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ORIGINAL ARTICLE

An experimental live chimeric porcine circovirus 1-2a vaccine
decreases porcine circovirus 2b viremia when administered
intramuscularly or orally in a porcine circovirus 2b and
porcine reproductive and respiratory syndrome virus
dual-challenge model
Tanja Opriessnig1, Joao C. Gomes-Neto1, Michelle Hemann1, Hui-Gang Shen1, Nathan M. Beach2,
Yaowei Huang2, Patrick G. Halbur1 and Xiang-Jin Meng2

1Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
and 2Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, College of Veterinary Medicine,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

ABSTRACT
Commercially available inactivated vaccines against porcine circovirus type 2 (PCV2) have been shown
to be effective in reducing PCV2 viremia. Live-attenuated, orally administered vaccines are widely used
in the swine industry for several pathogens because of their ease of use yet they are not currently available
for PCV2 and efficacy. The aims of this study were to determine the efficacy of a live-attenuated chimeric
PCV2 vaccine in a dual-challenge model using PCV2b and porcine reproductive and respiratory syndrome
virus (PRRSV) and to compare intramuscular (IM) and oral (PO) routes of vaccination. Eighty-three
2-week-old pigs were randomized into 12 treatment groups: four vaccinated IM, four vaccinated PO and
four non-vaccinated (control) groups. Vaccination was performed at 3 weeks of age using a PCV1-2a
live-attenuated vaccine followed by no challenge, or challenge with PCV2b, PRRSV or a combination of
PCV2b and PRRSV at 7 weeks of age. IM administration of the vaccine elicited an anti-PCV2 antibody
response between 14 and 28 days post vaccination, 21/28 of the pigs being seropositive prior to challenge.
In contrast, the anti-PCV2 antibody response in PO vaccinated pigs was delayed, only 1/27 of the pigs
being seropositive at challenge. At 21 days post challenge, PCV2 DNA loads were reduced by 80.4% in
the IM vaccinated groups and by 29.6% in the PO vaccinated groups. PCV1-2a (vaccine) viremia was not
identified in any of the pigs. Under the conditions of this study, the live attenuated PCV1-2a vaccine was
safe and provided immune protection resulting in reduction of viremia. The IM route provided the most
effective protection.

Key words Coinfection, porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, vaccine efficacy.

Introduction

Porcine circoviruses are divided into two main genotypes:
PCV1 and PCV2 (1–3). PCV1 was initially identified as
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a cell culture contaminant of the porcine kidney cell line
PK-15 (4) and is generally thought to be non-pathogenic
in pigs (5, 6). In contrast, PCV2 is pathogenic and as-
sociated with a number of diseases in pigs, including
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reproductive failure in breeding animals (7, 8) and post-
weaning clinical manifestations such as systemic disease,
respiratory disease, enteritis, and porcine dermatitis and
nephropathy syndrome (PDNS) (9, 10). PCV2 is a small,
non-enveloped, single-stranded DNA virus with a circu-
lar genome of 1767 to 1768 nt (11, 12). It belongs to
the genus Circovirus in the family Circoviridae (13). The
genome of PCV2 consists of two ORFs: ORF1 encodes
proteins associated with viral replication (Rep and Rep’)
(14), and ORF2 encodes the immunogenic capsid protein
(15). A third ORF, ORF3, is reportedly involved in apop-
tosis of lymphocytic and hepatic cells (16), although its
role in PCV2 pathogenesis remains unclear (17). Several
PCV2 subtypes have been described, including PCV2a and
PCV2b which are prevalent worldwide (18).

Coinfection of pigs with PCV2 and PPV (19–21), PCV2
and Mycoplasma hyopneumoniae (22), and PCV2 and
PRRSV (23–25) have been shown to increase PCV2 repli-
cation and the severity of clinical disease. Among the
known co-infecting pathogens, PRRSV is the most com-
monly identified virus in field cases of PCVAD (26, 27).
Accumulating evidence suggests that co-infection of pigs
with two or more pathogens substantially increases the
severity of disease in pig production systems (28, 29).

Prior to commercial PCV2 vaccines becoming widely
available, PCVAD caused significant economic losses to
swine producers (29); however, with the approval and
extensive use of several inactivated or subunit PCV2 vac-
cines, these losses have been minimized in many pig pro-
duction systems across the world (30–34). The currently
available commercial PCV2 vaccines include two subunit
vaccines based on the PCV2 capsid protein expressed in
the baculovirus system and an inactivated vaccine based
on a PCV2 virus (9). All of these vaccines are based on the
PCV2a subtype, which several studies have shown to be
cross-protective against PCV2b challenge (35, 36).

An experimental live chimeric vaccine was generated
with the idea that it might provide more broad cross pro-
tection and better immunity, and could be adapted for
use by the oral route. The experimental chimeric PCV2
vaccine was developed by replacing the ORF2 of PCV1
with the ORF2 of PCV2a in the genomic backbone of the
non-pathogenic PCV1 (37). An inactivated version of the
chimeric PCV2 vaccine, which was known under the trade
name Suvaxyn PCV2 (Fort Dodge Animal Health, Over-
land Park, KS, USA) and developed and licensed for pigs 3
weeks of age and older, became commercially available in
2006 (9). It was later voluntarily removed from the market
but was then reintroduced in August 2011 in a reformu-
lated version under a new name: Fostera PCV (Pfizer Ani-
mal Health, Madison, NJ, USA). Previous studies using the
experimental live attenuated PCV2 vaccine demonstrated
no evidence of reversion of the live attenuated PCV1-2 to

its parental wild-type viruses (PCV1 or PCV2) after 11
serial passages in PK-15 cells and the PCV1-2 was found
to be genetically stable during three serial passages in pigs
(38). In addition, the experimental live chimeric PCV2
vaccine was shown to be attenuated in pigs and to induce
strong protective immunity in the PCV2a challenge model
(39) and in a triple challenge model (40).

