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Confidence intervals for ranks of
age-adjusted rates across states
or counties
Shunpu Zhang,a*† Jun Luo,b Li Zhu,c David G. Stinchcomb,d
Dave Campbell,b Ginger Carter,b Scott Gilkesone and
Eric J. Feuerc

Health indices provide information to the general public on the health condition of the community. They can
also be used to inform the government’s policy making, to evaluate the effect of a current policy or healthcare
program, or for program planning and priority setting. It is a common practice that the health indices across
different geographic units are ranked and the ranks are reported as fixed values. We argue that the ranks
should be viewed as random and hence should be accompanied by an indication of precision (i.e., the confidence
intervals). A technical difficulty in doing so is how to account for the dependence among the ranks in the
construction of confidence intervals. In this paper, we propose a novel Monte Carlo method for constructing
the individual and simultaneous confidence intervals of ranks for age-adjusted rates. The proposed method uses
as input age-specific counts (of cases of disease or deaths) and their associated populations. We have further
extended it to the case in which only the age-adjusted rates and confidence intervals are available. Finally, we
demonstrate the proposed method to analyze US age-adjusted cancer incidence rates and mortality rates for
cancer and other diseases by states and counties within a state using a website that will be publicly available.
The results show that for rare or relatively rare disease (especially at the county level), ranks are essentially
meaningless because of their large variability, while for more common disease in larger geographic units, ranks
can be effectively utilized. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: age-adjusted rate; rank; simultaneous confidence interval

1. Introduction

Health indices such as age-adjusted rates are summary measures of health and of the factors that affect
health for a given population. It is often useful to monitor and compare health indices across different
geographic units, population sub-groups, socioeconomic groups, and others. Such information can be
used to provide information to the general public on the health condition of the community, to help
the government’s policy making, to evaluate the effect of a current policy or healthcare program, or for
program planning and priority setting.

A commonly used method to extract the information from health indices is ranking the health
indices based on the observed data. It is well recognized in the research community that the estimated
health indices are random variables with a measure of uncertainty often expressed as a standard error or
a confidence interval. However, the ranks obtained from the estimated health indices are often perceived
as fixed in the existing scientific literatures, and conclusions are drawn from them on the basis of fixed
values. In recent years, it has gradually come to researchers’ attention that it is necessary to treat the
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ranks as random variables and that they should be accompanied by a measure of uncertainty if they are
to be useful to the public, patients, or the government. In this regard, Marshall and Spiegelhalter [1]
proposed to incorporate the uncertainty associated with the ranks by constructing the 95% confidence
intervals for the ranks of the success rates of in vitro fertilization clinics. They proposed in their
paper a Monte Carlo simulation method to construct the confidence intervals for the proportions
obtained from simple surveys. More recently, Lemmers et al. [2] proposed to describe the uncertainty
in the ranks by using so-called best-case and worst-case scenarios. The best-case and worst-case sce-
narios for a geographic unit are obtained by counting the number of other units whose performance
is better and worse than this unit, in terms of whether the upper and lower bounds of the confidence
intervals of their corresponding odds ratios are greater or less than one. Gerzoff and Williamson
[3] examined the uncertainty associated with ranks based on three common methods used to derive
public health indicators: age adjustment, calculations based on census estimates, and calculations based
on survey data.

In this paper, we propose a Monte Carlo method to construct individual and simultaneous confidence
intervals for the ranks of age-adjusted rates of different geographic units. One challenge for constructing
the confidence intervals for the ranks of age-adjusted rates is the zero-count problem for a specific age
group, which researchers may experience when the populations of some age groups are small or the
characteristic of interest is rare. The zero-count problem may cause the Monte Carlo method to produce
simulated ranks with variation smaller than the true variation and hence lead to incorrect conclusions.
Another challenge is the construction of the simultaneous confidence intervals for all the ranks. Marshall
and Spiegelhalter [1] only provided a method for constructing the individual confidence interval for each
rank. Although the individual confidence intervals for the ranks can provide information on what the
range of the rank for a specific geographic unit might be, it is more typical that one is interested in
comparing all the ranks simultaneously. Hence, simultaneous confidence intervals seem to be a more
generally applicable choice than the individual confidence intervals. Finally, in some instances, only
the age-adjusted rate and confidence interval are available, rather than all of the age-specific rates. We
propose an alternative Monte Carlo method when this situation occurs.

