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Current-Based Fault Detection for Wind Turbine
Systems via Hilbert-Huang Transform

Dingguo Lu, Student Member, IEEE, Wei Qiao, Member, IEEE, Xiang Gong, Student Member, IEEE,
and Liyan Qu, Member, IEEE

Abstract—Mechanical failures of wind turbines represent a
significant cost in both repairs and downtime. Detecting incipient
faults of wind turbine components permits maintenance to be
scheduled and failed parts to be repaired or replaced before
causing failures of other components or catastrophic failure of
the system. This paper proposes a Hilbert-Huang transform
(HHT)-based algorithm to effectively extract fault signatures in
generator current signals for wind turbine fault diagnosis by
using the HHT’s capability of accurately representing the
instantaneous amplitude and frequency of nonlinear and
nonstationary signals. A phase-lock-loop (PLL) method is
integrated to estimate wind turbine rotating speed, which is then
used to facilitate the fault detection. The proposed method is
validated by a real direct-drive wind turbine with different types
of faults. The experimental results demonstrate that the proposed
method is effective to detect various faults in wind turbine
systems as well as to reveal the severities of the faults.

Index Terms—Condition monitoring, current, fault detection,
Hilbert-Huang transform (HHT), wind turbine.

1. INTRODUCTION

HE continuously growing number of wind turbine systems

has increased the need to maintain and repair the wind
turbines as they age and begin to fail. The cost of maintaining
wind turbines shares a significant proportion of the total
operational costs, often accounting for 10-15% and 25-30% of
the energy generation costs for onshore and offshore wind
turbines, respectively [1]-[3]. A considerable percentage of the
maintenance cost is caused by unexpected drivetrain failures.
These malfunctions also result in extended downtime as both
parts and heavy equipment must be transported to the sites,
which are often in remote areas [4]. Condition monitoring and
fault detection (CMFD) techniques have been applied to detect
diverse faults in wind turbines while the faults are still in an
incipient phase, allowing for less downtime, increased lifespan
and decreased wind power cost [4]-[6].

Online CMFD techniques can be classified into several
categories based on the measurements employed. These
measurements include electrical quantities (voltage, current
and power), vibration, acoustic emission, temperature, oil
constituent, etc. [4]-[6] Among them, vibration-based
techniques have been the conventionally main focus of wind
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turbine CMFD [6] and proved successful for wind turbine
systems as well as other industrial applications [7], [8]. The
current-based techniques are gaining more attention for their
advantages over vibration-based techniques in terms of
accessibility, cost, implementation, and reliability [9]-[11].
The costs and complexity involved in current-based CMFD
techniques are significantly lower than many other methods
because current sensing is already implemented on most wind
turbines and thus no additional sensors are required.

Online CMFD generally involves some forms of signal
processing. Conventionally, the fast Fourier transform (FFT)
and the short-time Fourier transform (STFT) are well-
established methods that have achieved certain success and are
widely used in industries [12]. However, they fail to
characterize the faults in wind turbines which usually run in
variable-speed conditions. The discrete wavelet transform
(DWT), which is a time-frequency analysis method, is capable
of presenting the time-varying frequency components of
nonstationary signals. It has been successfully used in
vibration-based gearbox CMFD [8]. However, the DWT
suffers from inevitable issues of low resolution, interference
terms, border distortion, and energy leakage [7].

The HHT is a relatively new method for time-frequency
analysis that is able to calculate the instantaneous amplitude
and frequency of nonlinear and nonstationary signals [13].
Unlike wavelet transforms, the HHT is based on an adaptive
algorithm. Therefore, no prior knowledge of the signal is
required to perform the HHT [14]. As a differentiation-based
method, there is no uncertainty principle limitation in the
result as that in the convolution-based wavelet and Fourier
transforms. The HHT has been found powerful and successful
in condition monitoring of electric machines using vibration
data [7], and in detection of rotor bar failures of induction
machines using stator current data [15].

This work investigates the application of the HHT to detect
mechanical failures in wind turbines using generator stator
current signals. Successful utilization of stator currents
represents a cost-effective, nonintrusive CMFD technique for
retrofitting existing condition monitoring methods for wind
turbines. The proposed method is testified for a real direct-
drive wind turbine with blade imbalance, blade misalignment
and bearing inner-race faults. The experimental results lucidly
prove the effectiveness of the proposed HHT-based algorithm
for CMFD of wind turbine systems.
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II. HILBERT-HUANG TRANSFORM-BASED CMFD ALGORITHM

The HHT was initially developed by Norden E. Huang to
analyze the nonlinear and nonstationary nature complex waves
[13]. The HHT integrates the Hilbert transform spectrum
analysis with Empirical Model Decomposition (EMD) to
produce an experience-based method for generating time-
frequency spectra of a variety of nonlinear and nonstationary
signals.