Recently, the vaccine efficacy of IM administration of
the live-attenuated chimeric PCV2 experimental vaccine
based on subtype PCV2a was tested in a triple challenge
model using PCV2b, PPV and PRRSV (41). In conven-
tional pigs with variable amounts of anti-PCV2 antibodies
and degrees of PCV2 viremia at the time of vaccination,
the live-attenuated chimeric PCV2 vaccine was found to
reduce the amount of PCV2 DNA in serum compared to
non-vaccinated challenged pigs (41). In addition to the
chimeric PCV2 vaccine based on PCV2a, a novel chimeric
PCV2 virus with the PCV2b capsid gene cloned into the
backbone of PCV1 was recently described (42). In a single
challenge model in SPF pigs using a PCV2a or PCV2b chal-
lenge, IM administered attenuated live chimeric PCV2b
vaccine was found to decrease lymphoid lesions and to
prevent detectable PCV2 viremia (42). The efficacy of the
live-attenuated chimeric PCV2b vaccine administered by
combined IM and intranasal routes was also evaluated in
a PCV2b-PRRSV-PPV triple challenge model and found
to induce protective immunity in SPF pigs (40).

The potential advantages of using a live-attenuated vac-
cine include an overall better immune response due to ac-
tivation of cellular immunity in addition to humoral im-
munity. Moreover, PO administration of live-attenuated
vaccines could potentially result in activation of the mu-
cosal immune system, which is important in first de-
fense against pathogens transmitted predominately via the
fecal-oral route such as PCV2. In addition, administration
through drinking water reduces the risk (needle breakage,
missed pigs) and cost (labor, needles) associated with IM
administration. The primary objective of this study was
to compare the efficacy of IM and PO routes of vaccina-
tion using a live-attenuated chimeric PCV2 vaccine in a
PCV2b-PRRSV dual-challenge model.

MATERIALS AND METHODS

Animals and housing

Eighty-three, 14-day-old, colostrum-fed, crossbred SPF
pigs were obtained from a herd confirmed to be free of
PCV2, PRRSV, and SIV by routine serological testing. The
pigs were weaned and transported to the Livestock Infec-
tious Disease Isolation Facility at Iowa State University,
Ames, Iowa, USA. On the day of arrival, the pigs were
randomly assigned to one of 12 groups (as described in
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Table 1. Experimental design

Group designation n Vaccination route Challenge

PCV2 PRRSV

Negative controls 7 - - -
PCV2-I 7 - Yes -
PRRSV-I 7 - - Yes
PCV2-PRRSV-CoI 7 - Yes Yes
IM-non-challenged 7 IM - -
IM-PCV2-I 7 IM Yes -
IM-PRRSV-I 7 IM - Yes
IM-PCV2-PRRSV-CoI 7 IM Yes Yes
PO-non-challenged 6 PO - -
PO-PCV2-I 7 PO Yes -
PO-PRRSV-I 7 PO - Yes
PO-PCV2-PRRSV-CoI 7 PO Yes Yes

Vaccination with the experimental live-attenuated chimeric PCV2
vaccine was performed on dpc −28 and the dual-challenge using
PCV2b and PRRSV on dpc 0.
CoI, co-inoculated; I, inoculated.

Table 1) and eight rooms. Non-vaccinated (four rooms)
and vaccinated groups (four rooms) were separated ac-
cording to treatment group (PRRSV, PCV2, PCV2 and
PRRSV, non-challenged pigs). Within each room, the pigs
were contained in one (non-vaccinated groups) or two
(vaccinated groups) raised wire decks equipped with one
nipple drinker and one self-feeder. In the case of the vacci-
nated groups, the pigs were separated into pens by vaccine
administration route, the pens being located on different
sides of the room. All staff entering pens were required
to change their outerwear between pens. All groups were
fed ad libitum with a balanced, pelleted feed ration free
of animal proteins (excluding whey) and antibiotics (Na-
ture’s Made, Heartland Co-op, West des Moines, IA, USA).

Experimental design

The experimental protocol was approved by the Iowa State
University Institutional Animal Care and Use Committee
(Institutional Animal Care and Use Committee number
8-08-6618-S). The experimental design is summarized in
Table 1. Single infection groups were included as controls
to better assess the consequences of dual-infection and
the vaccine type used. Prior to starting the animal experi-
ments, all pigs were confirmed to be PCV2-seronegative by
PCV2 ELISA (43) and to be PRRSV-seronegative by a com-
mercially available PRRSV ELISA (HerdChek PRRS virus
antibody test kit 2XR, IDEXX Laboratories, Westbrook,
MA, USA). Twenty-eight days before challenge (−28 dpc),
pigs in the vaccinated groups received a PCV1-2a live-
attenuated vaccine PO (n = 27) or IM (n = 28). A portion

of the vaccinated and non-vaccinated pigs were then chal-
lenged with wildtype PCV2b, PRRSV, or both PCV2b and
PRRSV (Table 1) on 0 dpc. Necropsy was conducted at
21 dpc. Between −28 dpc and 21 dpc, blood was collected
from all pigs on a weekly basis in 8.5 mL serum separator
tubes (Fisher Scientific, Austin, TX, USA). The blood was
centrifuged at 2000 g for 10 min at 4◦C and serum stored
at −80◦C until testing. Serum samples were tested for
amounts of anti-PCV2-antibody, anti-PRRSV- antibody,
PCV1-2a DNA, PCV2 DNA, and PRRSV RNA. Tissues
collected during necropsy were analyzed by IHC for the
presence of PCV2 antigen.