We organize the paper as follows. In Section 2, we first propose a general Monte Carlo method for
generating the simulated age-adjusted rate distribution and its corresponding rank distribution. Then, we
propose a Bayes method to handle the zero-count problem. Further in this section, we present a novel
method for constructing the simultaneous rectangular confidence intervals for the ranks. We choose to
construct the simultaneous rectangular confidence intervals over the traditional simultaneous confidence
region (such as the confidence ellipsoid based on the Hotelling’s T -square statistic) because the rect-
angular confidence intervals have the advantage of easier interpretation and graphical representation.
Finally, we provide a modified Monte Carlo method when one only has access to the age-adjusted rate
and confidence interval. In Section 3, we apply the proposed method to age-adjusted cancer mortal-
ity rates and incidence rates by state and county. We demonstrate that more features can be extracted
from the simulated rank distribution, which can provide us further insight into the data. We provide
conclusions and discussions in Section 4.

2. Methods

2.1. Age-adjusted rates

Public health data often need adjustment for confounding factors such as age or other demographic fac-
tors. The most common adjustment for public health data is age adjustment because the occurrence of
many health conditions is related to age. An age-adjusted rate is a weighted average of the age-specific
rates (the number of events divided by the total number of individuals in the population for a specific age
group), where the weights are the proportions of persons in the corresponding age group of a standard
population. The age-adjusted rates provide a standard way of comparing rates for different population
groups. Age adjustment minimizes the effect of a difference in age distributions when comparing rates
to allow comparisons between these population groups independent of their age structure. Both direct
and indirect methods for age adjustment are possible. Direct age adjustment applies age-specific rates
from each area or group to a standard population age profile. Indirect age adjustment is used when only
age-specific populations from each area are available, but not age-specific rates. For this paper, we use
direct age adjustment, assuming either age-specific rates from each area (Section 2.2) or at least the
directly standardized age-specific rate and its confidence interval (Section 2.5) are available.
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More specifically, assume that there are I geographic units and J age groups in the study, and the data
available are the count xij of health events and the count nij of the population size from geographic unit
i and age-specific group j . The age-specific (crude) rate is the number of health events occurring in a
specified population during a year, usually expressed as the number of health events per 100,000 people.
It is calculated using the following formula:

Age-specific rate of region iand age group j D xij

nij

� 100; 000: (2.1)

Consequently, the age-adjusted rate per 100,000 population for region i is

aaratei D 1

JP
j D1

stdmilj

JX
j D1

��
xij

nij

�
� 100; 000 � stdmilj

�
(2.2)

where stdmilj is the population for age group j in a standard population, j D 1; : : : ; J . Standard
populations can be found at http://seer.cancer.gov/stdpopulations/index.html.

2.2. The Monte Carlo method for generating simulated age-adjusted rates and ranks

The purpose of the current paper is to propose methods for comparing the ranks of the age-adjusted rates
of the I regions to see if the ranks of some regions are significantly different from others. To do so, we
need to have the knowledge of the joint probability distribution (the joint rank distribution) of the ranks.
If one is also interested in the distribution of the rank of a specific region, it is also necessary to know
the marginal distribution of the rank (the marginal rank distribution) of that region. Theoretical deriva-
tion of the joint distribution and marginal distribution of the ranks is difficult because of the dependence
among the ranks. In this section, we propose to simulate the joint and marginal rank distributions using
the Monte Carlo method.

In applications, the observed count xij is often viewed as a realization from the random variable Xij ,
which has the Poisson distribution Poisson.�ij /, where �ij is the age-specific rate. Because Xij is the
maximum likelihood estimator (as well as an unbiased estimator) of �ij under the Poisson model, we can
generate the simulated counts xk

ij for geographic unit i and age-specific group j from Poisson.xij /,
where 1 6 k 6 K is the index of simulations. We will discuss the choice of K in Section 2.4. With
xk

ij being available, the k-th simulated age-adjusted rate for region i can be calculated by using the

weighted average method (2.2) with xij being replaced by xk
ij . Denote the k-th simulated age-adjusted

rate for region i by aaratek
i and its rank relative to aaratek

1 ; : : : ; aaratek
I by rankk

i , we have the
simulated joint distribution of the age-adjusted rates

aaratek
i ; i D 1; : : : ; I I k D 1; : : : ; K; (2.3)

and its corresponding joint rank distribution

rankk
i ; i D 1; : : : ; I I k D 1; : : : ; K: (2.4)

For each fixed i , aaratek
i , k D 1; : : : ; K , provide a sampling distribution of the estimated age-adjusted

rate of geographic unit i . Therefore, the 100.1 � ˛/% confidence interval for the true age-adjusted rate
of unit i can be easily calculated from the 100.˛=2/-th and 100.1 � ˛=2/-th percentiles of the simulated
rates aaratek

i , k D 1; : : : ; K . Similarly, the 100.1 � ˛/% confidence interval of the ranks of geographic
unit i can be easily obtained by finding the 100.˛=2/-th and 100.1 � ˛=2/-th percentiles of rankk

i ,
k D 1; : : : ; K .

