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The Economic Impact of New Technology
Adoption on the U.S. Apple Industry

Nichole L. Busdieker-Jesse, Lia Nogueira, Hayri Onal, and David S. Bullock

We develop a temporal and spatial partial equilibrium model to evaluate the welfare impact of
new technology on the apple industry to control fire blight. We show significant benefits of GM
technology relative to conventional methods and other new methods such as microencapsulation
of biological agents. We also show that the cost-reduction benefits of the technology exceed the
yield-increasing benefits.

Key words: apple production, fire blight, technology, welfare analysis

Introduction

Fire blight is a bacterial disease that can affect various parts of the apple tree at different growth
stages, including the blossom, fruit, roots and shoots. Fire blight outbreaks cause serious damage
to apple producers. In 2000, Michigan lost more than 600 acres of orchards and more than 220,000
trees aged two to five years to the disease, leading to a loss of more than $42 million to the region
(Norelli, Jones, and Aldwinckle, 2003). Typical annual losses from fire blight are more than $100
million in the United States. We use a temporal and spatial partial equilibrium model to evaluate the
impacts of new apple production technologies on fire blight damage in the U.S. apple industry.

Many recently introduced apple varieties, particularly ‘Red Delicious’ and ‘Golden Delicious’,
are more susceptible to fire blight than the dominant traditional varieties (except ‘Granny Smith’,
introduced in 1868) (Briggs and Yoder, 2012). These newer varieties include favorites such as
‘Fuji’ (introduced in 1930), ‘Gala’ (1974), and ‘Cripps Pink’ (1992). Growers of these new varieties
have suffered significant production losses from fire blight, which can be as large as 5% annually
(Gianessi, Silvers, and Carpenter, 2002). As consumers substitute the susceptible varieties for
traditional varieties (‘Red Delicious’ production in 2008 was only 65% of its 2000 level, while
‘Cripps Pink’ production nearly tripled in that same period), there is increased concern about the
sustainability of production in regions where fire blight is prevalent.

Given current concerns about bacterial resistance to commonly used antibiotics, researchers are
exploring ways to chemically and genetically reduce fire blight damage. Three important advances
have been achieved in the past century to help control fire blight: rootstock breeding programs,
the development of genetically engineered cultivars, and advances in chemical treatments (Norelli,
Jones, and Aldwinckle, 2003).

The technology that is the base for our research focuses on short-term and long-term adjustments
to production. Scientists involved in the Integrated Genomics and Management Systems for Control
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of Fire Blight research project are evaluating different strategies against the bacterium that causes
the disease. In the short term, research is under way to generate an environmentally safe bio-control
method that is more effective against fire blight than current treatments. Kim et al. (2012) obtained
promising results using a microencapsulated bio-control agent, E325, to control fire blight. In the
long term, scientists are working to identify fire blight resistant genes and develop fire blight resistant
cultivars of preferred varieties that are currently highly susceptible. Wang, Korban, and Zhao (2010)
highlighted some of their work in isolating the genes that express resistance to fire blight. The
scenarios used in our study are based on the findings of Kim et al. (2012); Wang, Korban, and Zhao
(2010); and personal communication with the scientists involved in the Integrated Genomics and
Management Systems for Control of Fire Blight research project. We use our model to explore
technology adoption and its effects on domestic and international apple markets. In particular,
we analyze the potential costs and benefits of microencapsulation of a bio-control agent and GM
technology using an empirical, thirty-five-year temporal and spatial equilibrium model of orchard
management. Our results fill a gap in the literature on the use and impact of these emerging apple
production technologies.

Background and Literature Review

Apples are a deciduous fruit grown across the world and consumed fresh or processed as food
or drink. In 2010, more than 11.7 million acres of apple orchards produced nearly 69.5 million
metric tons (MT) worldwide (U.S. Department of Agriculture, Economic Research Service, 2012).
China and the United States were the largest producers in 2010, supplying 48% and 6% of world
production. Along with Turkey, Italy, India, and Poland, the top six producing nations accounted for
66.5% of total world production.

The United States produces about 2,500 of the approximately 7,500 apple varieties grown
worldwide (University of Illinois Extension, 2011). Apples are grown in all fifty states, but nearly
90.6% of the 2010 production occurred in just six states: Washington (60.2%), New York (13.7%),
Michigan (6.4%), Pennsylvania (5.1%), California (3%), and Virginia (2.2%) (U.S. Department
of Agriculture, Economic Research Service, 2012). The use of apples for fresh and processed
consumption was approximately 2.3 million MT, which were produced on more than 330,000
bearing acres.

Apple production can be challenging for growers because of the perennial nature of the
crop. Growers make year-to-year decisions based not only on economic benefits but also on
environmental and biological conditions. Apple trees vary in the length of nonbearing years after
initial establishment: a standard apple tree takes six to ten years, a semi-dwarf tree takes four to six
years, and the commercially common dwarf trees bear apples at two to three years of age (University
of Arizona Cooperative Extension, 2011). Lengthy nonbearing periods increase the difficulty of
orchard establishments, with high initial costs and no revenues from those trees. The nonbearing
years occur at the beginning and at the end of the life of an orchard. Life expectancy also varies by
size: standard apple trees live 35–45 years, semi-dwarf trees 20–25 years, and dwarf trees 15–20
years (University of Arizona Cooperative Extension, 2011). These timeframes for bearing years and
life expectancy can also vary by variety. Tree size and variety define an orchard.

Fire blight is a potentially devastating bacterial infection, especially for pears and apples.
Growers currently use chemical sprays such as streptomycin and oxytetracycline to prevent and
heal the infections, but they have begun turning to recent research for alternatives, as fire blight
has demonstrated a growing resistance to streptomycin, for which there are few alternatives.
Streptomycin provides 90% control of the bacterial strains against which it is most effective (Norelli,
Jones, and Aldwinckle, 2003), while oxytetracycline is only partially effective in most cases. The
bacteria thrive in the rain and heavy dews of areas with high humidity, and a single infected tree
can transmit fire blight to the entire orchard as bacteria residing in the ooze from a trunk canker
are spread by insects and rain to the blossoms of other trees (Ellis, 2008). The disease continues
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to thrive despite recent advances in planting technology. High-density planting systems use highly
susceptible dwarf rootstock (Norelli, Jones, and Aldwinckle, 2003), increasing the probability of
disease and spreading infestation to areas that might not be prone to the disease otherwise. Yield
and resource benefits, such as land use and maintenance work savings, make high-density planting
preferred in the U.S. Northwest. Low-density planting is still common throughout the rest of the
United States.