Clinical observation and average daily
weight gain

All pigs were weighed on the day of arrival, vaccination and
challenge and at necropsy. The average daily weight gain
was calculated before (−28 to 0 dpc), after challenge (0 to
21 dpc), and for the entire study period (−28 to 21 dpc).
In addition, all animals were examined daily for signs of
illness such as: lethargy, respiratory signs, inappetance and
lameness.

Vaccination

The pigs were vaccinated at −28 dpc with 2 mL of an
experimental live-attenuated chimeric PCV2 vaccine with
an ORF2 based on the PCV2a subtype (PCV1-2a) as pre-
viously described (37, 39) at a titer of 1.6 × 103 TCID50

per mL. This is the same titer as was used for the inac-
tivated version of the chimeric PCV2 vaccine (Suvaxyn
PCV, Fort Dodge Animal Health). For the IM route of
vaccination, 2 mL of the experimental PCV1-2a vac-
cine was injected into the right side of the neck using a
0.7 mm × 25.4 mm needle and a 3 mL syringe. For the PO
route of vaccination, each pig was held in an upright posi-
tion and the experimental vaccine administered by slowly
dripping 2 mL into their mouths using a 3 mL syringe.
The volume of vaccine dose for both IM and PO routes
(2 mL) was chosen on the basis of what is routinely used
and convenient for vaccinating pigs in the field.

Porcine circovirus type 2b challenge

The PCV2b isolate NC-16845 was propagated on PK-15
cells to produce a virus stock at an infectious dose of
2.5 × 103.0 TCID50 per mL, which was used to challenge
the pigs. At dpc 0, each pig in the PCV2-challenged groups
(Table 1) received 1 mL of the virus inoculum IM into the
right neck area and 3 mL (1.5 mL per nostril) intranasally
by holding the pig in the upright position and adminis-
tering the inoculum by slowly dripping 1.5 mL into each
nostril using a 3 mL syringe.
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Porcine reproductive and respiratory
syndrome virus challenge

Porcine reproductive and respiratory syndrome virus iso-
late ATCC VR2385 (44, 45) was propagated on MARC-
145 cells to produce an infectious stock with a titer of
1 × 105.0 TCID50 /mL. At dpc 0, each pig in the PRRSV-
challenged groups (Table 1) received 2.5 mL of the PRRSV
challenge virus inoculum intranasally in a similar fashion
to that described for PCV2 inoculation.

Serology

All serum samples from all groups were tested for anti-
PCV2-antibodies using the SERELISA PCV2 Ab Mono
Blocking kit (Synbiotics Europe, Lyon, France) accord-
ing to the manufacturers’ instructions. The results were
expressed as a SNc ratio, samples being considered neg-
ative if the SNc ratio was > 0.50 and positive if it was
≤ 0.50. Serum samples collected at −28, 0 and 21 dpc
were tested for the presence of anti-PRRSV antibodies
by ELISA (HerdChek PRRS virus antibody test kit 2XR,
IDEXX Laboratories).

RNA and DNA extraction

Total nucleic acids were extracted from serum samples
using the MagMax Viral RNA and DNA Isolation Kit (Ap-
plied Biosystems, Life Technologies, Carlsbad, CA, USA)
and an automated DNA/RNA extraction system (Thermo
Scientific Kingfisher Flex, Thermo Fisher Scientific,
Pittsburgh, PA, USA) according to the manufacturers’ in-
structions. Samples were extracted and run in single well
qPCR reactions due to the large sample numbers, high cost
of testing, and previous work by the author’s group show-
ing that triplicate wells give almost identical results (46).

Detection of porcine circovirus type 2 and
porcine circovirus type 1-2 DNA by
quantitative real-time polymerase chain
reaction

Serum samples collected at −7, −14, −21, 0, 7, 14, and
21 dpc were tested for the presence of PCV1-2 DNA and
samples collected at 0, 7, 14, and 21 dpc were tested for
the presence of PCV2 DNA by quantitative real-time PCR
assays using primer-probe combinations as described pre-
viously (46) with the following modifications: a commer-
cially available master mix (TaqMan Fast Universal PCR
Master Mix, Applied Biosystems) was used, the reaction
volume was 25 μL, only one aliquot was tested for each
sample and the thermal cycler conditions were 95◦C for
2 min, followed by 40 cycles of 95◦C for 10 s and 60◦C
for 1 min. Samples were considered negative when no sig-
nal was observed within the 40 amplification cycles. Five

serial dilutions of a PCV2 genomic DNA clone
(105 to 109 copies/mL) were used to generate a standard
curve with a correlation coefficient of > 0.99 (46).

Detection of porcine reproductive and
respiratory syndrome virus RNA by
quantitative reverse transcriptase real-time
polymerase chain reaction

Serum samples collected at 7, 14 and 21 dpc were tested
for the presence and amount of PRRSV RNA as described
previously (41). Samples were considered negative when
no signal was observed within the 40 amplification cycles.

Necropsy

All pigs were humanely euthanized by intravenous pen-
tobarbital sodium overdose (Fatal-Plus, Vortech Pharma-
ceuticals, Dearborn, MI, USA) and necropsied at 21 dpc.
The extent of macroscopic lung lesions (ranging from 0
to 100%) was estimated and scored as described previ-
ously (44). The sizes of superficial inguinal lymph nodes
were compared among groups as described previously
(47). Sections of lymph nodes (superficial inguinal, exter-
nal iliac, mediastinal, tracheobronchial, and mesenteric),
tonsil, heart, thymus, kidney, colon, spleen, liver, small
(ileum) and large intestine (spiral colon) were collected
at necropsy, fixed in 10% neutral-buffered formalin, and
routinely processed for histological examination.