2.3. Adjusting for zero count using the Bayes method

A potential problem in the described Monte Carlo method is the use of xij as the estimator of �ij . When
the age-specific population is small or the characteristic of interest is rare, the count xij may be zero, and
therefore, O�ij (the estimator of �ij / is also zero, which leads to a degenerate Poisson distribution. This
will cause the simulated count for this age-specific group to be zero for every Monte Carlo iteration.
Thus, the contribution of this age-specific group to the overall variability in the simulated age-adjusted

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1853–1866
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rates for this geographic unit will be zero. It is obvious that a count of zero does not necessarily mean
that the true age-specific rate is zero, and hence, the existence of the zero count for certain age-specific
populations may cause underestimation of the age-adjusted rate, as well as its variability. We call this
the zero-count problem. The zero-count problem is worst when all the age-specific rates are zero and
therefore the age-adjusted rate is zero as well.

The preceding discussion shows that it is necessary to adjust for the zero-count problem before the
Monte Carlo method is conducted. Ideally, we expect that a new method with the zero-count problem
corrected satisfies the following two properties: (1) O�ij should be bounded away from zero when the
observed count is zero, and (2) it should reflect the fact that zero count observed from a large age-
specific population implies stronger evidence that the true age-specific rate is closer to zero. A natural
way that can achieve both properties is to use a Bayes estimator. For developing this Bayes estimator,
instead of the Poisson model, it is more convenient to use the binomial model B.nij ; pij /, where pij

is the probability of success (a person exhibits the characteristic of interest) for geographic unit i and
age-specific group j , and satisfies �ij D nij pij .

Note that the maximum likelihood estimator (MLE) of pij under the binomial model is

Opij D Xij =nij (2.5)

and the zero-count problem is reflected by the fact that Opij D 0 when Xij D 0. Assume that pij has the
beta prior Beta.˛; ˇ/, that is,

�.pij j˛; ˇ/ D p˛�1
ij .1 � pij /ˇ�1

B.˛; ˇ/
;

where B.˛; ˇ/ is the beta function with ˛ > 0; ˇ > 0. Then, the posterior distribution is

f .pij jxij / / Beta.x C ˛; nij � xij � ˇ/;

and the Bayes estimator of pij when xij D 0 is

OpB
ij D E.pij jxij D 0/ D ˛

nij C ˛ C ˇ
: (2.6)

It can be seen that OpB
ij possesses the two desired properties we discussed previously by noticing the

fact that (1) OpB
ij

�
hence; O�ij D nij Opij

�
is always larger than zero; and (2) OpB

ij satisfies OpB
ij # as nij ",

that is, zero count from a large population indicates stronger evidence that the true pij is closer to zero.
In contrast, the crude rate (the MLE) Opij D xij =nij is always zero when xij D 0 regardless of the
population size.

The remaining question about (2.6) is how to choose ˛ and ˇ. One method is to choose ˛ D ˇ D 1.
This is equivalent to the uniform [0, 1] distribution. The uniform prior is sometimes interpreted as
‘non-informative’ because it implies that we are ‘ignorant’ of pij , except that it can be anywhere
between 0 and 1. Unfortunately, the uniform prior is not invariant under re-parameterization. Let
�ij D log.pij /. It was shown in [4] that �ij has the exponential distribution; hence, the uniform
prior is not as ‘non-informative’ as it seems. Jeffreys [5] proposed an alternative prior that is invari-
ant under re-parameterization. The Jeffreys’ prior for the binomial model is Beta.˛ D 0:5; ˇ D 0:5/.
It can be seen from (2.6) that the Bayes estimator of pij with respect to the uniform prior and the Jeffreys’
prior are

Op1
ij D E.pij jxij D 0/ D 1

nij C 2
(2.7)

and

Op2
ij D E.pij jxij D 0/ D 0:5

nij C 1
; (2.8)

respectively.
Because the observed count is zero, we do have some prior information on pij : it should be close

to zero and is most likely less than 1=nij for geographic unit i and age group j , that is, the major-
ity of the probability mass of the prior distribution of pij is within .0; 1=nij /. Otherwise, because
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Opij ! pij when nij goes to 1, the observed count Xij .D nij Opij / will be greater than 1, that is,
one would mostly likely have observed a count of one or more. A distribution with such property is
Beta.˛ D 1=nij ; ˇ D 1 � 1=nij /. It can be shown that for nij > 100, at least 95% of the probability
mass of Beta.˛ D 1=nij ; ˇ D 1 � 1=nij / is concentrated between .0; 1=nij /. With this as the prior
distribution, the Bayes estimator of pij is

OpB
ij D E.pij jxij D 0/ D 1=nij

nij C 1
: (2.9)

We propose this method for use when the observed count is zero for any specific age group. For
convenience, we will simply call OpB

ij the Bayes estimator in the remainder of the paper.