Production Technology

Technological innovations in agriculture have been extensively studied and evaluated for what they
bring to the farm and to consumers. Adoption is one of the key factors that determine the success of
a technology, and communication about the specific benefits of a technology is critical in technology
adoption (Feder, Just, and Zilberman, 1985). Communication can help relieve uncertainty and drive
diffusion of the technology. The acceptance of information and adoption of the technology impact
producers in different ways, so the adoption decision is specific to each producer.

Producer decisions in the adoption process are made in the presence of risk and uncertainty about
the technology and other factors of agricultural production. In their article on herbicide-resistant rice,
Annou, Wailes, and Thomsen (2005) stated that “risk aversion changes the dynamics of adoption and
crop planting” (p. 170) and explained producers’ use of technology as a way to diversify production
portfolios. Risk-averse farmers are likely to be early adopters of new technologies, adding the new
technology to their decision mix as a risk-reducing strategy.

Benefits and Costs of Biotechnology

Much of the literature on the benefits and costs of biotechnology evaluates a new variety’s potential
impact on the market after its commercial release or during the product’s testing phase. Brennan
(1984) suggested that a successful evaluation of new varieties consists of the analysis of the change
in farm production practices and inputs used. He also identified the significance of differences in
farm and experimental yields and recognized major obstacles to the production and consumption
of genetically modified (GM) commodities, including concerns of buildup of resistance against
the technology and government regulations. Yet the potential benefits to society can be significant,
including smaller yield loss, introduction of desirable traits, and a positive environmental footprint
(Barnett and Gibson, 1999).

When considering the impact of technology use, the costs related to yield and quality losses,
disease outbreaks, and production inputs must be considered. Zhao, Wahl, and Marsh (2007)
evaluated the economic effects of apple maggot. They explicitly modeled the costs of quarantine,
pest control, and yield loss as well as the economic costs from lost market opportunities and found
that “the effects on welfare and prices of a crisis or policy are only partially evident in short-term
market outcomes” (p. 500). They suggested that more substantial impacts may come in the long
run because of the lag between the investment decision and revenue generation. Krissoff, Calvin,
and Gray (1997) recognized the need to include tariffs and technical barriers as costs in the analysis
of fire blight bio-control methods, especially in the case of new GM varieties. They found that
removing tariffs and phytosanitary trade barriers for U.S. apples removes the price wedge between
global and local prices and increases apple consumption in the respective countries. The inclusion
of these measures presents a more complete picture of apple industry costs and—combined with the
adoption evaluation criteria—permits a comprehensive analysis of the impact of new biotechnology
introduced to combat fire blight.

Brookes and Barfoot (2005) evaluated the cost and impact of the first years of GM technology
use. They found that GM crops such as soybeans, corn, cotton, and canola had an overall
beneficial impact on farm income in the first nine years as a result of increased productivity and
efficiency gains. The authors also found indirect benefits—including reduced tillage, convenience
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in production practices, and reduced exposure to pesticides—from increased knowledge and
new techniques from the use of the GM varieties. These indirect benefits are important for a
comprehensive evaluation of new technologies.

Moschini (2001) analyzed the benefits and costs associated with Roundup Ready technology in
his theoretical paper. He discussed the intellectual property rights of the innovator as well as the
pricing of the innovation, which is determined by market power. He showed that farmers’ net benefit
could be positive or negative under competitive pricing, making it important to evaluate pricing
strategies in the marketing of a technology through an analysis of supply and demand.

Building on the studies of annual crops mentioned above, we model the production of a perennial
crop and equilibrium in apple markets to evaluate the impact of biotechnology. Benefits of the new
technology include reducing production costs to growers and increasing production of susceptible
apple varieties such as ‘Gala’, ‘Fuji’, ‘Jonathan’, ‘Pink Lady’, ‘Granny Smith’, and ‘Honeycrisp’.
Our model opens the door to technology research based on realized or anticipated costs and allows
for careful regionalization and specifications critical to the analysis of U.S. production. The model
can be applied to other perennial products in other places.

Theoretical Framework

We develop a temporal and spatial partial equilibrium model to evaluate the impact of new
technology adoption on the U.S. apple industry over a thirty-five-year horizon. Our model generates
a picture of the industry once the technology is available and can be adopted by growers in all
regions. We specifically consider the perennial nature of the crop, the investment planting decisions
of the growers, and interactions between U.S. and world markets through international trade.

To find the market equilibrium, the model maximizes the sum of producers’ and consumers’
surpluses subject to apple supply-demand balances and regional resource (land) constraints
determining the domestic supply of apples. This methodology was introduced by Samuelson (1952)
and developed further by Takayama and Judge (1964, 1971). A theoretical elaboration and review
of early empirical studies using this methodology can be found in McCarl and Spreen (1980).
Most of the applications presented in the literature deal with static (annual) market equilibrium,
but this method can also incorporate dynamic aspects of production and consumption. Incorporating
a dynamic component is especially important when decision makers face production situations in
which there is temporal uncertainty and in which actions in the current period shape productivity
in future periods (McCarl and Spreen, 2007). In our particular application, the model incorporates
producers’ tree planting and removal decisions in a dynamic framework, consumers’ demand for
apples, and global apple trade for each year, all essential features of the apple industry as it is
presented with new technology. The time component allows us to simulate the impact of disease or
government policies on short- and long-term market outcomes. The true, long-term effects of such
factors can be quite different from short-term effects (Zhao, Wahl, and Marsh, 2007).

Dynamics

When modeling the dynamics of apple production, it is important to consider the “terminal
condition” and value of standing trees that have productive years remaining beyond the specified
time horizon in addition to year-to-year planting decisions and aging processes. We consider a
thirty-five-year horizon, so tree ages in year thirty-five span from newly-planted to thirty-five years
of age (the latter is the maximum expected productive life of apple trees assumed in this study).
The remaining value of each tree in a given age category is determined first a priori and then using
an iterative procedure assuming a fixed expected price and the discounted future returns and costs
throughout the remaining productive years.
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Spatial Market Equilibrium

Because of the interaction between apple production and consumption in major markets, it is
important to simulate the impact of one country’s technology adoption on both domestic and foreign
apple markets. We incorporate such linkages through the model’s spatial equilibrium component, in
which each exporting country’s production is allocated between domestic consumption and exports,
while the demand of each importing country equals domestic production plus imports. Each of the
countries included in the model is a major producer or major importer in world apple market. We
place special focus on important importers of U.S. apple varieties.1 The model includes a “rest of
the world” region to capture production and consumption in other countries not included explicitly
in the analysis.

