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We address the problem of de novo motif identification. That is, given a set of

DNA sequences we try to identify motifs in the dataset without having any prior

knowledge about existence of any motifs in the dataset. We propose a method based

on Probabilistic Suffix Trees (PSTs) to identify fixed-length motifs from a given set

of DNA sequences. Our experiments reveal that our approach successfully discovers

true motifs. We compared our method with the popular MEME algorithm, and

observed that it detects a larger number of correct and statistically significant motifs

than MEME. Our method is highly efficient as compared to MEME in finding the

motifs when processing datasets of 1000 or more sequences. We applied our method

to sequences of mutant strains of Exophiala dermatitidis and successfully identified

motifs which revealed several transcription factor binding sites. This information

is important to biologists for performing experiments to understand their role in

different regulatory pathways affected by cdc42. We also show that our PST approach

to de novo motif discovery can be used successfully to identify motifs in ChIP-Seq

datasets. These motifs in turn identify binding sites for proteins in the sequences.
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Chapter 1

Introduction

A motif is a subsequence that occurs frequently in a given set of biological sequences.

Motifs have some biological significance associated with them, e.g., denoting tran-

scription factor binding sites [12]. The motif-finding problem is to identify all motifs

in a given set of sequences. This problem has been studied for more than two decades

and is very interesting both from application and theoretical points of view. Nu-

merous approaches (expectation maximization, graphical, biclustering, etc.) such as

MEME [7], WINNOWER [26] and MUSA [22] have been investigated. However, even

after much effort no good approach that gives a complete and correct solution to the

problem has been reported.

In this dissertation we develop a motif-finding approach based on Probabilistic

Suffix Trees (PSTs). A string which occurs randomly in a data set of sequences cannot

be a motif. Conversely, for a string to be a motif, the probability of its individual

positions must be dependent on each other. Therefore a model like a Markov chain

can be used to identify motifs. A Probabilistic Suffix Tree (PST) is a similar concept

but with more efficient memory usage. PSTs are capable of identifying frequently

occurring subsequences in datasets. PSTs also provide an approximately accurate

probability distribution of symbols by observing at most L symbols in the preceding
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subsequence [9]. This makes PSTs memory efficient tools. A PST is a simple and

powerful tool which can be used easily. PSTs have been previously used for classifying

protein sequences [9]. They can also be used for correcting corrupted texts and DNA

base predicting [27]. In this dissertation we use PST to build a tool for de novo motif

identification in DNA sequences. Our method is an unsupervised method and does

not require any of alignment between sequences or learning of labeled data. It uses

PST to generate seeds which act as regular expressions for searching candidate motifs

in the dataset. It then evaluates statistical significance of candidate motifs to label

them as motifs or non-motifs. We also show that our method is robust enough to

identify motifs in ChIP-Seq data.

Our validation experiments reveal that the predicted motifs are correct meaning

they either match exactly to some existing motifs or are a substring of some bigger

known motif. Our results can be summarized as follows:
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1. Accurately finds motifs of different lengths (accuracy near 1.0 for

smaller motifs and decreases slightly as motif size increases).

2. Finds motifs with high accuracy on datasets both small and large

(≈ 33, 000 sequences).

3. Finds a larger number of correct and statistically significant motifs

than popular motif finding tool MEME.

4. Finds motifs more efficiently than MEME when handling real

datasets of more than 1000 sequences.

5. Successfully identifies important transcription factors which are

known to play important role in regulatory pathway affected by cdc42.

6. Provides a tentative list of transcription factors which will used as

a starting point for wet lab experiments in determining their role in

regulatory pathways.

7. Finds motifs in ChIP-Seq data, to identify protein binding sites.

Shows how this process can be applied to ChIP-Seq data in general.

This dissertation is structured as follows: In Chapter 2, we state and describe the

motif identification problem. Chapters 3 and 4 discuss the related work and back-

ground needed for understanding Probabilistic Suffix Trees and their applications. In

Chapter 5, we describe our method, and associated metrics for its performance eval-
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uation. We perform several experiments by applying our method to various datasets

(synthetic and real). We also compare our method to the popular motif finding tool

MEME and discuss the results of these experiments on the real datasets. We ob-

serve that our approach finds more correct and statistically significant (with e-value

≤ 0.05) motifs than MEME. It also takes much lesser time than MEME in doing so

(when applied to datasets of > 1000 sequences). Chapter 6 describes the application

of our method to a generalized form of our problem. That is how to find significant

motifs of a range of sizes instead of a fixed one. We rerun our experiments on the

data used in Chapter 5, for validation purposes. We then apply our method to find

motifs of length range 7 to 9 bases among sequences of three mutant strains of black

yeast E. dermatitidis. We successfully identify different transcription factor binding

sites in these mutant using the predicted motifs. This information will be central to

performing further experiments in understanding their roles. In Chapter 7, we show

how to apply our approach to data obtained from ChIP-sequencing and identify mo-

tifs. Finally, in Chapter 8, we talk about the future projects that can be undertaken

with respect to our PST based approach.
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Chapter 2

Problem Description

DNA or deoxyribonucleic acid is a molecule that carries the genetic information of

all living organisms. Most DNAs consist of two strands which are coiled around

each other to form a double helix structure. Each strand is composed of nucleotides,

deoxyribose sugar and phosphate group. A nucleotide can be any one of the four

nitrogen containing bases: adenine (A), guanine (G), cytosine (C) or thymine (T). A

DNA sequence is a long string of nucleotide symbols. The information contained in

a DNA is based on the order of these base symbols.