2.4. Construction of simultaneous confidence intervals for ranks

As discussed in Section 2.1, a 95% confidence interval for the rank of a specific geographic unit can
easily be constructed from the simulated marginal distribution (2.4). Such intervals can be used to see
where a specific geographic unit stands relative to other geographic units included in the study. However,
most users of ranks are not interested in one specific unit, but rather in looking at the ranks and the asso-
ciated confidence intervals of all the units. One cannot examine a large set of 95% individual confidence
intervals and still maintain that level of coverage over the entire set of units examined. This brings up
the issue on how to construct the confidence intervals for the ranks of all the regions simultaneously.

One immediate answer to this is to use the Hotelling’s T 2 test. However, the Hotelling’s T 2 test only
provides a simultaneous confidence region (ellipsoid), which is often difficult for non-statisticians to
comprehend. Another drawback of the Hotelling’s T 2 test is that it requires the independence of the
test statistics being compared. An alternative method that does not require the independence assump-
tion and has easy interpretation is the Bonferroni method. The Bonferroni method provides a confidence
interval for each individual rank and therefore can be interpreted as the usual confidence interval in
one-dimensional case. The confidence region formed by these individual confidence intervals is called
a rectangular confidence region. However, the drawback of the Bonferroni method is that it can be very
conservative, especially when the number of comparisons is large. Other attempts on developing rectan-
gular confidence region have been focused on multivariate normal distribution and can be traced back to
Dunn [6, 7]. Šidàk [8] showed that a confidence region constructed for the case of independent normal
random variables is always conservative for any case of dependent multivariate normal variables. More
recent attempts on constructing simultaneous rectangular confidence region include the Simes test [9],
the Simes–Hochberg test [10], and the Hommel test [11], among others. Nevertheless, these methods
require that the test statistics are independent of each other, which is not true for our case because the
ranks are dependent on each other.

In the following, we propose a Monte Carlo method to construct the simultaneous rectangular confi-
dence region at a prescribed level, which does not require the assumption of independence. To construct
the simultaneous rectangular region, basically we need to find Œri ; si � such that

P.r1 6 rank1 6 s1; : : : ; rI 6 rankI 6 sI / D 1 � ˛; (2.10)

where i D 1; : : : ; I . Equation (2.10) has infinite many solutions if there are no constraints imposed
on the individual confidence intervals. We propose to fix each confidence interval Œri ; si � at the same
confidence level, say ˇ, that is, all pairs of (ri ; si / should satisfy

P.ranki < ri / D P.ranki > si / D .1 � ˇ/=2; (2.11)

for i D 1; : : : ; I . Equation (2.11) implies that the probability of the individual event ri 6 ranki 6 si

is ˇ. On the basis of (2.10), the joint probability of ri 6 ranki 6 si for all i ’s is 1 � ˛. Because the
probability of joint (intersection) events is no larger than the individual events by definition, we need to
search for ˇ in the range 1 � ˛ to 1. The value of ˇ is numerically searched on the basis of the simulated
joint rank distribution (2.4) so that (2.10) holds. Because of the discrete nature of ranks, it is in general
impossible to find ˇ satisfying (2.10) exactly. Instead, we will start with the two endpoints 1 � ˛ and
1 as possible values for ˇ and search inwards using a bisection algorithm for ˇ and its corresponding
Œri ; si �’s so that the left-hand side of (2.10) is as close as possible to 1 � ˛.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1853–1866
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The algorithm

To search for ˇ in the range 1�˛ to 1, we start with choosing an initial pair of ˇ values ˇ1 D 1; ˇ2 D 1�˛

for the probability of individual event defined in (2.11). For ˇ1 D 1, we first find (r1
i ; s1

i / from the
simulated rank distribution (2.4) that satisfies the condition for the individual probability (2.11)

