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apoptotic hepatocytes in HCV dissemination: regulation by acetalde-
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2016. First published April 7, 2016; doi:10.1152/ajpgi.00021.2016.—
Alcohol consumption exacerbates hepatitis C virus (HCV) pathogen-
esis and promotes disease progression, although the mechanisms are
not quite clear. We have previously observed that acetaldehyde (Ach)
continuously produced by the acetaldehyde-generating system (AGS),
temporarily enhanced HCV RNA levels, followed by a decrease to
normal or lower levels, which corresponded to apoptosis induction.
Here, we studied whether Ach-induced apoptosis caused depletion of
HCV-infected cells and what role apoptotic bodies (AB) play in
HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed
the induction of miR-122 and miR-34a. As miR-34a has been asso-
ciated with apoptotic signaling and miR-122 with HCV replication,
these findings may suggest that cells with intensive viral replication
undergo apoptosis. Furthermore, when AGS-induced apoptosis was
blocked by a pan-caspase inhibitor, the expression of HCV RNA was
not changed. AB from HCV-infected cells contained HCV core
protein and the assembled HCV particle that infect intact hepatocytes,
thereby promoting the spread of infection. In addition, AB are cap-
tured by macrophages to switch their cytokine profile to the proin-
flammatory one. Macrophages exposed to HCV� AB expressed more
IL-1�, IL-18, IL-6, and IL-10 mRNAs compared with those exposed
to HCV� AB. The generation of AB from AGS-treated HCV-infected
cells even enhanced the induction of aforementioned cytokines. We
conclude that HCV and alcohol metabolites trigger the formation of
AB containing HCV particles. The consequent spread of HCV to
neighboring hepatocytes via infected AB, as well as the induction of
liver inflammation by AB-mediated macrophage activation potentially
exacerbate the HCV infection course by alcohol and worsen disease
progression.

HCV RNA; acetaldehyde; apoptosis; hepatocytes; macrophages

ALCOHOL EXPOSURE EXACERBATES hepatitis C virus (HCV) infec-
tion severity, increases liver inflammation, and potentiates liver
injury progression. However, the pathogenesis of HCV-alcohol
interactions is not clear yet. The major difficulty in HCV-
alcohol studies is related to the lack of adequate models that
can recapitulate both viral replication and ethanol metabo-
lism—two important features that potentiate liver injury pro-
gression in alcohol-abusing HCV patients. Human liver cell
lines permissive for HCV (Huh7.5 or Huh 7.5.1) that are

currently used for HCV-alcohol-related in vitro studies do not
metabolize ethanol, while ethanol-metabolizing rodent liver
cells cannot support HCV replication. Studies conducted with
isolated human hepatocytes also have failed, since these cells
require at least 4–5 days to become infected with HCV;
however, by this time, hepatocytes lose the expression and
functional activity of CYP2E1 and alcohol dehydrogenase
(ADH), the main ethanol-metabolizing enzymes (47). In vivo
models of HCV infection are also questionable, since small
rodents cannot be infected with human HCV, and they only
transgenically express HCV proteins, in the absence of repli-
cating virus. The best option in this case is to use immunode-
ficient mice with humanized livers that are able to replicate
the human virus, but to our best knowledge, while infection
of the liver with HCV is widely reported (5, 26, 57),
HCV-ethanol studies on this expensive and demanding
model are very few (37).

Many investigators attribute the potentiating effects of eth-
anol to enhanced HCV replication. However, these reported
studies were conducted on either ethanol-nonmetabolizing
cells or cells that express only CYP2E1, but not ADH, sug-
gesting that they did not generate appreciable levels of acetal-
dehyde (Ach) (36, 51, 62). While some studies claimed the role
of ethanol-induced redox changes in promoting HCV replica-
tion (46), meta-analysis data summarizing the effects of etha-
nol on HCV RNA in HCV-infected alcoholic patients, revealed
minimal contribution of alcohol in enhancing HCV levels (1).

Altered ethanol- or Ach-induced cellular signaling may
worsen HCV progression by affecting the regulation of HCV
RNA production, packaging, or dissemination. MicroRNAs
have the potential to regulate a number of steps in HCV
progression. For example, miR-122 has two seed-binding sites
in the 5=UTR of the HCV RNA genome that are upstream of
the internal ribosomal entry site and are necessary for viral
replication (34). Reduced miR-122 binding decreases, while
increased binding elevates HCV replication (3, 22). Alterna-
tively, we have postulated a role for apoptosis in HCV prop-
agation, and miR-34a is known to regulate apoptosis in hepa-
tocytes (10).