Empirical Model

Our model’s supply, demand, and cost functions are specified for each year of the thirty-five-year
planning horizon and for each major apple trading country included in the model. We also include
orchard density and the new technologies in the U.S. supply and cost functions. The model’s base
year is 2005, for which the most recent series of state-level apple production and variety-specific
orchard data were available.2 The model variables, descriptions, and data sources are presented in
table 1.

Objective Function

The model’s objective function is the global social surplus (welfare) summed over all producer
and consumer countries. Each country’s social surplus is the sum of its producers’ and consumers’
surpluses, which equals the sum of the areas under the demand functions up to the equilibrium
quantity minus production costs. We specify the demand functions for each country for fresh
and processed apples as linear demand functions by using the estimated demand elasticities and
the observed base year price and quantity levels.3 The supply structure in the United States is
characterized by a cost function rather than a supply function and is determined by the choices
of acres, technology (traditional, bio, or GM), and orchard density (high or low) in each production
region.4 An aggregate supply function is specified explicitly for each of the other countries included
in the analysis. The supply functions are also assumed to be linear and the parameter values are
specified as for the demand functions.5 Apple supply is not segregated into separate processed or
fresh production categories, because we assume that apples are segregated after harvest depending

1 Important U.S. apple export destinations included in the analysis are Canada, Mexico, Taiwan, and the United Kingdom.
Important U.S. apple import sources included are Chile, New Zealand, and Argentina. Other major world exporters included
are China and Brazil, and other major world importers included are India, Japan, Russia, France, Italy, Germany, Spain, and
Poland.

2 More recent data are available from 2010, but these data are not as detailed as the data released in 2005 and do not
include all of the information needed for this study. More recent data are not available for all states included in this study.

3 For each demand function, we assume that the demand elasticity, ε , is the point elasticity at the observed equilibrium
(i.e., the base year price and quantity pair (P0,Q0)). The slope and intercept terms of the linear demand functions, β and α ,
are calculated by using the formulas β = P0/(εQ0) and α = P0(1− 1

ε
).

4 By using the cost function we are able to specify the technology costs assumed in this analysis that pertain specifically
to fighting fire blight in apples and highlight the impacts of the two different technologies specific to our study.

5 The assumption of linear demand and supply functions is not restrictive. One can use constant elasticity functions,
which would replace the quadratic terms in the objective function (1) with nonlinear terms representing the areas under the
respective demand and supply functions. The optimization software used in the analysis can handle both functional forms
easily, but the quadratic forms are computationally more convenient.
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Table 1. Description of the Model Variables, Parameters, and Data Sources
Variable Description Source
Planting Cost Fixed cost by technology and density Zhao, Wahl, and Marsh (2007)
Maintenance Cost Fixed cost by technology and density Zhao, Wahl, and Marsh (2007)
Yield Average yield by age and density Zhao, Wahl, and Marsh (2007)
Removal Cost Average used as a fixed cost for all

trees
Zhao, Wahl, and Marsh (2007)

Fresh Demand Elasticity Own-price elasticity for fresh apples ERS-Food Demand Dataset
Processed Demand Elasticity Own-price elasticity for processed

apples
ERS-Food Demand Dataseta

Supply Elasticity Supply elasticity for all other
countries

Devadoss and Luckstead (2010)

Base Supply Quantity supplied quantities in base
year

FAS-Production, Supply and
Distribution Online Database

Base Fresh Demand Demand quantity quantities in base
year

FAS-Production, Supply and
Distribution Online Database

Base Processed Demand Processed Demand quantities in base
year

FAS-Production, Supply and
Distribution Online Database

Producer Price Average producer price by country in
base year

FAOSTAT.fao.org

Transportation Cost to transport apples between
countries

FAOSTAT.fao.orga

Initial Inventory Inventory by age and density in base
year

NASS state-wide surveys

Acres Acres of apples by age, density and
type

Endogenously determined

Trade Exports and imports from country A
to country B

Endogenously determined

Removed Acres Acres removed through optimization Endogenously determined
Qsupply Quantity supplied by countries other

than the United States
Endogenously determined

Qdemand Fresh Fresh quantity demanded by all
countries

Endogenously determined

Qdemand Processed Processed quantity demanded by all
countries

Endogenously determined

Price Lambda Price used in remaining value
calculation

Endogenously determined

on quality and current market needs.6 Transportation costs between trading countries depend
on volume transported, which is endogenously determined in the model, and distances between
countries. The transportation costs create price differences between each pair of countries in the
base year of the analysis. The U.S. component captures the value of trees in each age group at
the end of the planning horizon through calculations in the final year of the model. We optimize
the discounted welfare equation to more accurately capture the decisions of the producer for our
thirty-five-year horizon. The model is specified to maximize the objective function by selecting the

6 The general practice of apple producers is to grow apples of sufficient quality to be sold on the fresh apple market. Apples
that flow into the processing market are generally residual apples, sometimes slightly damaged by weather or handling. In
this sense, fresh and processed apples are joint products from a single production system. Thus, in our model we distinguish
between fresh and processed apples in demand but not in supply.
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optimum acres and quantities of apples. The objective function is given below:7

∑
t

((
1

1 + dr

)t−1(
∑
c

Qdf
t,c × (α df

c + 0.5× β
df

c × Qdf
t,c)

+ ∑
c

Qd p
t,c × (α d p

c + 0.5× β
d p

c × Qd p
t,c)−∑

c
Qs

t,c × (α s
c + 0.5× β

s
c × Qs

t,c)(1)

− TPCt − ∑
c,c ′

tcc,c ′ × Et,c,c ′

))
+ ∑

a,d
RVa,d ,

where

(2) TPCt = ∑
d

pcd × At,a1,d + ∑
a

mca,d × At,a,d + ∑
a

rc× RAt,a,d

and

(3) RVa,d = At∗,a,d × ∑
a′>a

{
(p× ya′,d − mca′,d − rc)×

(
1

1 + dr

)a′−a
}
.