Histopathology

Microscopic lesions were evaluated by two veterinary
pathologists (TO, PGH) who were blinded to the treat-
ment groups. Lung sections were scored for the presence
and severity of interstitial pneumonia, ranging from 0
(normal) to 6 (severe diffuse) (44). Sections of heart, liver,
kidney, ileum, colon and thymus were evaluated for the
presence of granulomatous inflammation and scored from
0 (none) to 3 (severe). Lymph nodes, spleen, and tonsil
were evaluated based on LD and HR of follicles, ranging
from 0 (normal) to 3 (severe) (22).

Immunohistochemistry

Immunohistochemistry for detection of PCV2-specific
antigen was performed on formalin-fixed and paraffin-
embedded sections of lymph nodes (superficial inguinal,
external iliac, mediastinal, tracheobronchial, and mesen-
teric), tonsil, and spleen using a rabbit PCV2 polyclonal
antiserum as described previously (48). PCV2 antigen
scoring was done by a veterinary pathologist (TO) who was
blinded to the animal group designations. Scores ranged
from 0 (no signal) to 3 (more than 50% of lymphoid fol-
licles contained cells with PCV2 antigen staining) (22).
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Overall lymphoid lesions score

The overall lymphoid lesion score was calculated as previ-
ously described (22). In brief, a combined scoring system
for each lymphoid tissue that ranged from 0 to 9 (lymphoid
depletion score 0—3; granulomatous inflammation score
0—3; PCV2 IHC score 0—3) was used. The scores (lesions
and PCV2-IHC) of the seven lymphoid tissues ([lymph
node pool] × 5, spleen, and tonsil) were added together
and divided by 7. The lymph nodes examined and scored
consisted of one section each of tracheobronchial, super-
ficial inguinal, external iliac, mediastinal, and mesenteric
lymph nodes.

Statistical analysis

For data analysis, JMP software version 8.0.1 (SAS Insti-
tute, Cary, NC, USA) was used. Summary statistics were
calculated for all the groups to assess the overall quality
of the data set including normality. Statistical analysis of
the data was performed by one-way ANOVA for continu-
ous data (log10 transformed PCR data, ELISA data, aver-
age daily weight gain and macroscopic lung scores). A P-
value of < 0.05 was set as the statistically significant level.
Pairwise tests using Tukey’s adjustment were subsequently
performed to determine which differences among groups
were statistically significant. Real-time PCR results (copies
per mL of serum) were log10 transformed prior to statisti-
cal analysis. Non-repeated nominal data (histopathology
scores, IHC scores, and lymph nodes size) were assessed
using a non-parametric Kruskal-Wallis one-way ANOVA,
and if there was a significant difference, pairwise Wilcoxon
tests were used to evaluate differences among groups. Dif-
ferences in prevalence were determined by using χ2 tests.
Percent reduction for amount of PCV2 DNA was deter-
mined as follows: 100 − ([100 × mean log10 genomic
copies/mL in the vaccinated group] ÷ (mean log10 ge-
nomic copies/mL in positive control animals]).

RESULTS

Clinical observation and average daily
weight gain

No signs of illness were noted in any animals throughout
the course of the study. There were no significant (P >

0.05) differences in body weight among the treatment
groups at −28, 0 or 21 dpc. Mean group average daily
weight gain from 0 to 21 dpc is summarized in Table 2.
Vaccination did not impact the average daily weight gain
from −28 to 0 dpc as there were no statistically signif-
icant differences between non-vaccinated pigs (n = 28;
14.4 ± 0.9 kg), pigs vaccinated PO (n = 27; 14.9 ± 0.7
kg), or pigs vaccinated intramuscularly (n = 28; 15.1 ±

0.7 kg). In addition, there were no significant differences
in average daily weight gain in either of the two time
frames from 0 to 21 dpc and from −28 to 21 dpc (data not
shown).

Anti- porcine circovirus type 2 antibody
concentrations

The antibody responses to PCV2 (prevalence and mean
group SNc ratios) are summarized in Table 3. All non-
vaccinated animals (negative controls, PCV2-I, PRRSV-I,
PCV2-PRRSV-CoI) remained seronegative for PCV2 un-
til 7 dpc. The groups not challenged with PCV2 (nega-
tive controls, PRRSV-I) remained seronegative through-
out the study. After intramuscular vaccination, anti-PCV2
antibody was first detected at 2 weeks post vaccination
(−14 dpc) at which time 2/28 of the pigs had serocon-
verted. By −7 dpc, 15/28 of the pigs were PCV2 seroposi-
tive, and by 0 dpc 21/28 of the pigs were seropositive. After
PO vaccination, anti-PCV2 antibodies were first detected
at 4 weeks post vaccination (0 dpc) in 1/27 of the pigs;
non-PCV2 inoculated groups (PO-non-challenged, PO-
PRRSV-I) had 5/13, 9/13, and 8/13 seropositive pigs at 7,
14, and 21 dpc, respectively (Table 3). From -14 dpc until
the day of challenge, the mean group ELISA SNc ratios
in all IM vaccinated groups were significantly (P < 0.05)
lower than those of non-vaccinated pigs or pigs vaccinated
PO. All pigs vaccinated IM continued to have the lowest
mean ELISA SNc ratios after challenge. All groups that
were vaccinated PO had significantly (P < 0.05) lower
mean group SNc ratios than those of non-vaccinated pigs
at −14 dpc.

Porcine circovirus type 1-2 viremia

The experimental PCV1-2 vaccine DNA was detected in
serum samples from two, three, and two vaccinated pigs
at −21, −14, −7 dpc, respectively which corresponds to
7, 14 and 21 days post vaccination. Among the PCV1-2
DNA positive pigs, PCV1-2 DNA was only observed at
one time point, indicating that vaccine-induced viremia
was of short duration. The distribution of PCV1-2 DNA
positive pigs across groups was as follows: 2/5 IM-non-
challenge, 1/5 IM-PCV2-I, 1/5 IM-PCV2-PRRSV-CoI and
1/5 PO-PRRSV-I. PCV1-2 DNA was not detected in serum
samples from any of the pigs at 0, 7, 14, and 21 dpc (data
not shown).