Recently, we showed a biphasic effect of ethanol metabo-
lites on HCV RNA expression in JFH1-infected Huh7.5-
CYP2E1� cells exposed to ethanol-containing acetaldehyde-
generating system (AGS) that makes physiological levels of
Ach. We observed an enhancement of HCV RNA levels by 24
h of AGS cell exposure, but HCV RNA returned to untreated
or even lower levels at 48 h of exposure. Furthermore, similar
kinetics for HCV core protein expression on lipid droplets in
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these cells was observed using immunofluorescent staining
(17), confirming the HCV RNA data. In addition to the loss in
HCV RNA at 48 h of AGS exposure, we observed the induc-
tion of apoptosis in HCV-infected cells (2). Thus, we hypoth-
esized that HCV replication, induced by ethanol metabolism
(Ach), sensitizes infected liver cells to apoptosis. We further
hypothesized that the generated apoptotic bodies (AB) poten-
tiate the spread of viral infection and contribute to the induc-
tion of liver injury by programming liver macrophages toward
an inflammatory phenotype. Here, we provide evidence for this
scenario that explains how ethanol exacerbates HCV patho-
genesis.

MATERIALS AND METHODS

Reagents and Media

High-glucose DMEM and FBS were purchased from Invitrogen
(Carlsbad, CA). Antibodies to the cleaved caspase-3 and PARP were
obtained from Cell Signaling (Beverly, MA); Antibody to �-actin
were obtained from Santa Cruz Biotechnology (Santa Cruz, CA).

Cell Lines and Treatment

CYP2E1� Huh7.5 (RLW) cells were obtained and cultured as
described before (17). They were infected with JFH1 virus at multi-
plicity of infection (MOI) � 0.1 (24) or left uninfected. The cells were
exposed for 48 h to 50 mM ethanol (EtOH), yeast ADH (0.02 U/ml),
and 2 mM nicotinamide adenine dinucleotide (NAD). This system
designated as AGS was designed to produce Ach to mimic the effect
of ethanol metabolism via ADH-mediated Ach release. In AGS,
ethanol serves as a substate for yeast ADH-mediated enzymatic
reaction utilizing NAD as a cofactor. We have previously shown that
AGS generates a high level of Ach in a cell-free medium, but in the
presence of RLW cells, a medium level of Ach measured by gas
chromatography (GC) fluctuates between about 250 (at 1–4-h expo-
sure) and 50 �M (at 18–48 h exposure) (for details, see Ref. 17).
These levels of Ach correspond to the amount of Ach produced by
ADH-expressing liver cells (14, 38). AGS provides sustained gener-
ation of Ach, which recapitulates the in vivo conditions observed upon
ethanol metabolism in the liver. According to the results of lactate
hydrogenase measurement, AGS is not toxic to RLW cells (17).

Primary Human Hepatocytes

Human hepatocytes were obtained from Triangle Research Labs
(Research Triangle Park, NC). Human hepatocytes were attached to
collagen-coated six-well plates (8�105 cells/well) and then infected
with JFH1 (HCV genotype 2a) virus at MOI � 0.1 (total time of
infection is 5 days). Infected cells were cultured in William’s medium
with supplements (insulin, holo-transferin, L-ascorbic acid, dexam-
ethazone, selenium, and antibiotics) and 10% FBS for 3 days and then
exposed to AGS for 24 and 48 h.

Primary Human Macrophages

Monocytes were obtained from healthy donor blood elutriation. For
macrophage (Mph) differentiation, human monocytes were cultured
for 0–8 days in DMEM culture media containing human serum and
macrophage colony-stimulating factor.

RNA Isolation and Real-Time PCR

Reagents used for RNA isolation, cDNA synthesis and real-time
PCR were from Life Technologies (Carlsbad, CA). The relative HCV
RNA expression level in infected cells was quantified as described
before (61). MicroRNAs were amplified using TaqMan microRNA
reverse transcription kit (ThermoFisher, Grand Island, NY) from 100
ng of total RNA. Stem loop primers and hydrolysis probes for

miR-34a (hsa-miR-34a-5p, no. PN4427975-000426), miR-122 (has-
miR-122-5p, no. PN442795-002245), and control, Z30 RNA (no.
PN4427975-001092) were also obtained from ThermoFisher. Relative
expression was calculated as using DeltaCT Method as described
previously (19).