In equation (1), Qs
t,c is country c’s quantity of apples supplied in year t; Qdf

t,c and Qd p
t,c are the

quantities demanded in country c and year t as fresh and processed apples; tcc,c ′ is the per unit
transportation cost between countries c and c ′, and Et,c,c ′ denotes the quantity of apples exported
from country c to country c ′ in year t. Subscripts a and d indicate tree age and planting density
(high, low); RVa,d denotes the remaining value of trees of age a and planting density d at the end of
the horizon; TPCt denotes total U.S. apple production cost in year t. The αs and β s are the intercept
and slope parameters associated with the linear supply and demand functions for fresh and processed
apples. In equation (2), planting, maintenance, and removal costs are indicated by pc, mc, and rc;
At,a,d is an endogenous variable representing the acres of trees of age a planted at density d that are
in production during year t; and RAt,a,d is an endogenous variable specifying the number of acres
of trees removed. In equation (3), At∗,a,d denotes the number of acres in place in the terminal year,
t∗, of trees of age a and density d, a′ represents the future age of standing trees of an age group a in
the terminal year t∗ (thus a≤ a′ ≤ 35), t∗ is the last year of the planning horizon (year 35), p is the
expected apple price beyond the planning horizon, and y is the apple yield for a given age group and
planting density. The discount rate is dr, and subscripts a and d, and the variables RVa,d , At,a,d , and
RAt,a,d are defined only in the U.S. component of the model.

Over the past ten years, the number of high-density plantings has increased, especially in the
northwest region in the United States. Therefore, we include density choice in the U.S. component
of the model. The model determines the equilibrium quantities of demand for fresh apples, demand
for processed apples, and total supply of apples. We calibrate the model using the base year’s (2005)
prices and quantities, demand elasticity estimates when specifying the domestic demand function
for each country, and supply elasticities estimated for every country other than the United States.

Each year’s total cost of U.S. apple production is composed of initial planting costs, yearly
maintenance costs, and eventual tree removal costs. These costs include the costs of various input,
such as seed, labor, machinery, and fuel. The cost function is presented in equation (2). The various
exogenous costs in the model, described below in the data section, are fixed. This assumption can be
easily altered to capture varied establishment and management decisions. These costs are assumed to
remain fixed as many inputs in the industry, such as labor and fuel, account for only a small fraction
of the U.S. total input use. It is understood that these values can and most likely will vary over

7 For convenience, throughout the model description we use lowercase/italic symbols for indexes and parameters and
uppercase symbols for variables solved endogenously by the model.



556 September 2016 Journal of Agricultural and Resource Economics

the lifetime of the orchard, yet the assumption of fixed costs is appropriate for technology adoption
analysis as the apple industry consumes a relatively small share of production inputs compared to
other agricultural industries.

The transportation cost segment of the objective function represents the total cost of moving
apples from exporting to importing countries, including shipping costs and trade margins. The
transportation cost is the product of the per unit transportation cost and the endogenously determined
trade quantity.

The remaining value of standing apple trees at the end of the specified horizon permits
accounting for the future value of trees, namely the growers’ return to their investment beyond
the terminal year of the model horizon. The remaining value in equation (3) is calculated by using
a future price specified exogenously and assumed to be constant beyond the final year of the model
horizon, the yields depending on the age of each tree category, maintenance costs, and removal
costs that will be incurred in the remaining years. The remaining value is discounted to obtain the
present value of the total future returns from the trees remaining in year 35. Since the market price
of apples beyond the planning horizon is unknown, we used an iterative procedure to specify a
proxy future price. This price is set initially at the 2005 level and the model is solved once; then
the price is updated based on the endogenously determined market price in year 35 (given by the
shadow price associated with the U.S. market-clearing equation (4).8 This procedure is repeated
until the expected price and last year’s endogenous price sufficiently converge. The proxy future
price enables calculation of the final acres and the remaining value of the tree crop in the final run
of the model.

Constraints and Balances

The model is maximized subject to market equilibrium constraints and production constraints for
both U.S. and world apple production and consumption. These constraints are

Qdf
t,“us” + Qd p

t,“us” + ∑
c

Et,“us”,c = ∑
a,d

(ya,d × At,a,d) + ∑
c

Et,c,“us” ∀ t,(4)

Qdf
t,c + Qd p

t,c + ∑
c ′

Et,c,c ′ = Qs
t,c + ∑

c ′
Et,c ′,c ∀ t and c,(5)

At,a,d − RAt,a,d = At−1,a−1,d ∀ t > 1, a > 1, d,(6)

∑
a,d

At,a,d ≤ ta ∀ t,(7)

where Et,c,c ′ denotes the quantity of apples exported from country c to country c ′ (when referring to
the United States, we use “us”) in year t and ta denotes the total land allocated to apple production
in the base year.

The market-clearing condition (supply-demand balance) for the U.S. component of the model is
imposed by equation (4). This constraint requires that the quantities demanded for processing and
fresh consumption of apples plus the total exports to all other countries must be equal to domestic
supply, given by the exogenous yield multiplied by endogenously determined acreage, plus U.S.
imports from other countries.

A similar market-clearing constraint, shown in equation (5), is stated for the other countries
included in the model. This constraint equates the total use of apples in each country (including both

8 This issue is important when working with dynamic modeling situations where a finite horizon is considered and market
price is solved endogenously. More than one iteration may be necessary to obtain a “good” proxy for the future price. In our
experience, one iteration was sufficient because the price obtained in the third iteration was very close to the price obtained
in the second iteration.
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the fresh and processed quantities demanded plus the country’s total exports) to the total quantity
supplied (the country’s domestic production plus apple imports).

Equation (6) describes the constraint that characterizes the dynamic, perennial nature of apples
after planting. This constraint ensures that in each year the available acres of trees in each age
category equal the acres in trees one year younger, minus any acres removed from production. Acres
removed are limited to those trees over age ten. This restriction mimics the decision making of a
rational grower, who would not uproot productive trees before recovering their planting costs (which
occurs about ten years after planting).

Constraint (7) restricts total U.S. acreage in any given year to the total amount of land allocated
to apple production in the base year. Thus, no expansion of land in apples is allowed, but land
allocations to the tree categories using alternative technologies may vary over time based on the
yields and costs associated with each technology. The no-expansion assumption can be relaxed and
maximum land availability can be specified exogenously for each year of the planning horizon based
on the endogenous price trend and elasticity of land supply to apple production. This could be
done in an iterative procedure and the model could endogenously determine a possible expansion
in the U.S. apple industry. Since our main focus is on technology adoption and potential impacts of
technology choices on apple markets, we use the simplified approach implied by constraint (7).