P.ranki < r1
i / D P

�
ranki > s1

i

	 D .1 � ˇ1/=2; i D 1; : : :; I;

and

P
�
r1

1 6 rank1 6 s1
1 ; : : : ; r1

I 6 rankI 6 s1
I

	 D ˇ�
1 > 1 � ˛

When ˇ1 D 1; .1 � ˇ1/=2 D 0, then
�
r1

i ; s1
i

	
is just the range of all the simulated ranks. Hence, the

joint probability P
�
r1

1 6 rank1 6 s1
1
; : : : ; r1

I 6 rankI 6 s1
I

	 D 1.
Similarly, when ˇ2 D 1 � ˛, .1 � ˇ2/=2 D ˛=2. We know it is true that

P
�
ranki < r2

i

	 D P
�
ranki > s2

i

	 D .1 � ˇ2/=2 D ˛=2; i D 1; : : : ; I;

and

P
�
r2

1 6 rank1 6 s2
1 ; : : : ; r2

I 6 rankI 6 s2
I

	 D ˇ2 6 1 � ˛;

because the joint confidence level is lower than the individual confidence level.
The aforementioned choices of ˇ1 and ˇ2 guarantee that the value of ˇ, which satisfies (2.10), is

between ˇ1 and ˇ2. With these initial values available, we can find the desired value of ˇ using the
following algorithm:

Step 1. Calculate ˇ0 D .ˇ1 C ˇ2/ =2 and find its corresponding r0
i ; s0

i such that

P
�
r0

i 6 ranki 6 s0
i

	 D ˇ0 for i D 1; : : :; I:

Then, use the simulated joint rank distribution (2.4) to find the probability

P
�
r0

1 6 rank1 6 s0
1 ; : : : ; r0

I 6 rankI 6 s0
I

	 D̂ ˇ�
0 :

Step 2. If ˇ�
0 < 1 � ˛, set the new pair of ˇ values .ˇ1; ˇ2/ D .ˇ1; ˇ0/; otherwise, set .ˇ1; ˇ2/ D

.ˇ0; ˇ2/.

Repeat steps 1 and 2 until no improvement can be made. In practice, the algorithm is often terminated
when the improvement is less than a certain pre-specified threshold. In our algorithm, the threshold is
set at 1/number of simulation.

Three considerations must be kept in mind when using this algorithm:

(1) The aforementioned algorithm tries to find rectangular intervals that have confidence levels as close
as possible to the pre-specified level 1 � ˛. Hence, the resulting confidence intervals may have
simultaneous levels higher than 1 � ˛ if the algorithm is stopped at ˇ1 and lower than 1 � ˛ if the
algorithm is stopped at ˇ2. If one wishes to only have simultaneous levels to be at least 1 � ˛, he
or she should make sure the algorithm is stopped at ˇ1.

(2) The success of the aforementioned algorithm also depends on the number of simulations, K . A too
small value of K does not provide simulated ranks fine enough for the algorithm to find distinguish-
able Œri ; si �; i D 1; : : : ; I , while a too large value of K may make the algorithm computationally
infeasible. In the Appendix, we show that, under the independence assumption of ranks, a lower
bound of K as a function of I is 2=.1 � .1 � ˛/1=I /. Because the ranks are dependent on each
other, this lower bound may not accurately reflect the true number of simulations needed to achieve
the prescribed confidence level and hence can only be used as a rule of thumb for deciding K , the
number of simulations.

(3) The same algorithm can be applied to the simulated joint age-adjusted rate distribution provided
by (2.3) to obtain the simultaneous confidence intervals for the age-adjusted rates. However, in
practice, it is not necessary to use simulations to obtain the simultaneous confidence intervals for
the rates. Because the age-adjusted rates from different regions are assumed to be independent, one
can directly use the Šidàk method to construct the simultaneous confidence intervals.
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2.5. Using a Gamma approximation when age-specific rates are not available

In Equation (2.2), an age-adjusted rate is a weighted average of the age-specific rates, where the weights
are the proportions of persons in the corresponding age groups of a standard population. The method
in Section 2.2 assumes a binomial or Poisson distribution for deaths (or incidence) in each age group
and applies the Monte Carlo method to estimate the confidence intervals of ranks. There are situations
when age-specific rates are not available to calculate age-adjusted rates. Public health organizations
often only provide disease surveillance data in the form of point and interval estimates of age-adjusted
incidence rates, and data on age-specific incidence rates are often not available. For example, see the
State Cancer Profiles website (http://statecancerprofiles.cancer.gov/). This section develops a method to
estimate confidence intervals for ranks of age-adjusted rates based on the point and interval estimates of
age-adjusted rates.

