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Abstract—Mechanical failures of wind turbines represent a 

significant cost in both repairs and downtime. Detecting incipient 
faults of wind turbine components permits maintenance to be 
scheduled and failed parts to be repaired or replaced before 
causing failures of other components or catastrophic failure of 
the system. This paper proposes a Hilbert-Huang transform 
(HHT)-based algorithm to effectively extract fault signatures in 
generator current signals for wind turbine fault diagnosis by 
using the HHT’s capability of accurately representing the 
instantaneous amplitude and frequency of nonlinear and 
nonstationary signals. A phase-lock-loop (PLL) method is 
integrated to estimate wind turbine rotating speed, which is then 
used to facilitate the fault detection. The proposed method is 
validated by a real direct-drive wind turbine with different types 
of faults. The experimental results demonstrate that the proposed 
method is effective to detect various faults in wind turbine 
systems as well as to reveal the severities of the faults. 

 
Index Terms—Condition monitoring, current, fault detection, 

Hilbert-Huang transform (HHT),   wind turbine. 

I.  INTRODUCTION 
HE continuously growing number of wind turbine systems 
has increased the need to maintain and repair the wind 

turbines as they age and begin to fail. The cost of maintaining 
wind turbines shares a significant proportion of the total 
operational costs, often accounting for 10-15% and 25-30% of 
the energy generation costs for onshore and offshore wind 
turbines, respectively [1]-[3]. A considerable percentage of the 
maintenance cost is caused by unexpected drivetrain failures. 
These malfunctions also result in extended downtime as both 
parts and heavy equipment must be transported to the sites, 
which are often in remote areas [4]. Condition monitoring and 
fault detection (CMFD) techniques have been applied to detect 
diverse faults in wind turbines while the faults are still in an 
incipient phase, allowing for less downtime, increased lifespan 
and decreased wind power cost [4]-[6]. 

Online CMFD techniques can be classified into several 
categories based on the measurements employed. These 
measurements include electrical quantities (voltage, current 
and power), vibration, acoustic emission, temperature, oil 
constituent, etc. [4]-[6] Among them, vibration-based 
techniques have been the conventionally main focus of wind 
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turbine CMFD [6] and proved successful for wind turbine 
systems as well as other industrial applications [7], [8]. The 
current-based techniques are gaining more attention for their 
advantages over vibration-based techniques in terms of 
accessibility, cost, implementation, and reliability [9]-[11]. 
The costs and complexity involved in current-based CMFD 
techniques are significantly lower than many other methods 
because current sensing is already implemented on most wind 
turbines and thus no additional sensors are required. 

Online CMFD generally involves some forms of signal 
processing. Conventionally, the fast Fourier transform (FFT) 
and the short–time Fourier transform (STFT) are well-
established methods that have achieved certain success and are 
widely used in industries [12]. However, they fail to 
characterize the faults in wind turbines which usually run in 
variable-speed conditions. The discrete wavelet transform 
(DWT), which is a time-frequency analysis method, is capable 
of presenting the time-varying frequency components of 
nonstationary signals. It has been successfully used in 
vibration-based gearbox CMFD [8]. However, the DWT 
suffers from inevitable issues of low resolution, interference 
terms, border distortion, and energy leakage [7].  

The HHT is a relatively new method for time-frequency 
analysis that is able to calculate the instantaneous amplitude 
and frequency of nonlinear and nonstationary signals [13]. 
Unlike wavelet transforms, the HHT is based on an adaptive 
algorithm. Therefore, no prior knowledge of the signal is 
required to perform the HHT [14]. As a differentiation-based 
method, there is no uncertainty principle limitation in the 
result as that in the convolution-based wavelet and Fourier 
transforms. The HHT has been found powerful and successful 
in condition monitoring of electric machines using vibration 
data [7], and in detection of rotor bar failures of induction 
machines using stator current data [15]. 

This work investigates the application of the HHT to detect 
mechanical failures in wind turbines using generator stator 
current signals. Successful utilization of stator currents 
represents a cost-effective, nonintrusive CMFD technique for 
retrofitting existing condition monitoring methods for wind 
turbines. The proposed method is testified for a real direct-
drive wind turbine with blade imbalance, blade misalignment 
and bearing inner-race faults. The experimental results lucidly 
prove the effectiveness of the proposed HHT-based algorithm 
for CMFD of wind turbine systems.  
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II.  HILBERT-HUANG TRANSFORM-BASED CMFD ALGORITHM 
The HHT was initially developed by Norden E. Huang to 

analyze the nonlinear and nonstationary nature complex waves 
[13]. The HHT integrates the Hilbert transform spectrum 
analysis with Empirical Model Decomposition (EMD) to 
produce an experience-based method for generating time-
frequency spectra of a variety of nonlinear and nonstationary 
signals. 