Technology

The technology component of our model centers on growers’ planting decisions (only in the
United States). Growers choose among conventional rootstock (con), conventional rootstock with
the application of bio-controls (bio), and GM rootstock (gm). The different technologies are
incorporated into the model through differences in planting, maintenance costs, and yields. The
estimates are based on current research findings through personal communication with project
participants (Sundin, Korban, and Zhao, personal communication, March 8, 2011). A constraint
is included to allow only gradual adoption of the new technologies. The gradual adoption is meant
to reflect growers’ risk attitudes and their likely hesitation to adopt new technologies. The adoption
constraint is

(8) ∑
d

At,a1,d,“gm” + ∑
d

At,a1,d,“bio” ≤ ar ×∑
d

At,a1,d,“con” ∀ t,

where subscript a1 specifies the age of newly planted trees (i.e., a = 1) and ar is the adoption rate
for each specified technology. Note that the land allocation variables in equation (8), previously
denoted by At,a,d , include an additional subscript representing technology choices (denoted by gm,
bio, and con, shown in the equation in quotation marks). These subscripts for technology choices
were actually used throughout the entire model, but for notational simplicity they were not shown in
equations (2)–(8).

In constraint (8), we consider a time-dependent adoption rate, ar, to reflect a progressive
adoption behavior. Specifically, we set ar = 0.01× t. For instance, in year 2, the technology can be
adopted at a rate of 0.02, meaning that the number of acres planted to biotech varieties cannot exceed
2% of the number of acres planted to conventional varieties. In year 35, the adoption rate is ar = 0.35
(i.e., 35% of the total conventional acres planted in apples can employ the new technologies). Finally,
as the biotechnology is not yet released, we have lagged the introduction of the bio-control methods
to year 6 and GM technology to year 11 (Sundin, Korban, and Zhao, personal communication,
August 2011).9

9 This assumption is specific to the biotechnologies analyzed in this particular study. Sundin, Korban, and Zhao are
researchers on the Integrated Genomics and Management Systems for Control of Fire Blight research project.
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Figure 1. Base Year Apple Production and Age Distribution

Data

Our data consist of current apple production values in the United States and abroad and prices,
costs, and current trends in consumption and production. Demand functions for other countries
are calculated using the 2005 data from the Production, Supply, and Distribution online dataset
(U.S. Department of Agriculture, Foreign Agricultural Service, 2010). We specifically consider the
base quantities of apples supplied, processed apples demanded, and fresh apples demanded. The
base producer prices for each country were obtained from the Food and Agricultural Organization
(FAO) statistics website (www.faostat.fao.org).10 The demand elasticities were found in the USDA-
ERS International Food Consumption Patterns dataset (U.S. Department of Agriculture, Economic
Research Service, 2010), and we used the information in Bergtold, Akobundu, and Peterson (2004)
to calculate the processed apple demand elasticity parameter from the fresh demand elasticity. We
assumed a constant own-price supply elasticity of 0.2 for all countries based on the perennial nature
of apples and growers’ limited ability to adjust production directly in response to price over the
medium run.11

The U.S. apple production data are based on published apple age- and variety-specific production
surveys conducted in 2005. In the surveys, the apple orchards in the most productive states were
reported in acres, and categorized by age and variety (U.S. Department of Agriculture, National
Agricultural Statistic Service, Washington Field Office, 2006; U.S. Department of Agriculture,
National Agricultural Statistic Service, Virginia Field Office, 2006; U.S. Department of Agriculture,
National Agricultural Statistic Service, 2007; U.S. Department of Agriculture, National Agricultural
Statistic Service and New York State Department of Agriculture & Markets, 2007; U.S. Department
of Agriculture, National Agricultural Statistics Service and Pennsylvania Department of Agriculture,
2010). Through evaluation of the top-producing states, the number of trees for nearly 90% of U.S.
apple production was calculated and used to find the division of the total U.S. acres for 2005. The
baseline distribution for the age of U.S. apple acreage in 2005 is shown in figure 1. This graph shows
that the age distribution is skewed right (more acres of younger trees).12

10 These base prices are also used in the calculation of the transportation costs, which is approximated to be the difference
in the base prices of each country pair.

11 This value is based on current apple production research—such as the range of price supply responses found in
Devadoss and Luckstead (2010)—and was tested for sensitivity. Findings support the use of 0.2 as a lower-end estimate
of the technological impact to the U.S. apple industry.

12 Our timeframe for analysis is thirty-five years. Consequently, no new trees are planted after year 34.
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Other data on production costs come from Zhao, Wahl, and Marsh (2007) and include
transportation costs from the FAO dataset and removal costs from the management budget in the
Pennsylvania Tree Fruit Production Guide (Penn State Extension, 2011). The model’s assumptions
about technology costs are based on discussions with the scholars conducting research at the
Integrated Genomics and Management Systems for Control of Fire Blight project (Korban and
Zhao, personal communication, August 2011).13 Planting costs are the same for the bio-control
microencapsulation and the conventional rootstock, as the rootstock does not change in this case.
However, the maintenance cost of the bio-control is 1.5% greater than that of the conventional
rootstock. The maintenance cost is assumed to be 7% lower for GM than for the conventional
rootstock. The GM planting cost is assumed to be 1.5 times that of the conventional rootstock and the
bio-control method. These cost differences reflect the data used by Zhao, Wahl, and Marsh (2007)
and are based on the production management changes associated with each method and on the costs
of chemicals and labor described in the Pennsylvania Tree Fruit Production Guide (Pennsylvania
State University, 2011). The 5% yield gain assigned to the GM technology is equal to the typical
loss to fire blight that would be recovered when switching from the conventional technology. The
yield gain under the bio-control technologies is assumed to be 3%, a portion of the potential loss
to fire blight (Korban and Zhao, personal communication, August 2011). Table 1 describes all the
variables, parameters, and data sources used in the model.

We used the commercial optimization software GAMS (General Algebraic Modeling System)
incorporated with MINOS to solve the quadratic programming model described above.

Results

As a benchmark for the technology adoption analysis, we first analyze the industry in terms of
conventional production that does not include the release of technologies. The annual prices and
annual production for this base scenario are shown in figures 2 and 3 (figure 3 more closely examines
the dynamic price results). We find a general increase in production and corresponding decrease in
prices until year 15 or 16, after which we see production decrease and prices slowly increase. The
initial increase in production is as expected, as the baseline data were skewed in favor of younger
trees; as such, more production is expected as the trees bear fruit. The apple price increases at the end
of the model from years 32 to 35, spiking at $299.83/MT. The annual production for this scenario
is approximately 381,000 acres. We consider a thirty-five-year horizon; consequently, we observe
some noise as we get closer to year 35, and no new plantings occur in year 35.