Prevalence and amount of porcine circovirus
type 2 DNA in serum

Porcine circovirus type 2 DNA was not detected in
any serum samples collected at 0 dpc or in any of
non-PCV2 infected groups (negative controls, PRRSV-
I, IM-non-challenged, IM-PRRSV-I, PO-non-challenged,
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Table 2. Group mean values for average daily weight gain from 0 to 21 dpc, macroscopic lung lesions (score range: 0–100%), amount of PCV2

antigen in tissues as determined by immunohistochemistry (score range: 0–3), and the overall lymphoid lesion score (score range: 0–9)

Group Average daily Gross lung PCV2 antigen Overall
designation weight gain (kg) lesion scores in tissues lymphoid lesions

Negative controls (n = 7) 14.9 ± 0.9 0.0 ± 0.0A 0.0 ± 0.0 0.1 ± 0.1A

PCV2-I (n = 7) 15.1 ± 1.0 0.0 ± 0.0A 1.3 ± 0.6 2.1 ± 0.7B,C

PRRSV-I (n = 7) 13.3 ± 1.0 10.0 ± 2.4A,B 0.0 ± 0.0 0.4 ± 0.2A

PCV2-PRRSV-CoI (n = 7) 11.8 ± 0.7 20.3 ± 6.8B 1.7 ± 0.9 3.0 ± 0.9B,C

IM-non-challenged (n = 7) 15.2 ± 1.0 0.0 ± 0.0A 0.0 ± 0.0 0.1 ± 0.1A

IM-PCV2-I (n = 7) 14.6 ± 0.9 3.1 ± 2.5A 0.4 ± 0.4 0.8 ± 0.4A,C

IM-PRRSV-I (n = 7) 14.3 ± 1.5 10.3 ± 3.8A,B 0.0 ± 0.0 0.6 ± 0.5A

IM-PCV2-PRRSV-CoI (n = 7) 15.1 ± 1.6 0.3 ± 0.3A 0.6 ± 0.2 0.9 ± 0.4B,C

PO-non-challenged (n = 6) 16.1 ± 0.8 0.0 ± 0.0A 0.0 ± 0.0 0.0 ± 0.0A

PO-PCV2-I (n = 7) 15.2 ± 1.4 0.9 ± 0.9A 1.3 ± 0.5 3.1 ± 0.8B

PO-PRRSV-I (n = 7) 15.1 ± 1.2 0.3 ± 0.3A 0.0 ± 0.0 0.5 ± 0.3A

PO-PCV2-PRRSV-CoI (n = 7) 13.5 ± 1.0 5.0 ± 3.6A 0.7 ± 0.6 0.9 ± 0.5B,C

Different superscripts within a column (A, B, C) indicate significant (P < 0.05) differences in group means.

PO-PRRSV-I) at 7, 14 and 21 dpc (data not shown).
The prevalence of PCV2 DNA positive pigs at 7, 14 and
21 dpc and the group means are summarized in Table
4. In non-vaccinated pigs (PCV2-I, PCV2-PRRSV-CoI),
12/14, 14/14, and 14/14 of the pigs were viremic at 7, 14,
and 21 dpc, respectively. In pigs vaccinated IM, 3/14 pigs
were viremic on 7, 14, and 21 dpc. In pigs vaccinated
PO, 10/14, 11/14, and 10/14 of the pigs were viremic at
7, 14, and 21 dpc, respectively. Compared to the non-
vaccinated groups, the PCV2 DNA load in the serum was
reduced in the IM vaccinated groups by 79.2% (7 dpc),
84.6% (14 dpc) and 80.4% (21 dpc). For PO vaccinated
groups, the PCV2 DNA load in the serum compared to
the non-vaccinated pigs was reduced by 24.6% (7 dpc),
20.8% (14 dpc) and 29.6% (21 dpc), respectively.

Anti- porcine reproductive and respiratory
syndrome virus antibody response

All pigs were negative for anti-PRRSV IgG at −28 and
0 dpc and non-PRRSV challenged pigs remained seroneg-
ative for PRRSV until 21 dpc. All pigs challenged with
PRRSV had seroconverted by 21 dpc, there being no dif-
ferences among groups in mean group S/P ratios.

Prevalence and amount of porcine
reproductive and respiratory syndrome virus
RNA in serum

Porcine reproductive and respiratory syndrome virus RNA
was detected only in the groups inoculated with PRRSV
and 100% (42/42) of the PRRSV inoculated animals were
positive for PRRSV RNA at 7, 14, and 21 dpc. The group
log10 PRRSV RNA means were not significantly different
among the PRRSV-inoculated groups (data not shown).

Gross lesions

Macroscopic lesions were characterized by lungs that failed
to collapse, were a mottled tan color, and had variable
amounts of cranioventral tan consolidation (particularly
in pigs infected with PRRSV). The group mean gross le-
sion scores are summarized in Table 2. Interestingly, the
IM-PCV2-PRRSV-CoI group had a lower mean group
lung lesion score than the IM-PCV2-I and IM-PRRSV-
I groups; however, this was not statistically significant.
Lymph node sizes ranged from normal to double in size
without differences among groups.