Assume the disease counts in a geographic region and the age groups are independent Poisson random
variables. Then, the age-adjusted rate in that region is a weighted average of these Poisson random vari-
ables. Fay and Feuer [12] developed a confidence interval of an age-adjusted rate based on the gamma
approximation. Specifically, suppose that the age-adjusted rate is composed of age groups 1 to J , and
for each geographic region i , define

wij D stdmilj

nij �
JP

j D1

stdmilj

� 100; 000

where nij is the age-specific population of geographic region i and age group j , and stdmilj is the
standard million of the US population, j D 1; : : : ; J .

Fay and Feuer [12] specified that if

wim D max.wij /

´i D w2
im

and

vi D
JX

j D1

�
w2

ij � xij

	

where xij is the count of disease or death in geographic region i and age group j , then the age-adjusted
rate of region i aaratei can be approximated by a gamma distribution with mean aaratei and vari-
ance vi . Tiwari et al. [13] further modified the gamma approximation and developed more efficient
estimates of confidence intervals, and these modified gamma confidence intervals have been taken as
the default confidence interval estimates of age-adjusted rates in SEER*Stat (the program used to com-
pute cancer rates for the US Surveillance Epidemiology and End Results (SEER) cancer registries). The
modification is specified as

wim D average.wij /

´i D average
�
w2

ij

	
and the lower and upper endpoints of a .1 � ˛/ � 100% confidence interval are calculated as

CIlow;i D
�

vi

2�aaratei

�
�

�
ChiInv

�
˛
2
;

.2�aarate2
i

vi

��
� 100; 000

CIhigh;i D
�

vi C´i

2.aaratei Cwim

�
�

�
ChiInv

�
1 � ˛

2
;

2.aaratei Cwim/2

vi Cw2
im

��
� 100; 000

(2.12)

where aaratei is the age-adjusted rate in region i , and ChiInv denotes the cumulative distribution

function of Chi-square distribution at probability 1 � ˛
2

and degrees of freedom 2.aaratei Cwim/2

vi Cw2
im

.
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Age-adjusted rate aaratei can be viewed approximately as a gamma random variable with mean
aaratei and variance vi . When only the age-adjusted rate, aaratei and its confidence interval CIlow;i

and CIhigh;i are available, we can derive vi from (2.12). Because wij can be calculated from the stan-
dard millions and the population in region i and age group j , wim and ´i are functions of wij and can
be calculated too. The only missing piece in calculating the lower and upper boundaries is vi . Because
vi does not have a closed-form solution from (2.12), we need to solve for it using an iterative algorithm
in the following steps:

Step 1: Pick an arbitrary pair of numbers v0 and v00 such that v0 < v00.
Step 2: Calculate v as the average of v0 and v00.
Step 3: Using v in (2.12) as vi , calculate CIlow;i . If the calculated CIlow;i is larger than the observed

lower limit of the 95% confidence interval, then set v0 D v, otherwise v00 D v.
Step 4: Repeat steps 2 and 3 until the calculated and observed values of CIlow;i become equal to each

other. This value of v is identified as the optimal value of vi based on CIlow;i .

Similarly, we can solve for vi on the basis of the upper limit of the confidence interval, CIhigh;i . The
two solutions of vi will be slightly different, but the difference does not have an impact on the simula-
tion of aaratei and hence its rank calculation, so either could be used. Now, with both aaratei and vi

available, we can simulate age-adjusted rate aaratei as a gamma random variable with mean aaratei

and variance vi . Confidence intervals for the ranking of age-adjusted rates can be generated with the
same Monte Carlo method as described in Sections 2.2–2.4.

Defining the length as the difference between upper and lower limits of the 95% confidence inter-
vals, Figure 1 compares the length of 95% confidence intervals of ranks for age-adjusted rates of all
cancer mortality in Maryland counties for the period of 2004–2008, simulated for 10,000 times using
the Gamma method with the length of the 95% confidence intervals of the same ranks using the gold
standard method in Sections 2.2–2.4. Because the gold standard is based on the assumption that the
age-specific counts are realizations from the Poisson distributions, we refer to it as the Poisson method
in this section. It can be seen that the lengths of the 95% confidence intervals of ranks generated from
the two methods are identical for most counties in this example, with the exception of two counties
whose lengths of the 95% confidence intervals are differed by 1 for the two methods. We also observed
in the simulation results that the counties with the same length of the 95% confidence intervals have the
same endpoints for the two methods. This figure demonstrates that the Gamma method can be used as a
satisfactory approximation to the Poisson method when age-specific rates are not available.