A. Empirical Mode Decomposition

In order to use the properties of the Hilbert transform to
determine the instantaneous amplitude and frequency of a
signal, the signal must meet the requirements of an Individual
Model Function (IMF). An IMF can be defined as a class of
functions satisfying the following conditions [13]:

1) In the whole dataset, the number of extrema and the
number of zero-crossings must either equal or differ at
most by one;

2) At any point, the mean value of the envelopes defined
by the local maxima and minima is zero.

Using the definition of IMF, any signal can be decomposed
into a set of IMFs. The EMD method is employed to obtain
the IMFs of the signal by implementing a sifting process. The
process starts by identifying all local extrema of the signal,
and then a cubic spline is used to connect all the local maxima,
which is define as the upper envelope. A similar process is
then executed to generate a spline connecting the local minima
to create the lower envelope. The upper and lower envelopes
should contain all points in the original signal x(t).

The mean value of the two envelopes is denoted as m,, and
the difference between the original signal x(t) and m, is
defined as h,

hy(t) = x(t) —my(t) (D
The sifting operation in (1) yield h; from x(t). Normally
h, will not yet satisfy the requirements of an IMF after the
first round of sifting [13]. Therefore, the process is repeated
using h; as the original data and the result is k44,

hy1(t) = hy(t) —my4 (1) 2
where m,; the mean value of upper and lower envelops in h;.
After repeating the process k times, hy; will satisfy the
requirements of an IMF,

hy(t) = hl(k—l)(t) — My (t) (3)
The resulting time series is redefined as the first IMF, or
designated as c¢; (t) = hy(t).

Checking must be performed on whether the number of
zero crossings equals the number of extrema after each sifting
step. A point where further sifting will no longer result in
significant changes to the signal usually determines the
stopping criterion for the sifting process. After the first IMF is
found, it must be subtracted from the original data so the
difference can be further sifted to generate other IMFs. This
new signal, called 14, is the residue of the original signal with
c; removed,

() =x(@) —c1(®) 4)

If the original data contains more than one IMF, the same

2

sifting procedure as for x(t) can be applied to the residue r;.
This process is repeated for each subsequent residue until the
residue becomes a monotonic function from which no further
IMFs can be extracted. The final set of IMFs and the last
residue will contain all the components of the original signal
such that

MO =) a® -+ )

B. Hilbert Transform

Once the signal has been completely decomposed into a set
of IMFs, the instantaneous amplitude and frequency of each
IMF can be found by using the Hilbert transform. The Hilbert
transform is used to find the complex conjugate H[c;(t)] for
each of the real valued IMFs extracted from x(t):

(6)

where PV the principal value of the singular integral. With this
definition, an analytic signal Z;(t) consisting of ¢;(t) and
H[c;(t)] is formed as

Zi(t) = ¢;(t) + jH[c;(D)] = a;(t)expjo;(6)] (7
where a;(t) and 6;(t) the instantaneous amplitude and phase

angle of the IMF, respectively. Both of them can be
individually defined as

1 “¢(7)
Hlc(0)] —;Pvfw:df

a,(t) =i (O + (Hle, (D12 ®)
_ H[c; ()]
0;(t) = arctan {q(—t)} (&)

Utilizing the instantaneous phase angle, the instantaneous
frequency is then calculated as

do;(t)
(1) = 10
w;(t) it (10)
Thus, the original signal can be expressed in (11),
n
x(t) = Re (Z a;(t)exp [jfwi(t)dt]) (11)
i=1

where the residue 1, (t) has been left over; and Re(-) denotes
the real part of a complex quantity.

By processing each IMF from the original signal as above,
the full instantaneous frequency spectrum can be developed.
Integrating the instantaneous amplitude and frequency
calculated using the Hilbert transform, a time-frequency
analysis of the signal can be accomplished.