Microscopic lesions and porcine circovirus
type 2 antigen in tissues

Microscopic lung lesions were characterized by mild-
to-moderate, focal-to-multifocal interstitial pneumonia
characterized by type 2 pneumocyte hypertrophy and
hyperplasia and increased numbers of lymphocytes and
macrophages in the alveolar septa. In general, the lesions
appeared to be in the resolving stages. Lymphoid lesions
were characterized by mild-to-severe lymphoid depletion
of follicles and histiocytic replacement of primary or sec-
ondary follicular nodes in lymph nodes, tonsil, and spleen.
PCV2 antigen was not detected in any of the non-PCV2
challenged pigs. The prevalence of PCV2 IHC positive an-
imals was as follows: PCV2-I, 3/7; PRRSV-PCV2-CoI, 5/7;
IM-PCV2-I, 1/7; IM-PCV2-PRRSV-CoI, 4/7; PO-PCV2-
I, 5/7; and PO-PCV2-PRRSV-CoI, 1/7. Mean group PCV2
IHC scores are summarized in Table 2. In general, PCV2-
associated lesions were mild (overall lymphoid score range
0 to 3) in IM-PCV2-I and the IM-PCV2-PRRSV-CoI
groups, mild-to-moderate (overall lymphoid score range
0 to 6) in PO-PCV2-I and PO-PCV2-PRRSV-CoI and

868 c© 2011 The Societies and Blackwell Publishing Asia Pty Ltd



Efficacy of a live chimeric PCV2 vaccine

Ta
b

le
3.

Pr
ev

al
en

ce
an

d
m

ea
n

SN
c

ra
tio

±
SE

in
ea

ch
gr

ou
p

of
pi

gs
on

di
ff

er
en

t
dp

c.

G
ro

up
−2

8
dp

c
−2

1
dp

c
−1

4
dp

c
−7

dp
c

0
dp

c
7

dp
c

14
dp

c
21

dp
c

N
eg

at
iv

e
co

nt
ro

ls
0/

7
(0

.7
5

±
0.

01
)

0/
7

(1
.1

0
±

0.
03

)
0/

7
(1

.0
2

±
0.

05
)

0/
7

(0
.8

7
±

0.
02

)
0/

7
(0

.8
0

±
0.

05
)

0/
7

(0
.8

0
±

0.
03

)
0/

7
(0

.7
6

±
0.

02
)

0/
7

(0
.7

1
±

0.
02

)

PC
V

2-
I

0/
7

(0
.7

7
±

0.
01

)
0/

7
(1

.1
2

±
0.

02
)

0/
7

(1
.0

3
±

0.
04

)
0/

7
(0

.8
9

±
0.

02
)

0/
7

(0
.8

6
±

0.
02

)
0/

7
(0

.8
2

±
0.

02
)

6/
7

(0
.3

0
±

0.
07

)
7/

7
(0

.2
6

±
0.

05
)

PR
RS

V-
I

0/
7

(0
.8

5
±

0.
05

)
0/

7
(1

.1
5

±
0.

02
)

0/
7

(1
.0

0
±

0.
05

)
0/

7
(0

.8
4

±
0.

03
)

0/
7

(0
.8

3
±

0.
04

)
0/

7
(0

.8
0

±
0.

02
)

0/
7

(0
.7

3
±

0.
02

)
0/

7
(0

.7
9

±
0.

02
)

PC
V

2-
PR

RS
V-

C
oI

0/
7

(0
.7

9
±

0.
01

)
0/

7
(1

.1
2

±
0.

03
)

0/
7

(1
.0

6
±

0.
04

)
0/

7
(0

.8
9

±
0.

02
)

0/
7

(0
.8

3
±

0.
03

)
0/

7
(0

.8
1

±
0.

04
)

6/
7

(0
.2

6
±

0.
07

)
7/

7
(0

.2
3

±
0.

03
)

IM
-n

on
-c

ha
lle

ng
ed

0/
7

(0
.7

9
±

0.
01

)
0/

7
(1

.1
2

±
0.

03
)

0/
7

(0
.8

5
±

0.
03

)
4/

7
(0

.5
4

±
0.

05
)

7/
7

(0
.2

9
±

0.
02

)
7/

7
(0

.2
6

±
0.

06
)

7/
7

(0
.1

7
±

0.
03

)
7/

7
(0

.0
8

±
0.

03
)

IM
-P

C
V

2-
I

0/
7

(0
.7

6
±

0.
03

)
0/

7
(1

.1
1

±
0.

04
)

0/
7

(0
.8

9
±

0.
03

)
3/

7
(0

.6
2

±
0.

10
)

4/
7

(0
.4

8
±

0.
10

)
6/

7
(0

.3
2

±
0.

06
)

6/
7

(0
.1

7
±

0.
03

)
7/

7
(0

.0
8

±
0.

03
)

IM
-P

RR
SV

-I
0/

7
(0

.7
8

±
0.

02
)

0/
7

(1
.1

5
±

0.
04

)
2/

7
(0

.7
1

±
0.

10
)

5/
7

(0
.3

8
±

0.
08

)
6/

7
(0

.3
9

±
0.

10
)

7/
7

(0
.2

0
±

0.
05

)
7/

7
(0

.1
1

±
0.

03
)

7/
7

(0
.0

8
±

0.
06

)
IM

-P
C

V
2-

PR
RS

V-
C

oI
0/

7
(0

.7
9

±
0.

02
)

0/
7

(1
.1

4
±

0.
03

)
0/

7
(0

.8
1

±
0.

04
)

3/
7

(0
.5

7
±

0.
09

)
4/

7
(0

.4
9

±
0.

10
)

7/
7

(0
.2

0
±

0.
02

)
7/

7
(0

.0
7

±
0.

02
)

7/
7

(0
.0

4
±

0.
02

)
PO

-n
on

-c
ha

lle
ng

ed
0/

6
(0

.8
4

±
0.

02
)

0/
6

(1
.1

7
±

0.
03

)
0/

6
(0

.9
2

±
0.

02
)

0/
6

(0
.8

0
±

0.
02

)
1/

6
(0

.6
9

±
0.

07
)

2/
6

(0
.6

1
±

0.
07

)
4/

6
(0

.4
1

±
0.