A.  Empirical Mode Decomposition 
In order to use the properties of the Hilbert transform to 

determine the instantaneous amplitude and frequency of a 
signal, the signal must meet the requirements of an Individual 
Model Function (IMF). An IMF can be defined as a class of 
functions satisfying the following conditions [13]: 

1) In the whole dataset, the number of extrema and the 
number of zero-crossings must either equal or differ at 
most by one; 

2) At any point, the mean value of the envelopes defined 
by the local maxima and minima is zero. 

Using the definition of IMF, any signal can be decomposed 
into a set of IMFs. The EMD method is employed to obtain 
the IMFs of the signal by implementing a sifting process. The 
process starts by identifying all local extrema of the signal, 
and then a cubic spline is used to connect all the local maxima, 
which is define as the upper envelope. A similar process is 
then executed to generate a spline connecting the local minima 
to create the lower envelope. The upper and lower envelopes 
should contain all points in the original signal ����.  

The mean value of the two envelopes is denoted as ��, and 
the difference between the original signal ����  and ��  is 
defined as ��, 

����� 	 ���� 
 ����� (1) 
The sifting operation in (1) yield �� from ����. Normally  �� will not yet satisfy the requirements of an IMF after the 

first round of sifting [13]. Therefore, the process is repeated 
using �� as the original data and the result is ���, 

������ 	 ����� 
 ������ (2) 
where ��� the mean value of upper and lower envelops in ��. 
After repeating the process �  times, ���  will satisfy the 
requirements of an IMF, 

������ 	 ��������� 
 ������ (3) 
The resulting time series is redefined as the first IMF, or 
designated as ����� 	 ������. 

Checking must be performed on whether the number of 
zero crossings equals the number of extrema after each sifting 
step. A point where further sifting will no longer result in 
significant changes to the signal usually determines the 
stopping criterion for the sifting process. After the first IMF is 
found, it must be subtracted from the original data so the 
difference can be further sifted to generate other IMFs. This 
new signal, called ��, is the residue of the original signal with �� removed, 

����� 	 ���� 
 ����� (4) 
If the original data contains more than one IMF, the same 

sifting procedure as for ���� can be applied to the residue ��. 
This process is repeated for each subsequent residue until the 
residue becomes a monotonic function from which no further 
IMFs can be extracted. The final set of IMFs and the last 
residue will contain all the components of the original signal 
such that 

���� 	� ������
��� � ����� (5) 

B.  Hilbert Transform 
Once the signal has been completely decomposed into a set 

of IMFs, the instantaneous amplitude and frequency of each 
IMF can be found by using the Hilbert transform. The Hilbert 
transform is used to find the complex conjugate �������� for 
each of the real valued IMFs extracted from ����: 

�������� 	 �
� ���

������ 
 � ��
�
�

 (6) 

where �� the principal value of the singular integral. With this 
definition, an analytic signal  ���� consisting of �����  and �������� is formed as 

 ���� 	 ����� � !�������� 	 "����#�$�!%����� (7) 
where "���� and %���� the instantaneous amplitude and phase 
angle of the IMF, respectively. Both of them can be 
individually defined as 

"���� 	 &�����' � (��������)' (8) 

%���� 	 "���"* +������������� , (9) 

Utilizing the instantaneous phase angle, the instantaneous 
frequency is then calculated as 

-���� 	 �%������  (10) 

Thus, the original signal can be expressed in (11), 

���� 	 .# /� "����01234! �-������5�
��� 6 (11) 

where the residue ����� has been left over; and  .#�7� denotes 
the real part of a complex quantity. 

By processing each IMF from the original signal as above, 
the full instantaneous frequency spectrum can be developed. 
Integrating the instantaneous amplitude and frequency 
calculated using the Hilbert transform, a time-frequency 
analysis of the signal can be accomplished.  

C.  Proposed HHT-Based CMFD Method 
A novel algorithm is developed to employ the HHT for 

CMFD of a wind turbine system by using generator stator 
current measurements, as illustrated in Fig. 1. A PLL speed 
estimator is developed to estimate the shaft rotating speed of 
the wind turbine, which is then used for CMFD. The use of the 
shaft rotating speed signal simplifies the IMF extraction, as 
the PLL removes main harmonics from the current signal, and 
meanwhile increases the signal to noise ratio  (SNR) of the 
signal to be processed [10], [11], [13].  

After completing the steps to process the HHT for a fault at 
different severities, the results can be compared to identify the 
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