Figure 1. Length (upper limit minus lower limit) of the 95% confidence intervals of ranks for all cancer age-
adjusted mortality rates of Maryland counties, 2004–2008, comparing results for the Gamma method versus the

Poisson method.
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3. Examples

In this section, we will demonstrate the proposed methods using US age-adjusted cancer incidence and
mortality rates. US mortality data, collected and maintained by the National Center for Health Statis-
tics (NCHS) from the National Vital Statistics System, are a fundamental source of demographic and
geographic details of cause-of-death information. Current confidentiality restrictions for NCHS vital
statistics data require suppression of counts of less than 10 deaths or births. At the national and state
level, single-year data are available as long as the death counts are no less than 10. At the county level,
NCHS requires a minimum of 3 years of data are aggregated to be published. We generally recom-
mend aggregating a minimum of 5 years at the county level to provide more stability. The age-adjusted
mortality rate provides a standard way of comparing cancer rates for different cancers and in different
geographic regions. Such rates are often used in public health activities to describe cancer trends and to
characterize the cancer burden in a standardized manner.

Age-adjusted rates and confidence intervals for incidence data at the state and county level were
obtained from the State Cancer Profiles website (http://statecancerprofiles.cancer.gov). Age-adjusted
rates are suppressed if the counts are less than 16 over a 5-year period. The underlying data for
these rates come from the Centers for Disease Control and Prevention’s National Program of Can-
cer Registries Cancer Surveillance System and from the National Cancer Institute’s SEER Program
(http://www.SEER.cancer.gov).

Figure 2 displays the histograms of the ranks (the rank histograms obtained from the simulated
rank distribution (2.4)) of the mortality rate of black female breast cancer for Macon County, Alabama,
2003–2007. This histogram can take up to 66 values, because there are 66 counties in Alabama. The top
panel was obtained on the basis of the MLE with no zero-count correction (2.5), and the bottom panel
used the Bayes estimator for zero-count correction (2.9). Macon County is a relatively small county in
Alabama with a population of 10,500 so the counts from many of the age groups are zero. The blue lines
(the individual 95% confidence intervals) on the two panels show that the confidence interval obtained
based on the MLE (without adjustment for zero count) is narrower (the top panel) than that based on the
Bayes estimator (with the adjustment for zero count, the bottom panel).

The four panels in Figures 3 and 4 show examples of state and county simultaneous confidence
intervals of the ranks of mortalities and incidence rates based on the Bayes estimator (2.9). Figure 3a
shows the 2007 mortality rates of all causes of death at the state level. It shows a clear difference among
the state mortality rates with relatively narrow confidence intervals. West Virginia has the highest ranked

Rank Histogram
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Figure 2. Individual and simultaneous confidence intervals based on the maximum likelihood estimator (MLE;
top) and the Bayes method (bottom) for black female breast cancer mortality in Macon County, Alabama,

2003–2007.
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(a)

(b)

Figure 3. Examples of the simultaneous 95% confidence intervals of the ranks (using Bayes adjustment for zero
counts) of mortality rates at the state level.

observed value (i.e., has the highest mortality rate), and Hawaii has the lowest ranked observed value
(i.e., has the lowest mortality rate). Figure 3b shows the 2007 mortality rates from all malignant cancers
at the state level. This panel has wider confidence intervals and shows that Kentucky has the highest
ranked observed value and Utah has the lowest ranked observed value because of their respective high
and low smoking rates, while West Virginia and Hawaii have the second to the highest and the second to
the lowest ranked observed values, respectively. The wider rank confidence intervals in Figure 3b than
in Figure 3a shows that there is less variation between the states in the mortality rates for all causes than
the mortality rates for all cancers.
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Maryland All Cancers, Incidence 2004−2008, county level
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New Jersey Black Female Breast, Mortality 2003−2007, county level
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Figure 4. Examples of the simultaneous 95% confidence intervals of the ranks (using Bayes adjustment for zero
counts) of incidence and mortality rates at the county level.

Figure 4a shows the 2004–2008 all cancer incidence rates of the counties in Maryland. This panel
shows that Frederick County has the highest ranked observed cancer incidence rate in the state. While
there has been concern expressing that Frederick County is the highest ranked county in Maryland
in terms of its cancer incidence rates, Figure 4a indicates that it could have a rank between 1 and
5 with 95% of confidence. Figure 4b displays the breast cancer mortality rate for black women in
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Figure 5. Probability of New York counties being ranked top 5 for female breast cancer incidence rates,
2005–2009.

New Jersey. This panel shows that because of the variability of the underlying rates, none of the counties
in New Jersey is significantly different from others in breast cancer mortality rate for black women, and
therefore, ranking these rates cannot provide meaningful results.