C. Proposed HHT-Based CMFD Method

A novel algorithm is developed to employ the HHT for
CMFD of a wind turbine system by using generator stator
current measurements, as illustrated in Fig. 1. A PLL speed
estimator is developed to estimate the shaft rotating speed of
the wind turbine, which is then used for CMFD. The use of the
shaft rotating speed signal simplifies the IMF extraction, as
the PLL removes main harmonics from the current signal, and
meanwhile increases the signal to noise ratio (SNR) of the
signal to be processed [10], [11], [13].

After completing the steps to process the HHT for a fault at
different severities, the results can be compared to identify the



severity of the fault. A process is developed to isolate and
combine the amplitude of each IMF yielded by the HHT that
falls within specific frequency ranges. Then the amplitude of
the processed IMF around the frequencies of interest could
then be averaged. By doing so, it is possible to create simple
bar graphs comparing the average amplitudes of IMFs for the
faulty wind turbine system against the healthy wind turbine.
The results can be visually inspected to verify the presence of
the fault in question as well as to identify its severity.

WTG stator
! l Cln]
current signal

[ PLL-based speed estimator j

WTG shaft speed S[n]

e
. s s |

|
| v IMF; v IMFy |
|

[Hilben: transform of each IMF]—'i

A —

9 Is frequency in fault range YES

N=Nmax
Plot value of running
average for each IMF

Fig. 1. Flowchart of the HHT-based fault detection algorithm.
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The proposed algorithm innovatively explores the impacts
of faults on stator current signatures, in the sense of variations
in time domain over a frequency range, rather than the
changes at a specific frequency or several specific frequencies.
The latter is a commonly used approach to diagnose
mechanical defects in wind turbine systems [11], [12], [16].
The proposed algorithm is especially useful for cases when no

specific frequency components are available in the
vibration/current measurements, or when the characteristic
frequencies are nonstationary, and thus not directly
observable.

III. EXPERIMENTAL VALIDATION

A. Experimental System Setup

A 160-W Southwest Windpower Air Breeze wind turbine is
deployed (Fig. 2) for experimental validation of the proposed
HHT-based CMFD of wind turbine. The wind turbine is tested
in an open-loop suction wind tunnel capable of providing
stable and controllable wind speeds in the range of 0 to 10
m/s, and the wind turbine operates with a time-varying speed
in a range of 6 to 13 Hz, accordingly. The nonstationary wind
flow velocity inside the wind tunnel during experiments
permits the wind turbine to operate in a situation similar to
real-world conditions while still allowing for the control
necessary to complete the experiments. One-phase stator
current of the generator is measured via a Fluke current clamp,
while the power generated by the wind turbine supplies a

constant resistive load. The measurements are recorded
through a National Instruments (NI) data acquisition system at
a sampling rate of 10 kHz and the data are then stored by NI
LabVIEW operating on a lab computer.

Blade and bearing faults constitute a considerable portion
of all faults in wind turbine systems [17], [18]. A minor fault
can cause significant consequences on the wind turbine
systems. Due to wind turbines’ delicate structure and high
repairing costs, effective fault detection of blades and bearings
is of significant interest to the wind industry. A variety of
blade and bearing faults, happening in real applications, are
duplicated in current experiments by pre-modifying the
components, i.e., the blades and bearings.

Fig. 2. Wind tunnel with a testing Air Breeze wind turbine.

B. Blade Imbalance

To create a blade imbalance fault, additional mass is added
to or subtracted from the tip of one blade (Fig. 3). The mass is
adjusted multiple times to emulate a blade imbalance of +1%,
2%, 3% and 5% off the original blade mass. Therefore, the
experiments will represent five different levels of imbalance,
including a baseline case where the three blades are balanced.

Additional

Fig. 3. Depiction of imbalance fault of a wind turbine blade.

The proposed method is applied to the generator stator
current to obtain the IMFs of the wind turbine rotating speed,
which is estimated by the PLL method. Based on the previous
work using a 1P-invariant PSD method, it has already been



found that the imbalance fault introduces a change in the
amplitude in the range of 6 to 13 Hz in the PSD spectrum of
the shaft rotating speed estimated from the stator current [10].
Therefore, after extracting all the IMFs and calculating their
respective amplitudes and frequencies, the second IMF is
found to contain the majority of the 6 to 13 Hz frequency
components (Fig. 4). The samples of the second IMF are then
averaged in amplitude for each case, based on which a bar
graph is generated in Fig. 5. From the comparison, a clear
trend is evident that the average amplitude of the second IMF
continuously increases because of the increasing severity of
the fault. Therefore, the proposed method can not only identify
but also quantify the level of blade imbalance of the wind
turbine. The results corroborate with that obtained using the
1P-invariant PSD method in [10].