Immunoblotting

Cell lysis and immunoblotting were performed as described previ-
ously (53).

Apoptotic Bodies Generation

Apoptosis was induced by ultraviolet (UV) light (0–100 mJ/cm2,
140 s) (6). After 24 h, the floating apoptotic bodies were collected
from 10-cm plates by centrifugation at 1,500 rpm for 5 min and
resuspended in DMEM.

HCV Infectivity of Apoptotic Bodies

Huh7.5 cells (2–3 � 104 per well) were plated on eight-well
chamber slides and incubated overnight; then, they were intensively
washed 3�, and AB generated from (6 �104) JFH1-infected or
noninfected Huh7.5 cells were applied to the wells. JFH1 virus was
used as a positive control. Medium from the last wash of AB separated
by centrifugation was used as a negative control. AB, JFH1 virus, or
medium were incubated with intact cells for 72 h, and then cells were
stained with antibody to HCV core (clone: C7-50, ThermoScientific,
cat no. MA1-080, dilution 1:300) for 1 h at room temperature
followed by incubation with secondary antibody [Alexa Fluor 594
goat-anti-mouse (1:500), Invitrogen] and DAPI for 1 h in the dark.
The presence of HCV was visualized using a 10� lens in a LSM 710
confocal microscope (Carl Zeiss, Peabody, MA).

Characterization of Apoptotic Cells

Hoechst 33342 staining: cell aliquots (1–5 � 105) from the ultra-
violet light-treated cells were cytospun onto glass slides, fixed in 4%
paraformaldehyde in PBS, incubated with 7 �g/ml of Hoechst 33342
(Sigma) at 37°C for 10 min, washed, and sealed under VectaShield.
Fluorescent Hoechst H33342-stained nuclei were observed under
fluorescent microscopy.

Flow Cytometry Analysis

The percentage of apoptotic cells were determined using annexin-
V/propidium iodide (PI) apoptosis detection kit (BD Biosciences, San
Diego, CA), according to the instructions of the manufacturer, where
Annexin V�/PI� cells showed early apoptosis and Annexin V�/PI�

cells showed late apoptosis. Fluorescence was detected by flow
cytometry (BD LSR-II-Green).

Macrophage Treatment with AB

After differentiation of Mph for 8 days, on day 9, an equal number
of AB from HCV-infected Huh7.5 cells or HCV-infected Huh7.5 cells
pretreated with AGS were added to macrophages (Mph) for 2, 4, 8,
and 24 h (Mph: AB ratio was 1:3). AGS-treated or untreated HCV-
noninfected cells used for AB generation served as a negative control
for the effects of virus/viral proteins on cytokine mRNA induction in
Mph measured by RT-PCR, as described above.

ApoB protein was quantified by ELISA method (Mabtech ELISA
kit; Mabtech, Cincinatti, OH) in medium from cultured cells exposed
or not to AGS.

Statistical Analyses

Data from at least three independent experiments were expressed as
means � SE. Comparisons among multiple groups were determined
by one-way ANOVA, using a Tukey post-hoc test. For comparisons
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between two groups, we used Student’s t-test. A probability value of
0.05 or less was considered significant.

RESULTS

Kinetics of HCV RNA, miR-122, and miR-34a Expression
Upon Exposure of Cells to AGS

As reported before, we observed an increase in HCV RNA
in RLW cells at 4, 18, and 24 h of AGS treatment, which then
returned to control (untreated) levels at 48 h (Fig. 1A). In some
experiments, we observed even suppression of HCV RNA at
this latter time point. These changes in HCV RNA level are
accompanied by upregulation of miR-34a at 24 and 48 h and

miR-122 at 48 h (Fig. 1, B and C). Since miR-122 increases
HCV replication by targeting HCV RNA (28), decrease in
HCV RNA at 48 h exposure to AGS (when miR 122 is still
high) was intriguing. However, upregulation of proapoptotic
miR-34a (29), observed at 24 h of AGS treatment that further
increases at 48 h, suggested a substantial apoptosis in HCV-
replicating cells that could lead to HCV RNA depletion to
amounts comparable to AGS-pretreatment levels.