DNA motifs are defined as recurring patterns in the DNA. Motifs are typically

5–20 symbols long. A sequence might have a single or multiple copies of a motif.

Motifs are associated with important biological functions like binding sites for pro-

teins (nucleases and transcription factors), involvement in ribosome binding, mRNA

processing and transcription termination [12]. Thus successful identification of motifs

plays an important role in understanding the inner mechanisms of biological functions.

We investigate the problem of de novo motif identification. Our objective is to

identify motifs which are most enriched from an unbiased set of DNA sequences, about

which we do not have any prior information. A motif is said to occur frequently in a

dataset if it occurs in multiple (> 1) sequences in the dataset S with e-value ≤ 0.05.
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E-value of a motif is the expected number of strings of same length as the motif, with

equal or greater information content than the motif, that occur simply by chance in

the dataset S [17].

Now we formally define the problem as: Given a set S of DNA sequences and a

parameter m, find all motifs of length m that occur in S. In Chapter 5 we address

this problem and propose our solution.

In Chapter 6 we deal with the generalized version of the above problem. We

define it as follows: Given a set S of DNA sequences and parameters m1 and mn

where m1 ≤ mn, find all motifs of lengths m1 to mn.

Numerous approaches (MEME [7], WINNOWER [26], MUSA [22]) have been

developed to address the motif finding problem. However so far no method gives

a complete and efficient solution. As pointed out by Simche et al. [29], unbiased

validation of de novo motifs is difficult. A statistical method for validating such

motifs is to treat the motif discovery problem as discrete classification problem. That

entails clustering sequences into clusters, identifying motifs specific to each cluster

and then using those motifs to distinguish its cluster from the other clusters. Simcha

et al. [29] observe that most algorithms perform poorly in this regard. Some other

common problems associated with de novo motif discovery include a high rate of false

positives, inability to identify all possible motifs actually present, and time taken to

find the motifs.

In this dissertation we propose a motif finding approach based on Probabilistic

Suffix Trees. Our approach aims to develop a method that can discover accurate

motifs from data sets in lesser time than existing tools. PSTs do not require any kind

of aligning of sequences for identifying any motifs and have very efficient memory

utilization. Since there is no alignment process involved, the actual process of search-

ing for motifs, is pretty fast for datasets of size greater than thousand sequences.
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Applying on synthetic dataset we observe that our PST-based method identifies mo-

tifs specific to clusters of sequences, such that the motifs are successfully capable of

distinguishing its cluster from the other clusters (AUC ≈ 0.983).

In our comparison with the popular motif finding tool MEME, we find that our

PST based approach takes much less time and finds larger number of statistically

significant motifs when used on the same dataset. We also observe from our validation

experiments, that our accuracy is very good (near 1.0 for smaller motifs and decreases

slightly with increasing motif size).
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Chapter 3

Related Work

In this chapter we review some of the algorithms proposed for the motif discovery

problem.

Das and Dai [11] present a comprehensive survey of DNA motif finding algorithms.

A comparison of different motif finding algorithms to help a user better understand

which algorithms to use is given by Tompa et al. [31].

Pevzner et al. [26] investigate a graph-theoretic approach for motif discovery.

Their approach is called WINNOWER. First, given a set of sequences S = {s1, . . . , st},

motif length ` and maximum number of mismatches d (allowed in the motifs), a

graph G(S, `, d) is constructed in the following manner. Each vertex represents a

`-length substring of each sequences si starting at all positions j in si such that

1 ≤ j ≤ |si| − ` + 1. Vertices sij and sab are connected if they are not part of

the same sequence i.e. i 6= a and the Hamming distance between the sunstrings

is ≤ d. For instances, let s1 = ATGAAATG and s2 = GTGAAACA be two se-

quences ∈ S. Let ` = 4 and d = 2. Then from s1 we have vertices representing

{ATGA, TGAA,GAAA,AAAT,AATG} and from s2 we have vertices representing

{GTGA, TGAA,GAAA,AAAC,AACA}. There can be edge between vertices ATGA

and GTGA because they are from different sequences and the Hamming distance be-
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tween them is 1. A motif corresponds to a clique in the graph G(S, `, 2d). The

problem of finding motifs is reduced to finding large cliques in the graph. The algo-

rithm basically converges to a collection of cliques (motifs) by eliminating inconsistent

edges iteratively.