The Second IMF of Shaft Rotating Frequency Estimated from Generator Stator Current
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Fig. 4. Hilbert transform of the second IMF for blade imbalance case.
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Fig. 5. Average amplitude of the second IMF for blade imbalance case.

C. Blade Misalignment

A blade misalignment is a blade that bends flapwise or
edgewise, as illustrated in Fig. 6. A series of experiments are
performed on edgewise bending blade to test the ability of the
HHT-based method for detecting blade misalignment. To
emulate the effect of blade edgewise bending, one blade of the
testing turbine is affixed at 2, 4, and 6 degrees from its normal
position, respectively. This effectively results in a blade
imbalance with the drivetrain having larger mass in the
direction towards which the blade is misaligned. Therefore, it
is expected that the fault signatures of blade misalignment
should be similar to that of the blade imbalance fault in
previous subsection III-B.

Just as in the blade imbalance experiments, the second IMF
is selected for the aforementioned reasons. A bar graph with

the average amplitude of the IMF for each misalignment case
is depicted in Fig. 7. A clear trend appears as the blade
deviates from its normal position. The results are similar to
those of blade imbalance, as discussed above that this
phenomenon is expected due to the similarity between these
two fault types.

—» Edgewise

Flapwise

Fig. 6. Depiction of blade bending flapwise or edgewise.
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Fig. 7. Average amplitude of the second IMF for blade misalignment case.
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D. Inner-Race Bearing Fault

The testing bearing used in the experiments is the main
bearing of the Air Breeze wind turbine located between the
rotors of the turbine and the generator (Fig. 8). An artificial
hole is drilled in the inner race of a testing bearing to emulate
an inner-race defect (Fig. 9). The damaged bearing is then
switched with the wind turbine main bearing.

Testing
bearing

Fig. 8. Placement of the testing bearing in the Air Breeze wind turbine.

—

Fig. 9. Testing bearing with an inner-race fault.

Prior to processing the estimated shaft rotating speed for
bearing fault detection, the estimated shaft speed for the



healthy bearing is concatenated with that for the faulty
bearing. The purpose of agglutinating two sets of data under
different conditions prior to the EMD is to make the results
directly and visually comparable without a bar graph. This is
because the IMF has no specified frequency range, the same
signal components may end up in different IMFs. The results
are split at the point where they were combined to produce
two sets of results: one for the healthy bearing and the other
for the faulty bearing. A significant difference exists in the
third IMF, as indicated by Fig. 10. For the fault case, the
amplitude of the third IMF dramatically increases, when
compared to the baseline case. Therefore, the excitations of
particular frequency components induced by the bearing inner-
race fault can be successfully detected using the generator
stator current via the proposed HHT-based method.

Third IMF Extracted from Estimated Turbine Speed for Baseline Case Combined with
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Fig. 10. Hilbert transform of the third IMF of the combined samples for
bearing inner-race fault.
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IV. DISCUSSION & CONCLUSION

The HHT-based algorithm is capable of detecting
mechanical faults based on time-frequency analysis. It can be
directly applied to the nonlinear and nonstationary signals,
without pre-processing to convert the characteristics
frequencies to corresponding constant values. It overcomes the
drawbacks of traditional frequency-based fault detection
techniques that particular characteristic frequencies related to
the faults should be pre-acquired. The HHT-based methods are
believed to be non-frequency-based ones which require only a
frequency range. Of course, using the frequency-based
methods can be of great help in selection of the right IMFs
that contain the objective frequency components.

An HHT-based technique has been proposed for online
wind turbine CMFD using generator stator current
measurements. The proposed method integrates a PLL to
estimate the shaft rotating speed of the WTG from the
measured stator current signal. The estimated shaft rotating
speed is first processed by EMD method, which decomposes
the signal into a set of IMFs. The Hilbert transform is then
utilized to calculate the analytic signal for each IMF, from
which the instantaneous amplitude and phase angle of each
IMF can be derived and employed to generate fault signatures
for wind turbine fault diagnosis.

The proposed method has been validated for the detection
of various types of faults on wind turbine blade and main
bearings. The experimental results have demonstrated that the

proposed method has been successfully applied to the
detection of blade imbalance, blade misalignment, as well as
bearing inner-race fault. The successful applications of the
proposed method using only the generator stator current
signals can not only identify but also quantify the severity of
the faults, representing a significant achievement in wind
turbine CMFD.
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