08
)

4/
6

(0
.3

7
±

0.
09

)
PO

-P
C

V
2-

I
0/

7
(0

.8
2

±
0.

02
)

0/
7

(1
.1

6
±

0.
03

)
0/

7
(0

.8
8

±
0.

01
)

0/
7

(0
.8

3
±

0.
01

)
0/

7
(0

.8
9

±
0.

03
)

1/
7

(0
.7

3
±

0.
04

)
5/

7
(0

.4
1

±
0.

07
)

5/
7

(0
.3

7
±

0.
08

)
PO

-P
RR

SV
-I

0/
7

(0
.8

1
±

0.
02

)
0/

7
(1

.1
6

±
0.

02
)

0/
7

(0
.9

2
±

0.
02

)
0/

7
(0

.7
9

±
0.

04
)

0/
7

(0
.7

6
±

0.
04

)
3/

7
(0

.5
7

±
0.

06
)

5/
7

(0
.4

2
±

0.
07

)
4/

7
(0

.4
4

±
0.

11
)

PO
-P

C
V

2-
PR

RS
V-

C
oI

0/
7

(0
.7

9
±

0.
03

)
0/

7
(1

.1
1

±
0.

05
)

0/
7

(0
.9

4
±

0.
02

)
0/

7
(0

.8
4

±
0.

02
)

0/
7

(0
.7

8
±

0.
04

)
1/

7
(0

.6
3

±
0.

06
)

6/
7

(0
.3

5
±

0.
06

)
5/

7
(0

.2
3

±
0.

07
)

G
ro

up
s

th
at

co
nt

ai
n

se
ro

po
si

tiv
e

pi
gs

ar
e

sh
ad

ed
in

gr
ey

.
D

at
a

pr
es

en
te

d
as

nu
m

be
r

of
po

si
tiv

e
pi

gs
/t

ot
al

nu
m

be
r

of
pi

gs
pe

r
gr

ou
p

(m
ea

n
SN

c
ra

tio
±

SE
).

PCV2-I groups and mild-to-severe (overall lymphoid
score range 0–8/) in the PCV2-PRRSV-CoI group. The
mean group overall lymphoid scores are summarized in
Table 2. Interestingly, the PO-PCV2-I group had a higher
overall lymphoid score and a higher mean PCV2 IHC score
compared to PO-PCV2-PRRSV-CoI group; however, this
was not statistically significant.

DISCUSSION

An inactivated chimeric PCV2 vaccine (37) was one of the
first products licensed for use in growing pigs (Suvaxyn
PCV2, Pfizer Animal Health). All of the available com-
mercial PCV2 vaccines to date are inactivated or subunit
products and require one or two doses administered IM.
While commercially available vaccines have been proven
to be efficacious (31–34), the current products have some
disadvantages, including the cost of the products and the
labor required for administration. There is also increasing
concern that currently available PCV2 vaccines may be be-
coming less effective over time in some herds. The primary
objective of this study was to compare the efficacy of IM
and PO routes of vaccination using an experimental live-
attenuated chimeric PCV2 vaccine in a PCV2b-PRRSV
dual-challenge model.

Because concurrent infection of pigs with PCV2 and
PRRSV is common in swine herds (26, 49), it was im-
portant to evaluate the efficacy of the live-attenuated
chimeric PCV2 vaccine in a dual-challenge model. Pre-
viously, an experimental live attenuated chimeric PCV2
vaccine based on subtype PCV2a and administered IM
was tested in a triple challenge model utilizing PCV2b,
PRRSV and PPV and compared to other commercially
available inactivated or subunit vaccines (41). All of the
PCV2 vaccines used in that study were effective at reducing
PCV2 viremia during the growing period and after triple
challenge with PCV2-PRRSV-PPV (41). However, in con-
trast to that study, which used conventional pigs that were
seropositive and PCV2 viremic, in the current study we
used PCV2 and PRRSV naı̈ve pigs. In the current study,
PRRSV viremia occurred in 100% of the animals in all
groups infected with PRRSV and was detectable by 7 dpc.
Concurrent PRRSV infection did not reduce vaccine effi-
cacy as evidenced by the similar amounts of PCV2 DNA in
all vaccinated groups regardless of challenge status (PCV2
versus PRRSV-PCV2). However, because it is not possi-
ble to differentiate between infectious and non-infectious
virus particles by a PCR assay, we were not able to ascer-
tain whether there were differences between groups in the
amount of infectious PCV2.

Porcine circovirus type 1-2 DNA was identified in in-
dividual pigs (5/55) 7 to 21 days post vaccination and
was not identified in any of the vaccinated pigs in the
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Table 4. Prevalence and amount of porcine circovirus type 2 (PCV2) DNA positive pigs in each experimental group on different dpc

Group 7 dpc 14 dpc 21 dpc

PCV2-I 7/7 (5.3 ± 0.1)A 7/7 (6.4 ± 0.2)A 7/7 (6.0 ± 0.4)A

PCV2-PRRSV-CoI 5/7 (3.7 ± 1.0)A 7/7 (6.6 ± 0.3)A 7/7 (6.1 ± 0.3)A

IM-PCV2-I 3/7 (1.9 ± 0.9)A,B 2/7 (1.3 ± 0.8)B 2/7 (1.3 ± 0.8)B

IM-PCV2-PRRSV-CoI 0/7 (0.0 ± 0.0)B 1/7 (0.8 ± 0.8)B 1/7 (1.1 ± 1.1)B

PO-PCV2-I 4/7 (3.2 ± 1.1)A,B 6/7 (5.5 ± 0.9)A 6/7 (5.3 ± 0.9)A

PO-PCV2-PRRSV-CoI 6/7 (3.5 ± 0.9)A 5/7 (4.8 ± 0.9)A 4/7 (3.2 ± 0.3)A,B

Data presented as PCV2 DNA positive pigs/total number of pigs per group (mean group log10 PCV2 DNA ± SE per mL serum).
Different superscripts within a column (A,B) indicate significant (P<0.05) differences between groups in mean group log10 PCV2 DNA.