In the following sections we describe the results from the various technology scenarios.
First we evaluate the release of the GM and bio-control technologies. We compare results of
conventional production to the results when both technologies are introduced. As GM introduction
has an overpowering effect on the production decision, we also consider the release of bio-control
technology only and compare it to conventional production. We performed robustness checks to
evaluate the assumptions made about GM technology in the areas of maintenance cost, yield
variability, and adoption restrictions. A summary of the U.S. results for the analysis is presented
in table 2, and the robustness checks are summarized in table 3.

GM and Bio-Control Introduction

When GM and bio-control technologies are introduced, growers plant 415,500 acres, comprising
373,300 conventional, 5,600 bio-control, and 36,600 GM acres. As in the baseline scenario, there

13 The assumptions are based on personal communications with the researchers on the project and their projections of the
costs and impacts of the two technologies based on the cost set by Zhao, Wahl, and Marsh (2007). The 1.5% increase in the
bio-control maintenance cost is equivalent to a 20% increase in the cost of the chemical treatments due to the expense of the
technology over current methods. The 7% decrease in the GM maintenance cost is equivalent to the cost reduction associated
with fire blight treatments.
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Figure 2. Annual Average Production and Prices for Conventionally Produced Apples

Figure 3. Annual Average Production and Prices for Conventionally Produced Apples,
Zooming in on the Dynamics of the Analysis

are no high-density acres. Trees are removed at age 31 or older, but only at the end of the model
in years 34 and 35. Bio-control acres are only planted in the years between the release of that
technology and the release of the GM technology. The GM acres are planted from year 11 until
year 28, and no conventional acres are planted in year 10. Total acreage of apples averages around
381,000 annually. These decisions lead to an average endogenous equilibrium price of $290.232/MT
for fresh and processed apples.

The average U.S. grower profit is $266.35 million annually, or $698.80 per acre„ dependent
on the age, density, rootstock, and variety of the trees. Maximum profit for the release of both
technologies is $344.56 million in year 10, when there are no new plantings of any trees. Minimum
profits are seen in year 34 and are $106.15 million, with a price of $295.42/MT. Total annual costs for
the apple industry average $1,253 million. The remaining net present value (NPV) for the industry
in year 35 is $596.5 million, with $57.95 million in the GM acres remaining and $529.6 million in
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Table 2. Summary of the U.S. Results for Each Scenario
Conventional
Production

Bio & GM
Introduction

Bio-Control
Introduction Only

Avg. Price ($/lb) 0.13 0.13 0.13
Avg. Price ($/MT) 290.44 290.32 290.32
Avg. Acres (1,000) 381.16 380.94 381.16

Horizon Planted Acres (1,000)
Conventional Low 415.48 373.3 373.30
Conventional High 0 0 0
Bio-Control Low NA 5.6 42.1
Bio-Control High NA 0 0
GM Low NA 36.6 NA
GM High NA 0 NA

Total Planted Acres (1,000) 415.48 415.46 415.46

World Horizon (million MT)
Q demand Fresh 1,995.18 1,995.27 1,995.27
Q demand Process 595.38 595.42 595.42
Q supply 2,550.79 2,550.74 2,550.73

Trade (million MT) 236.80 206.47 258.46

U.S. Horizon (million MT)
Q demand Fresh 85.25 85.25 85.25
Q demand Process 58.10 58.11 58.11
Q supply 183.13 183.31 183.32

Producer Profits (million $)
U.S. Avg. Annual Profit 262.56 266.35 263.16
Total U.S. Profit Horizon 9,189.65 9,322.34 9,210.70
Max Profit 321.03 344.56 320.95
Min Profit 88.37 106.15 91.23

Average Annual Profit ($/acre) 688.86 698.80 690.44

Remaining Value (million $)
Total 5,500.81 5,451.28 4,807.90
Total NPV 600.55 596.54 487.81

the conventional acres remaining.14 The sharp increase in NPV in year 35 is because of reporting
the discounted returns beyond the planning horizon as “observed returns” in year 35.

For the thirty-five-year horizon, the total U.S. supply, fresh apple demand, and processed apple
demand are 183.3, 85.3, and 58.1 million MT. The world demand for fresh and processed apples
for the thirty-five-year horizon is 2,590.7 million MT, of which 595.4 million MT is processed. The
world supply is 2,550.7 million MT, of which 206.5 million MT accounts for world trade.

14 We conducted a sensitivity analysis of the discount rate by using 2% and 10% as alternatives to the 5% rate assumed
in the baseline solution. The analysis shows that the management decisions are sensitive to the discounted value in apple
production. A higher value for the current dollar encourages a greater switch of acres into the GM technology.
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Table 3. Summary of Robustness Checks
No Adoption
Restriction

No Decrease in
Maintenance Cost

Only 3% GM Yield
Increase

Avg. Price ($/lb) 0.13 0.13 0.13
Avg. Price ($/MT) 290.82 290.82 290.19
Avg. Acres (1,000) 371.35 381.16 380.94

Horizon Planted Acres (1,000)
Conventional Low 99.1 373.3 373.3
Conventional High 0 0 0
Bio-Control Low 10.2 40.5 8.9
Bio-Control High 0 0 0
GM Low 283.3 1.6 33.3
GM High 0 0 0

Total Planted Acres (1,000) 392.6 415.46 415.46

World Horizon (million MT)
Q demand Fresh 1,994.61 1,995.28 1,995.21
Q demand Process 595.16 595.42 595.40
Q supply 2,551.15 2,550.73 2,550.77

Trade (million MT) 226.72 242.18 247.77

U.S. Horizon (million MT)
Q demand Fresh 85.24 85.25 85.25
Q demand Process 58.09 58.11 58.11
Q supply 181.95 183.33 183.20

Producer Profits (million $)
U.S. Avg. Annual Profit 310.42 276.37 268.09
Total U.S. Profit Horizon 10,864.71 9,672.91 9,383.25
Max Profit 408.23 320.95 344.59
Min Profit 7.27 201.57 211.89

Average Annual Profit ($/acre) 814.42 725.08 703.37

Remaining Value (million $)
Total 5,146.01 5,452.33 5,341.66
Total NPV 517.74 596.90 602.00

Bio-Control Introduction Only

As the selection of GM rootstock overwhelms the bio-control choice, we evaluate the introduction
of bio-control methods for fire blight infections in year 6 to get a clearer perspective on its potential.
In this evaluation, growers have a choice to use a microencapsulated biological agent and chemical
mix or use traditional antibiotics. Over the thirty-five-year horizon, growers plant 373,300 acres
for use with conventional management practices and 42,100 acres intended for use with bio-control
technology. These grower decisions lead to an average endogenous equilibrium price of $290.32/MT
for fresh and processed apples.