AGS Suppresses Very Low-Density Lipoproteins Secretion

Since VLDLs serve as a vehicle for the secretion of intracel-
lularly assembled HCV particle (21), to study whether the reduc-
tion in HCV RNA at 48 h is attributed to the effects of AGS on
VLDL secretion, we measured ApoB levels in the medium of
control and ethanol or AGS-treated RLW cells by ELISA. Ethanol
in the absence of AGS did not affect ApoB release to the medium,
while AGS suppressed ApoB secretion in infected and nonin-
fected cells (Fig. 2, A and B), indicating the role of Ach in this
process. Furthermore, cleared by centrifugation, supernatants
from AGS-exposed infected cells were unable to infect intact
Huh7.5 cells (infectivity assay, not shown).

Apoptosis in HCV-Infected RLW Cells Exposed to AGS

We hypothesized that the decrease in HCV RNA at 48 h of
AGS treatment was related to enhanced apoptosis in HCV� cells
exposed to AGS. Thus, we measured the kinetics of apoptosis
induction (cleaved caspase 3 and PARP) upon EtOH or AGS
treatment (Fig. 3). While ethanol induced no apoptosis in our
CYP2E1� RLW cells, AGS increased caspase 3 cleavage by
seven-fold in HCV-infected cells and also activated PARP cleav-
age at 48 h (Fig. 3, A–C). Interestingly, even in the absence of
HCV, AGS activated apoptosis, which was evident by a four-fold
induction of caspase 3 cleavage by 48 h in RLW cells (not
shown). These data indicate that either Ach alone or in a combi-
nation with CYP2E1-generated ethanol metabolites, but not
CYP2E1-mediated ethanol metabolism, per se, enhanced apopto-
tic cell death and that the most potent effects of AGS were
observed in HCV-presensitized cells. Furthermore, by 48 h of
AGS treatment, there was an induction of lipid peroxidation in
infected RLW cells, as evident from the accumulation of 4-HNE
(Fig. 3D). Induction of miR-34a and/or increased production of
4-HNE could be the trigger for cells to undergo apoptosis.

To prove that HCV RNA reduction in AGS-treated RLW cells
is apoptosis-related, we blocked apoptosis by treatment with a
pan-caspase inhibitor, Z-VAD-FMK for the last 24 h of AGS
exposure. While AGS treatment reduced HCV RNA, the reduc-
tion was abrogated by cotreatment with the pan-caspase inhibitor
(Fig. 3E).

Apoptosis induction by combined HCV plus Ach exposure
was attenuated by silencing miR-34a using a locked nucleic
acid antagonist, LNA-34a. There was a 16% reduction in levels
of cleaved caspase 3 in LNA-34a treatment compared with
LNA controls (Fig. 4, A and B; see details of experiment in
figure legends). These data are consistent with miR-34a-depen-
dent induction of apoptosis by Ach in HCV� cells.

HCV RNA and Apoptosis in HCV-Infected Human AGS-
Exposed Hepatocytes

To confirm that the changes observed in hepatoma cells
upon AGS treatment are reproducible in human hepatocytes,
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Fig. 1. Effects of the acetaldehyde-generating system (AGS) on expression of
hepatitis C virus (HCV) RNA and miRNAs. HCV-infected CYP2E1� Huh7.5
(RLW) cells were treated with AGS for the indicated time. A: RT-PCR analysis
of HCV RNA in RLW cells. GAPDH mRNA was used to normalize the gene
of interest. B and C: quantitative PCR analysis of miR-122 and miR-34a. Z30
RNA was used to normalize the gene of interest. All data (representative
results and quantification) were generated from three independent experiments
and presented as means � SE. Bars with different letters are significantly
different at P � 0.05.
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we infected hepatocytes with JFH-1 virus for 72 h and then
exposed to AGS for 24 and 48 h. HCV RNA was upregulated
at 24 h of AGS exposure and returned to control levels by 48
h (Fig. 5A). Accordingly, by 48 h of AGS treatment, we
observed cleavages of caspase 3 and PARP (Fig. 5, B–E).

AB Contain HCV Proteins and Virus

To better characterize AB, we induced apoptosis in HCV-
infected and noninfected RLW cells by exposure to UV light.
Apoptosis was confirmed by Hoechst staining, as well as by
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flow cytometric analysis of propidium iodide (PI) and Annexin
V-FITC staining (Fig. 6, A and B). This UV exposure gener-
ated a sufficient amount of AB of 80–90% purity that could be
used for Western blot (WB) analysis and infectivity assay.
HCV core protein was detected by WB analysis in AB from
both control and AGS-treated infected cells (Fig. 7, A and B);
the amount of HCV core protein was three-fold lower in live
(attached) AGS-treated cells corroborating the observed reduc-
tion of HCV RNA at this time point (Fig. 7, C and D).
Furthermore, washed AB (but not medium from the last wash)
were able to infect intact Huh7.5 cells (Fig. 7E), indicating that
AB contain not just viral proteins, but infection-competent
virus.

