. The optimized 
supercell parameters were a = b = 4.075 Å, c = 20 Å, 
α = β = 90°, and γ = 120°. For the artificial monolayer  

Table 1 Computed HOMO–LUMO gaps of the hexagonal bilayer 
clusters shown in Figs. 4(a)–4(e) 

Clusters HOMO–LUMO gap (eV) 

(a) Si12H12 2.311 

(b) Si26H18 1.981 

(c) Si48H24 1.107 

(d) Si74H30 1.02 

(e) Si84H32 0.91 
 
hexagonal silicon, geometry relaxation was not under- 
taken because the structure itself is unstable in a 
vacuum. The band structures of the monolayer 
hexagonal silicon were computed based on the same 
supercell parameters a, b, and c for the bilayer silicon. 
In addition, we computed the band structures of an 
ideally cleaved Si(1 × 1 × 1) bilayer (Fig. 5(c)). The 
unit cell of the Si(1 × 1 × 1) bilayer has four Si atoms 
as shown in Fig. 5(d). Note that the Si(1 × 1 × 1) bilayer 
also exhibits a hexagonal structure but the atomic layer  
itself is not flat.  

For the monolayer hexagonal silicon, Fig. 5(b) shows 
that the conduction band minimum (CBM) just touches 
the valence band maximum (VBM) at the zone edge 
K point and the band crossing occurs exactly at the 
Fermi level. This band structure looks exactly the 
same as that of the carbon graphene near the zone  

 
Figure 5 The computed electronic band structures of (a) the 
bilayer hexagonal silicon, (b) the (unstable) monolayer hexagonal 
silicon, and (c) an ideally cleaved Si (1 × 1 × 1) bilayer whose 
structure is shown in (d) 
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edge K point [30]. Thus, like the carbon graphene the 
(unstable) monolayer hexagonal silicon is also a semi- 
metal with (direct) zero band gap. For the Si(1 × 1 × 1) 
bilayer, the band crossing also occurs at the Fermi 
level, but slightly shifts off the zone edge K point. 
Nevertheless, the band structure also suggests that 
the Si(1 × 1 × 1) bilayer is a semimetal with (direct) zero 
band gap. In stark contrast, the band structure of the 
bilayer hexagonal silicon exhibits an indirect overlap 
between the CBM and VBM, as shown in Fig. 5(a). 
This suggests that the bilayer hexagonal silicon is a 
semimetal but with (indirect) zero band gap. To the 
best of our knowledge, a quasi-2D semimetal with 
indirect zero band gap has not previously been  
reported in the literature.  

Additional insight into the electronic properties of 
the bilayer hexagonal silicon may be gained from an 
analysis of its structure. First, the local geometry of 
the bilayer silicon is quite distorted from the local 
tetrahedral network of the bulk counterpart. Within 
one layer, the Si–Si bond length is 2.39 Å (after DFT 
optimization) whereas between two layers the Si–Si 
bond length is slightly larger (2.42 Å). Both bond 
lengths are longer than the Si–Si bond length (2.34 Å) 
in the bulk, due largely to the distorted electron 
distribution in the bilayer silicon necessary to maintain 
the planar structure. In addition, Mulliken population 
analysis further confirms that the electron densities 
of the intralayer Si–Si bonds are significantly higher 
than those of the interlayer Si–Si bonds. It is therefore 
likely that the interlayer Si–Si bonds are weaker than  
the intralayer Si–Si bonds.  

The potential energy of the bilayer hexagonal silicon 
is 0.044 eV/atom lower than that of the bilayer Si 
(1 × 1 × 1) structure but 0.91 eV/atom higher than that 
of bulk silicon. This shows that the bilayer hexagonal 
silicon with its distorted tetrahedral bonding is ener- 
getically more favorable than the bilayer Si (1 × 1 ×1)  
structure with no distorted tetrahedral bonding. 

Lastly, the phonon dispersion curves (Fig. 6(a)) of 
the bilayer hexagonal silicon were computed using 
the finite displacement method [38] as well as the 
DFT method for the band-structure calculations. Here, 
the supercell contained 38 Si atoms. For the purpose 
of comparison, we also used the same method to 
compute the phonon dispersion curves of bulk silicon. 

The standard six branch phonon dispersion curves 
were reproduced (Fig. 6(b)) in order to validate the 
theoretical method. For the bilayer hexagonal silicon, 
twelve phonon dispersion curves can be found, twice 
as many as those for the bulk counterpart. Moreover, 
at the Γ point, four high frequency modes are found 
for the bilayer silicon whereas only one is found for 
bulk silicon. Interestingly, the three phonon dispersion 
curves near the Γ point are very similar to those of 
the planar monolayer silicon reported by Ciraci and 
coworkers [34]. The fact that no imaginary frequencies 
were observed in the phonon modes confirms that 
the bilayer hexagonal silicon is a stable quasi-2D  
polymorph.  

In conclusion, we have performed MD simulations 
of liquid silicon confined to slit nanopores and demon- 
strated the formation of a new quasi-2D silicon  

 

Figure 6 Phonon dispersion curves along high symmetry directions 
for (a) the bilayer hexagonal silicon and (b) bulk silicon 
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polymorph at low temperature. This freezing transition 
is independent of the silicon potential model selected 
and the model for the nanopores. Quantum MD 
simulations of a stand-alone bilayer hexagonal silicon 
at finite temperature further confirm the stability of 
this new silicon polymorph. Electronic band-structure 
calculations suggest that the bilayer hexagonal silicon 
is a semimetal with zero band gap. Whether or not 
the bilayer hexagonal silicon can actually be synthe- 
sized is certainly an open question. In our MD 
simulations, the model carbon walls are inert. In 
reality, however, liquid silicon would react with 
graphite or carbon fibers to form SiC [39, 40]. Hence, 
it is important to search for a refractory material with 
a melting point much higher than silicon and yet being 
inert to molten silicon. Finally, we remark that our 
simulations provide additional evidence that silicon 
and ice belong to a generic “tetrahedral network” 
family, as both exhibit nearly the same isomorphic 
structures. We note also that the free-standing bilayer 
hexagonal ice has been recently observed in the  
laboratory [41]. 
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