The industry average profit is $263.16 million annually, or an average of $690.44 per acre. The
average profits for different tree categories vary, however, depending on the age, density, rootstock,
and variety of the trees. The maximum annual profit is $320.95 million, obtained in year 12, with
a price of $286.60/MT. The minimum profit for the horizon is found in year 34, with a price of
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Figure 4. Annual Producer Profits under Different Scenarios

$295.42/MT. In that year, more than 57,000 acres are planted with trees of age 31 and older being
removed from the orchards. The remaining value for the conventional and bio-control acres in year
35 is $420.88 and $66.93 million for years following the model’s thirty-fifth year.

For the thirty-five-year horizon, the total U.S. supply, fresh apple demand, and processed demand
are 183.3, 85.3, and 58.1 million MT. The total world demand for fresh and processed apples for the
thirty-five-year horizon is 2,590.7 million MT, of which 595.4 million MT is processed. The total
world supply during the same period encompasses 2,550.7 million MT, with 258.5 million MT (10%
of the total supply) traded internationally.

Figure 4 compares the average annual profit levels for three of the technology-based scenarios
to the conventional technology scenario. The figure shows the impact of the new technology
on producer profits, specifically in the technology introduction window following the bio-control
and GM introduction. For this time-frame, we see that the market adjusts to the new production
technologies and producer profits improve following each technology introduction. In general, we
see a steady increase in profits for all scenarios until around year 10. Following year 10, profits
steadily decrease until around year 29, when they begin to level out. Because we see this trend in
all scenarios, we can explain it as a function of the model’s supply and demand specifications. An
excess of supply results in a general decrease in prices during that time period. Prices do not recover
until after year 20. Price changes are seen more clearly in figure 5. Profit is then able to recover
after prices stabilize between years 23 and 30. The end of the horizon experiences heavy investment
(drop in profits) followed by increased supply (increased profits). The model design encourages this
behavior because it looks at the NPV of the plantings in the final years.15

Robustness Checks

We tested the results for sensitivity to the assumptions specific to the technologies evaluated
in this research. We found that given no adoption restrictions (growers have no concerns about
GM production), GM acres replaced conventional acres in the production mix. With no adoption
restriction, the average annual industry profits increased by more than $115.6/acre while planted
acres decreased by more than 22,000, or 5.5%, for the thirty-five-year horizon. This reduction
in acreage is somewhat higher than expected. However, the increased production from the new
technology (due to higher yields and fire blight protection) makes up for the decrease in acreage
to meet the demand. When considering no maintenance cost reductions to GM production, we

15 Note that we are holding demand constant and the model ends in year 35.
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Figure 5. Annual Prices Comparison of Conventional Production to the Release of Both
Technologies with and without the Adoption Restricition

Figure 6. Planted Acreage Totals for the Model Horizon (1,000 Acres)

see a shift of the GM acres to bio-control acres. We also tested the sensitivity of our results to
yield-increase estimates. Comparing acreage planted reported in the third column of table 2 to that
reported in the fourth column of table 3, we see that under a 3% yield increase from GM production,
the number of acres managed under each of the GM, bio-control, and conventional technologies
is only negligibly different from the number of acres managed under those technologies when the
GM technology provides a 5% yield increase. The summary of the robustness checks is presented in
table 3.

Figure 6 breaks down the planted acres for the model horizon of each of the scenarios and
robustness checks analyzed. Only when there is no adoption restriction and both technologies are
released do we see a definite change in production types, leaning heavily toward the production
of the GM technology. Overall, conventional acres hold the majority share of apple acres. When
the maintenance cost reduction is removed we see a larger switch from GM to the bio-control
technology.
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Discussion and Conclusions

In the model results, acres in production were reduced when GM technology was adopted. There is a
concern about where the acres are lost. One explanation is based on categorization of the U.S. apple
producers into three groups: early adopters, late adopters, and producers who do not adopt (likely
small growers). This categorization is realistic even though we do not incorporate specific grower
size directly in the model. Early adopters typically see the greatest benefit from the technology.
Benefits are usually lower for late adopters, who strain under market pressures and see an even
longer delay in recouping costs because of the perennial nature of the crop. The technological change
may therefore lead late adopters to decrease acreage in apples. Small growers will be challenged by
the high initial costs of the technology, especially if they face capital constraints, and therefore may
also reduce acreage. If these growers could find an apple demand niche in their regions, they would
have the opportunity for success on a small scale while avoiding the larger market where the new
technology dominates. However, these small growers will reduce acres and orchards if no niche
market exists.

In reality, U.S. apple growers in some regions are currently shifting to high-density production.
Our model seems conservative in that it does not predict this high-density planting, neither in its base
scenario nor in any of the new technology scenarios. The assumed magnitudes of higher planting
density costs relative to the endogenously determined prices are viewed as a possible reason why the
model does not predict high-density planting. Additionally, aggregating all U.S. production in the
model limits the selection of high-density planting choices in specific regions, even in the scenarios
featuring the new technologies and their boost to production.

Overall, we find that the adoption of GM technology can generate large profits for growers,
especially when there are no restrictions on GM adoption. Our results are robust to yield gains from
the GM technology (3% and 5%). Producers’ welfare still increases if there is no GM maintenance
cost reduction, but this is due to a switch to bio-control acres and not the production of GM acres.
Generally, if consumers accept the GM technology, its benefits can exceed those of the bio-control
method for producers, as shown by the increased profits in figure 4. These results support the
underlying motivation of technology use—to help limit production losses and reduce chemical
inputs, which can lead to increased profits if the technology is adopted. The agricultural industry
has experienced these benefits previously with the introduction of other GM technologies such as
Bt cotton (Barnett and Gibson, 1999) and GM corn seed technologies (Brookes and Barfoot, 2005).
Our results follow industry and project expectations.