HCV� AB Program Macrophage Cytokine Profile

Human in vitro differentiated Mph (primary cells) were
exposed to HCV� and HCV� AB for 2, 4, 8, and 24 h at a 1:3
ratio. mRNAs were determined in Mph at all time points for
the following cytokines: TNF-	, IL-6, IL-1�, IL-18, IL-10,
IL-12, and TGF-�. The optimal time point that demonstrated
the highest levels of mRNA induction after Mph exposure to
AB was chosen for all cytokines. Since engulfment of HCV�

AB may also affect cytokine profile of Mph, to elucidate the
impact of HCV on activation of cytokine genes, we calculated
the ratio between cytokine mRNA expression resulting from
Mph exposure to HCV� AB vs. HCV� AB. As appeared, HCV
activated proinflammatory IL-1�, IL-18, IL-6, and anti-inflam-
matory IL-10 cytokines (Fig. 8A, black bars). Because post-
translational protein modifications induced by RLW cell expo-
sure to AGS can affect antigenic characteristics of AB and,

thereby, influence the cytokine profile of Mph after engulfment
of such AB, we generated HCV� and HCV� AB from either
untreated (control) cells or cells exposed to AGS. We observed
that the HCV� AB generated from AGS-treated cells induced
higher levels of IL-1�, IL-18, and IL-10, but not IL-6 mRNA
compared with the HCV� AGS-treated AB (Fig. 8A, gray
bars).

DISCUSSION

Hepatocytes are primary sites of both HCV replication and
ethanol metabolism. Ethanol is metabolized by major enzymes
CYP2E1 and ADH. Metabolizing ethanol, CYP2E1 generates
reactive oxygen species (ROS) and a small amount of Ach,
while ADH is a main source of Ach. The RLW cells that we
used in this study are Huh7.5 cells stably transfected with
CYP2E1. They do not generate a measurable level of Ach, but
they produce significant ROS levels when exposed to ethanol.
Thus, to mimic ethanol metabolism by hepatocytes and to
study the effects of Ach, we used AGS that provides enzymatic
production of sustained and physiologically relevant amount of
Ach. Here, when Huh7.5-CYP (RLW) cells were exposed to
ethanol only, we observed no significant changes in HCV
RNA, indicating that CYP2E1-mediated ethanol metabolism
per se is not sufficient in regulating HCV RNA levels and
requires sustained generation of Ach. One of the mechanisms
by which ethanol exacerbates HCV pathogenesis is via an
impaired methylation-dependent interferon signaling in hepa-
tocytes that prevents protective antiviral interferon-stimulated
gene activation (17). The role of methylation-dependent dys-
regulation of innate immunity by ethanol in HCV-infected liver

a a a

b
c

0

0.05

0.1

0.15

0.2

0.25

HCV+ Control LNA Control A LNA-34a LNA Control
A+AGS

LNA-34a+AGS

C
le

av
ed

 C
as

pa
se

-3
 / 

βa
ct

in

A

B

Fig. 4. Ach-induced apoptosis is attenuated by miR-34a
antagonist in HCV-infected RLW cells. Immunoblotting of
cleaved caspase-3 and �-actin (A) and quantification of
Western blot (B). HCV-infected RLW cells were trans-
fected using RNAiMAX transfection reagent (Life Tech-
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significantly different at P � 0.05.

G934 APOPTOTIC HEPATOCYTES IN HCV-ALCOHOL STUDIES

AJP-Gastrointest Liver Physiol • doi:10.1152/ajpgi.00021.2016 • www.ajpgi.org



cells has also been shown by others (54). The deficiency in
innate immunity suggests that the level of HCV RNA should at
least be doubled in alcohol-exposed liver cells. Instead, in
previously published (17) and current studies, we observed the
reduction of both HCV RNA and expression of HCV core
protein in Huh7.5-CYP cells after extended exposure to Ach.
These observations were contrary to the enhanced pathogenesis
seen in HCV-infected alcoholics. The current study was un-
dertaken to understand this paradigm.