later stages of the experiment (0, 7, 14 and 21 dpc).
Among the five PCR positive pigs, PCV1-2 DNA was only
present at one point in time, indicating a short dura-
tion of viremia. This finding confirms the previous find-
ings of Fenaux et al. (39), who did not identify PCV1-
2 viremia in any vaccinated pigs. In addition, because
co-infecting pathogens such as PRRSV are known to en-
hance PCV2 replication (23, 24, 50, 51), the absence of
PCV1-2 viremia after challenge in PRRSV-infected pigs
(IM-PRRSV-I, IM-PCV2-PRRSV-CoI, PO-PRRSV-I, PO-
PCV2-PRRSV-CoI), as well as the absence of PCV2 spe-
cific staining in tissues of vaccinated non-challenged pigs
(IM-non-challenged, IM-PRRSV-I, PO-non-challenged,
PO-PRRSV-I) further emphasizes the attenuation and
safety of this experimental PCV1-2 live vaccine. However,
it needs to be emphasized that in the current study PRRSV
was given 4 weeks after vaccination. Because PRRSV can
be circulating continuously or at any time in relation to
vaccination under field conditions, the results in the field
could be different because of varying intervals between
PRRSV infection and vaccination.

A novel aspect of the current study was evaluation
of the PO route of administration of the experimental
live-attenuated chimeric PCV2 vaccine. Previously, intra-
lymphoid and IM routes of vaccination have been utilized
for attenuated live PCV1-2 vaccines (37–39). When live
PCV1-2 was administered via the IM and intra-lymphoid
routes, pigs developed protective immunity against PCV2a
(39). Most of the piglets seroconverted to PCV2 between
28 and 35 days post vaccination and, although not all the
animals had seroconverted by the time of challenge, they
were all protected against subsequent PCV2a challenge,
suggesting that strong PCV2 antibody responses are not
entirely necessary for protection (39). IM administration
of a live PCV1-2 vaccine has also been demonstrated to
be effective in conventional (41) and in SPF pigs (42).
Similarly, combined IM and intranasal administration of
live PCV2 vaccine reduced PCV2 viremia and associated
lesions after challenge in SPF pigs (40). In our study, the
majority of IM vaccinated pigs (21/28) had seroconverted
four weeks after vaccination, which is in agreement with

previous studies (39, 40, 42). In contrast, among all the
PO vaccinated pigs, only 1/28 pigs had seroconverted by
four weeks post vaccination. The limited ability of the
experimental live-attenuated PCV1-2 vaccine to induce
a measurable systemic antibody response may be due to
limited absorption and replication. Nevertheless, as evi-
dent from the PO-non-challenged group, PCV2 antibod-
ies continued to increase beyond 4 weeks, indicating a
delayed antibody response with the PO route of vacci-
nation. Development of mucosal immunity by assessing
presence of locally secreted PCV2 specific antibodies (for
example in fecal supernatants) was not investigated, but
may have given further insights into the effectiveness of
this route.

In this study, PCV2 DNA in sera was detectable in all
treatment groups challenged with PCV2b. This is in con-
trast to previous studies where PCV2 DNA was not de-
tectable in vaccinated animals after challenge (39, 42).
These conflicting results may be due to differences be-
tween studies in the detection methods for PCV2 DNA.
For instance, the real-time PCR assay used in the current
study is more sensitive than the gel-based PCR assay used
previously (39). Other differences between studies include
the utilization of a heterologous PCV2b challenge strain
in the current study in contrast to a homologous PCV2a
challenge strain used in a previous study (39).

Significant differences in prevalence and amount of
PCV2 DNA, with a reduction of the amount of PCV2 DNA
in sera ranging from 79.2% to 84.6%, were found in pigs
vaccinated IM compared to non-vaccinated pigs. More-
over, only 21.4% of pigs vaccinated by the IM route were
PCV2 viremic after PCV2 challenge. Among the IM vac-
cinated pigs that had no detectable seroconversion prior
to challenge, subsequent PCV2 viremia was not observed
in 1/3 IM-PCV2-I pigs and in 3/3 IM-PCV2-PRRSV-CoI
pigs, indicating evidence of protection and strengthening
the importance of cellular immune response. The amount
of PCV2 DNA in sera was also reduced in pigs vacci-
nated PO; however vaccine efficacy in the PO vaccinated
groups as measured by decreased incidence and degree of
viremia was not as impressive as that of the IM vaccinated
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groups. Specifically, PO vaccination reduced the amount
of PCV2 DNA in sera by 20.8% to 29.6%, the prevalence
of PCV2 viremia ranging from 71.4% to 78.6% between 7
and 21 dpc. In addition, except for the PO-PCV2-I group,
the mean group PCV2 antigen amount in tissues was re-
duced by PCV2 vaccination. The differences in vaccine
efficacy between the two different administration routes
may be attributable to the interval between vaccination
and challenge (4 weeks). The PO vaccination route ap-
peared to induce a delayed antibody response suggesting
that a longer interval is needed between vaccination and
challenge. Alternatively, a higher dose may be required for
induction of greater protective immunity with this route.

In conclusion, under the conditions of this study, an ex-
perimental live-attenuated PCV2 vaccine was safe and effi-
cacious when used IM in a PCV2b-PRRSV dual-challenge
model. Administration of the same product PO resulted
in a lower level and delayed onset of protective immunity
compared to IM administration. More studies are needed
to improve the immunogenicity of the oral vaccine.
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