Our analysis finds that, given the benefits of the technologies and the size of the U.S. apple
industry, the research done by the scientists in the Integrated Genomics and Management Systems
for Control of Fire Blight project has significant value to the industry. We find that the new
technologies would bring more than $132 million to the U.S. apple industry over the thirty-five-year
horizon. This value can be considered a willingness to invest in the development and implementation
of the technologies to help stabilize and secure production. Our results provide estimates of what
the technologies mean to the current apple industry when considering currently productive acres.
However, there is potential beyond the acres currently in production, and further research could
explore the direction that the industry could take on an even larger scale.

The results of our study are consistent with previous literature focusing on production
technologies. Moschini (2001), who focused on Roundup Ready technology, and Brookes and
Barfoot (2005), who looked at GM technology in crops like soybeans and canola, are only two
examples of studies that describe overall positive impacts to the industries in ex post analyses.
The benefits include lower costs of production, increased production in the orchards, and overall
increased profits to the growers. We see the same benefits in our analysis.

Following the release of technologically advanced foods, consumer opinion will have an
important effect on consumption. In our analysis, we consider consumer hesitation about the GM
technology through the rate in which producers adopt the technology. We consider how producers
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perceive consumer acceptance or hesitation through producer expectations about the demand for
apples. Using an adoption rate quantifies potential producer hesitance about technology adoption,
modeling producer anticipation of negative feedback from apple consumers, especially in the case of
direct consumer interaction. This assumption improves our estimation of the potential technological
impact to the industry. However, further research is needed on this topic.

Our assumptions highlight some limitations that need to be considered for future research and
policy implications. Our results are specific to the technologies explored in the Integrated Genomics
and Management Systems for Control of Fire Blight project, which have yet to be completed for
commercial use. Each technology will have its own important costs and benefits that would need to
be carefully analyzed for a specific impact to be measured. Additionally, we assume a fixed upper
bound in U.S. apple acreage. This assumption is necessary to narrow the evaluation to the current
industry. There is a potential to expand acreage and convert current orchards, pastures, and fields.
Future research would need to look closely at possible impacts to other crops and land from the
use and acceptance of this technology. Finally, the true consumer acceptance of GM technology is
uncertain. While positive strides are being made to understand the health and safety of consumption
and consumer opinion, there is still a long way to go.

We have provided evidence that through technology adoption the apple industry can thrive and
consumers can benefit. When GM and bio-control technologies are adopted, fewer acres are required
to meet demand. We show that maintenance cost reductions and recovering the production losses to
fire blight are important to both producers and consumers. The release of the bio-control technology
benefits growers and consumers both when there are producer adoption restrictions stemming from
consumer concerns about GM products and when GM technology is fully accepted. Consumers
see the benefits directly in the form of lower prices. Figure 5 shows the annual prices under: 1)
the release of both GM and bio-control technologies (with the GM adoption restriction), 2) the
robustness check in the case of no adoption restriction when both technologies are released, and 3)
the scenario under conventional production methods.16 In our analysis, consumers directly benefit
from the adoption of either technology because of the general price drop for around twenty years.
Consumers also indirectly benefit in terms of a reduction of chemicals used on the crops, by design
of the technology (Korban and Zhao, personal communication, August 2011).

The GM and bio-control technologies have the potential to make a great impact on the U.S.
apple industry. The technologies’ effects on producer income will depend on the demand elasticity
of apples. Typically, demand for fruit and vegetables is inelastic and needs a substantial price change
to significantly impact the quantity demanded (U.S. Department of Agriculture, Economic Research
Service, 2010). Consumption of fresh fruits and vegetables in the United States, however, is limited
for families in the lower income brackets, which may be an important determinant of demand
inelasticity. Price could play a more important role in demand for apples if the demand elasticity
for apples changes as consumer trends, income, or preferences change. Of course, the perennial
nature of apple production stabilizes apple supply and makes it difficult for producers to respond
to price changes in the short run. Even with the challenges of demand, a careful evaluation of the
benefits from GM and bio-control technologies will enable the industry to successfully introduce
those technologies. Perhaps the best option for the industry would be to introduce the technologies
as a way to recover production while not distorting the market through more traditional government
price support policies. Technology adoption can be marketed as stabilizing the industry by reducing
fire blight outbreaks. Careful consideration must be made in the approach to consumers. Evaluating
consumer benefits and comparing them to producer benefits will be critical to the market viability
of the technology.

We find that the GM and bio-control technologies are attractive to the industry regardless of
growers hesitate to adopt because of consumer concerns about GM products. Further evaluation of

16 Figure 5 shows three distinctive pricing situations from this analysis. The robustness check with only a 3% increase
in yield prices matches the no adoption rate scenario while the no maintenance cost robustness check and bio-control
introduction only scenario follows the pricing of the release of both technologies in the figure.
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these technologies with experimental data from the scientists’ trials will be important in exploring
the impact to the industry and society in more detail. The inclusion of specific experimental data
about the impacts on yields and production costs will generate a more accurate impact analysis.

Consumer concerns about GM technology are inevitable, especially, for example, from parents
buying food for their children. But unlike prevailing GM technologies that provide herbicide and
pest resistance, which transfer genes between crop species, the fire blight technology transfers a gene
between currently produced apple varieties. The FDA has already approved GM varieties of apples
with characteristics preferred by consumers. Arctic Apple is one company that has recently had two
varieties of non-browning GM apples approved (Nosowitz, 2015). These apples have been modified
such that the enzyme in the apple that causes the browning of apples after slicing has been removed.
They created a similar modification for potatoes that has also been FDA approved. Acceptance of
GM soybeans, corn, and cotton is limited in much of the world, although U.S. consumers have come
to accept these products. However, acceptance of directly consumable GM technologies could be a
different story.

A survey of U.S. residents in 2014 by Lusk, McFadden, and Rickard (2015) provided some
insight into the potential demand for genetically engineered food. They found that there is a level
of acceptance for genetically engineered food for desirable characteristics such as nutrition, keeping
production local, and lowering consumer prices. However, the results of the survey showed a more
limited acceptance for less processed foods (Lusk, McFadden, and Rickard, 2015). Concerns are
expected and research should be conducted to ensure the safety of consumers eating GM apple
varieties.

Our research has implications beyond the U.S. apple industry, as it provides evidence of the
true impact beyond production that government funding can have on an industry. The value of the
impact and designations of beneficiaries help policy makers understand the impact that they can
make. Further research in this area will define policy makers’ impacts even more, and applications
of these principles can be expanded to other industries and to evaluate potential impacts for future
research areas.

[Received August 2015; final revision received June 2016.]
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