There is no direct evidence that ethanol metabolites, and
particularly AGS, suppress HCV replication. In contrast, AGS
exposure upregulated miR-122, which usually enhances HCV
replication (20, 45, 48) and has been shown to be elevated in
alcoholic liver disease patients (49). In addition, here, AGS
treatment increased miR-34a, known to be a proapoptotic (10,
11). Thus, miRNAs potentially affect two simultaneous events
in response to Ach: the activation of HCV replication and
apoptosis in infected liver cells. Indeed, our experiments dem-
onstrated an increase in HCV RNA by 24 h of AGS exposure
to cells followed by the decrease in HCV RNA due to apopto-
sis induced by 48 h, as revealed by caspase 3 and PARP
cleavages. These apoptotic events became the most prominent
at the highest levels of lipid peroxidation (determined by

4-HNE expression) activated by AGS in RLW cells. The
crucial role of apoptosis in Ach-mediated depletion of HCV-
infected cells is supported by the fact that Ach failed to reduce
HCV RNA levels when apoptosis was blocked by pan-caspase
inhibitor.

It has been reported before that HCV induces apoptosis of
hepatocytes via BAX-mediated mitochondrion-dependent
caspase 3 pathway (12). Moreover, other authors showed
that HCV induces TRIAL-dependent apoptosis in HCV-
infected liver cells (15, 27). Additionally, the ability of
HCV to sensitize human hepatocytes to apoptosis has been
demonstrated in the model of Scid-Alb-uPA mice with
humanized livers (23).

HCV-induced apoptosis of hepatocytes was confirmed in
primary cell cultures (39), and alcohol metabolism is known to
induce apoptosis to potentiate the effects of HCV (8). Here, we
also observed that HCV-infected human hepatocytes undergo
apoptosis when exposed to AGS, which is accompanied by the
decrease in HCV RNA in live cells. The mechanisms by which
combined HCV and Ach treatment induces apoptosis may
involve a number of pathways. Previous studies have shown
that Ach can inhibit AKT activity, while Ach or ethanol results
in proapoptotic posttranslational modifications to the transcrip-
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Fig. 5. Ach regulates HCV RNA levels and induces apoptosis in HCV-infected hepatocytes. A: HCV-RNA in hepatocytes treated with AGS for 24 h and 48 h,
RT-PCR. B and C: immunoblotting of cleaved caspase-3, �-actin, and quantification. Human primary hepatocytes were infected with JFH-1 virus for 72 h and
then treated with AGS for 24 h and 48 h. D and E: immunoblotting of Cleaved PARP, total PARP, and quantification. All data (representative results and
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P � 0.05.
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tion factor FoxO3 (30). The combination of ethanol, or its
major metabolite acetaldehyde, plus HCV further dysregulates
FoxO3 (55) and alters methylation reactions in cells (17),
which usually are protective from apoptosis in the liver (25).
Here, we additionally found that the combination increased
expression of miR-34a, a known apoptosis inducer that targets
silent information regulator 1 (SIRT1) expression and causes
p53 acetylation (44, 52, 58, 60). Antagonism of miR-34a only
partially reversed caspase 3 cleavage induced by HCV plus
Ach, thereby demonstrating that this microRNA was respon-
sible for part, but not all, of the apoptotic stimulation by these
agents.

An induction of apoptosis in HCV-infected cells could be
generally interpreted as a beneficial event that promotes elim-
ination of infected cells. Thus, Ach-induced apoptosis in hepa-
tocytes should provide protection from HCV infection. Instead,
the clinical course of HCV infection in alcohol-consuming
patients suggests that alcohol exposure promotes chronic per-
sistence of the virus, considerable liver damage, and progres-

sion to hepatocellular carcinoma (HCC) (35, 36, 41, 43),
indicating that the combination of HCV and alcohol is quite
harmful.