In addition to the individual and simultaneous confidence intervals, the joint rank distribution (2.4)
also provides the probabilities that a region takes different ranks. Such probabilities can be displayed by
using a form of a probability histogram (or a rank histogram), as we have seen in Figure 2. The rank
histogram can provide information such as what the most likely rank of a region is or which group of
regions has the highest probability to be ranked in the top. The latter may have important implications
in government policy making. For example, it is often desirable to identify the regions with the high-
est cancer incidence or mortality rates in order to allocate scarce resources, or to focus public health
improvement efforts. Traditionally, this is carried out by finding the regions with the highest observed
ranks. As we have seen, such a method ignores the inherent variability in the ranks, and the conclusion
may not reflect the true ranks of the regions. Instead, we propose the concept of the probability of being
ranked in the top for each region. Figure 5 shows the probability of being in the top 5 ranks for female
breast cancer incidence rates for the counties of New York during 2005–2009. This figure shows that the
fifth county by the observed rank is Monroe. However, in the five counties with the highest probability
of being in the top 5, Monroe is replaced by Livingston. This type of graph helps to identify these issues
for a given cut point and also helps visualize possible alternative cut points for further evaluation.

4. Conclusions and discussions

In this paper, we have proposed a Monte Carlo method for comparing the ranks of age-adjusted mortality
rates of different geographic units based on the availability of the age-specific counts. We have also
demonstrated the necessity of comparing the ranks simultaneously, and an efficient algorithm for con-
structing the simultaneous confidence intervals of ranks is proposed. We have further extended the
method to the case in which only the age-adjusted rates and their associated confidence intervals on
the rates are available. An online Web application called CI*Rank for performing these calculations is
available to the public at http://surveillance.cancer.gov/cirank/.

In some instances, especially in states with many counties with small populations, the confidence
intervals for the ranks will be very wide. In this instance, the counties in a state might be combined to
produce more stable estimates. For example, the 120 counties in Kentucky are sometimes combined into
15 area development districts. In other instances, the group of counties to be compared will cross state
boundaries. For example, one might be interested in ranking mortality or cancer incidence rates from
counties across 13 states that comprise Appalachia (http://www.arc.gov/counties). At the suggestion
of users, we have added the ability to suggest special groupings of counties to be added to the online
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Web application. After they are added, these special groups suggested by our user base will be available
to all users.

There are several possible extensions to the proposed methodology. First, to facilitate the application
of the proposed method, we are considering the possibility to add an online tool on the website where
users can upload and analyze their own data. Second, the age-adjusted rates are calculated assuming
the regions to be ranked are independent from each other. A natural extension of our proposed method
is to incorporate spatial autocorrelation in the estimation of age-adjusted rates as well as in the calcu-
lation of the confidence intervals using the well-known spatial adjacency network method [14]. Lastly,
although our proposed method is only demonstrated for the age-adjusted rates, it can be modified for
other health indices such as the proportion of smokers from a national survey such as the Behavioral
Risk Factor Surveillance System (http://www.cdc.gov/brfss/) or from a small area estimation model
(http://sae.cancer.gov/). In the case of direct estimates from a survey, the Monte Carlo simulation would
probably use a normal approximation for the distribution of the statistic, with the standard error coming
from the complex survey. Another similar problem to ranking incidence or mortality rates across geo-
graphic areas is ranking the different diseases rates within a single geographic area. For example, one
might be interested in knowing the ranking of causes of death in California. The methods proposed here
are not applicable when comparing the age-adjusted rates within the same geographic unit due to the
dependence between the age-adjusted rates because they share the same denominator. In such a case, a
simulation method could be developed so it can generate simulated age-adjusted rates under the same
dependence structure as that of the original data before our method for constructing the simultaneous
rectangular confidence intervals can be used.

Appendix

Under the assumption that all ranks are independent of each other, direct application of the results of
Šidàk [8] shows that the individual confidence level 1 � ˇ on the rank of a region for simultaneous
confidence level 1 � ˛ satisfies the following equation:

P.r1 6 rank1 6 s1; : : : ; rI 6 rankI 6 sI / D .1 � ˇ/I

D 1 � ˛:

Hence, ˇ D 1 � .1 � ˛/1=I . Given that K simulated ranks are generated for each region, this means
that K has to be at least 2=ˇ D 2=.1 � .1 � ˛/1=I / in order to delete at least one simulated rank from
each end of the simulated rank distribution of a region. Hence, the minimal number of simulations is
2=.1 � .1 � ˛/1=I /.
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