We observed that AB generated from HCV� cells not
only express HCV core protein, but are able to infect intact
hepatocytes. Since the canonical pathway of assembled
HCV particle release from HCV-containing cells is through
VLDL secretion, and VLDL secretion was suppressed by
Ach, HCV-containing AB might be an alternative route for
infecting neighboring cells in alcohol consumers. To our
knowledge, this role of Ach-induced AB in HCV spread and
possible chronic persistence of infection has not been re-
ported before. Importantly, in our previous study, we did see
longer HCV persistence (without appreciable effect of eth-
anol feeding on HCV RNA level) in ethanol-fed Scid-Alb-
uPA- mice transplanted with human hepatocytes (human-
ized mice) compared with the same animals on control diet
(37). It is not known which cell receptors could be involved
in the process of infecting naïve hepatocytes with virus-
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Fig. 6. Hoechst 33342 staining of normal and apoptotic cells. A: control cells show normal nuclear staining, while the cells undergoing apoptosis
demonstrated apoptotic chromatin changes: blebbing, fragmentation, and condensation under a fluorescence microscope at �20. Apoptotic cells showed
typical morphological features as DNA condensation, fragmentation, and nuclear shrinkage in UV light-exposed cells. B: flow cytometric analysis of
annexin V-FITC/PI double-staining: Apoptotic cells collected after UV light treatment were incubated with Annexin V-FITC and/or propidium iodide (PI)
and analyzed by flow cytometry. Annexin V�/PI� cells are early apoptotic cells; Annexin V�/PI� cells are late apoptotic.
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containing AB. One candidate is the hepatocyte asialogly-
coprotein receptor (ASGP-R), previously identified as a
mediator of AB uptake (33). However, since the uptake is
markedly impaired by ethanol (56) and this impairment can
be more visible in certain liver zones, such as in perivenule
vs. portal cells (7), it is possible that the in vivo spread of
infection takes place in areas less affected by ethanol, where
the function of ASGP-R is preserved. We cannot exclude
that other receptors (different from ASGP-R) are also in-
volved in AB-hepatocyte interactions. As an option, AB
may infect hepatocytes via the receptors for HCV entry or
those used for HCV� exosome uptake (42). The detailed
mechanism by which AB generated from HCV-infected
cells infect surrounding intact liver cells and the receptor
involvement is currently being investigated in our labora-
tory.

Infection of intact hepatocytes is not the only way that
Ach-generated HCV� AB contributes to liver injury. AB

also may induce inflammation by programming liver mac-
rophages (Kupffer cells) toward a proinflammatory pheno-
type. This, in turn, would promote the uptake of virus by
hepatocytes (16) and finally contribute to cirrhosis/HCC
development (32). The regulation of a cytokine profile of
dendritic cells phagocytosed HCV� AB was reported before
(59). By testing a panel of cytokine mRNAs induced by
exposure of macrophages to AB (AB phagocytosis), we
found that AB made from HCV� cells induced higher levels
of IL-1�, IL-18, IL-6, and IL-10 than HCV� AB. The
toleragenic ability of macrophages to secrete IL-10 in re-
sponse to HCV core and nonstructural NS3 protein is known
to involve the activation of the Toll-like receptor 2 (TLR2)
(9), while triggering some other TLRs by viral host factors
and alcohol may induce inflammation (13, 50). Interest-
ingly, in our study, when AB were generated from HCV�

AGS-treated 4-HNE highly expressing cells, the activation
of IL-1�, IL-18, and IL-10 was even higher and corre-
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sponded to the reported ability of alcohol to induce inflam-
masome formation (40). We cannot exclude that the adduc-
tion of Ach-exposed liver cells by lipid peroxidation prod-
ucts (like 4-HNE) enhances antigenic properties of AB
generated from these cells, which, in turn, could further
induce proinflammatory cytokine activation when phagocy-
tosed by liver macrophages.

Thus, the possible scenario of alcohol-mediated progres-
sion of HCV infection may be summarized as the following
(Fig. 8B): ethanol metabolism (Ach) upregulates miR-122
and miR-34a, which, on one hand, activate replication of
HCV and on the other hand, promote apoptosis of heavily
infected cells. Apoptotic bodies (AB) containing replica-
tion-competent virus infect neighboring intact hepatocytes
and also program macrophages toward a proinflammatory
phenotype; this response is further activated by ethanol-
induced lipid peroxidation products that may coexist in AB
along with HCV. Similarly, promotion of fibrosis could
occur when the AB generated by the ethanol exposure of
HCV-infected ethanol-metabolizing cells are engulfed by
stellate cells (4, 18, 31).

We conclude that the combination of HCV and alcohol
metabolites generate AB formation from infected hepato-

cytes. The consequent spread of HCV to neighboring
hepatocytes via AB as a source of infection, as well as
induction of liver inflammation by AB-mediated macro-
phage activation, potentially contributes to exacerbation of
HCV infection course by alcohol and the disease progres-
sion.
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