Workman et al. [32] propose the algorithm ANN-SPEC for motif discovery. It is

basically a neural network approach. It is a sparsely encoded perceptron with single

processing unit. Given a set of sequences and the genome background frequencies,

the neural network tries to find parameter values which maximize the probability that

the motif occurs in each sequence of the set. Their training process is based on the

Gibbs sampling process.

Liu et al. [19] present BioProspector, a Gibbs sampling-based algorithm for motif

discovery. The algorithm implements a process called a threshold sampler. This

algorithm differs from the normal Gibbs sampling approach at several points. For

instance, it computes the score of the segments differently (using a 3rd-order Markov

model) and it accommodates for the fact that a sequence can have multiple motifs

while some might not have any. This is done by controlling the sampling process

with two thresholds. It is also capable of capturing two-block motifs and palindromic

motifs. The algorithm uses a different motif scoring scheme to quantify the statistical

significance of a motif.

Fogel et al. [15] use a genetic algorithm [23] approach for discovery of transcription

factor binding sites. Genetic algorithms (GA) are heuristic search techniques based on

evolutionary and genetic concepts. GAs simulate survival of fittest process to solve an

optimization problem. Solutions to the problem represent chromosomes/individuals.

Collection of chromosomes form a generation. Quality of an individual (solution) is

evaluated using a fitness function. Only individuals with high fitness score are eligible

for mating. Parents are selected from the eligible group and mated to form offsprings
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(new solutions). To keep the size of the population constant, individuals with low

fitness scores are eliminated. In this way new generations of individuals (solutions)

are obtained by exhaustively mating parent solutions in the previous generation. This

process is continued till an optimal solution is obtained. In their approach, the width

of each motif is assumed to be fixed at 8. The initial parent solution set is created

by randomly placing a window of size 8 on each sequence. Offspring solutions are

created from the parent by using up to three different operations. The number of

operations to be used is again determined randomly. One operation is to randomly

select a window on a parent solution and slide it to the left or right (direction selected

randomly) by random number of positions. Another operation is to randomly select

points of recombination between two parents, following which the parts of the parents

are interchanged at each recombination point. The last operation is to select a parent

randomly and move the window to a location such that G+C percentage of that area

is greater than equal to the average G+C percentage (percentage of nucleotides in the

sequence that is Guanine or Cytosine) of the rest of the sequences. Once offspring

solutions are added to the population, the fitness of a solution is computed using

a fitness function. The fitness function is a weighted sum of the overall similarity

score and overall complexity score. Based on the fitness score, the “fit” solutions are

retained while the rest are discarded. The whole process is continued until a local

optimum is reached.

Mendes et al. [22] present MUSA, a parameter-free algorithm for identifying motifs

based on biclustering. Biclustering is the process of simultaneous clustering of rows

and columns of the matrix representing the entire dataset. It allows to identify

significant sub-matrices within the data matrix [10]. The paper discusses the concept

of complex motifs as a composition of smaller simpler motifs required to be present in

a certain percentage (quorum) of the given set of sequences. They define the matrix
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of co-occurrences as a symmetrical matrix indexed by subsequences of fixed length

denoting the abundance of the occurrence of the two indices in the dataset. The

matrix is used to identify the presence of complex patterns. A biclustering approach

on the matrix of co-occurrence for that purpose is used. Starting with a single element

of the matrix of co-occurrence, the matrix is expanded till a specified score is reached.

Xia [33] investigates the use of a position weight matrix (PWM) and Gibbs sampler

methods for motif characterization and prediction. A PWM is a probabilistic method

of representing motifs. A PWM for a motif of length m may be defined as a 4 ×

m matrix, where each row represents a nucleotide(row-ordering: A, C, G, T) and

each column represents a position in the motif. In this representation PWMij =

log2(pij/bi) where pij = probability of symbol i in position j and bi = background

probability of symbol i. Consider the string ‘ACTG’. Let the background probability

of each symbol be 0.25. Then bA = bC = bG = bC = 0.25. Also in ACTG, pA1 = 1,

pC2 = 1, pG4 = 1, pT3 = 1. So the PWM representation of ACTG is:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

log2(1/.25) log2(0) log2(0) log2(0)

log2(0) log2(1/.25) log2(0) log2(0)

log2(0) log2(0) log2(0) log2(1/.25)

log2(0) log2(0) log2(1/.25) log2(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Typically pseudo-counts are added while computing PWM so that there are no unde-

fined (log2(0)) values. Position Frequency Matrix (PFM) is same as PWM, with only

one difference. Instead of logarithmic value, it contains the number of occurrences of
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symbols in different positions. So the PFM representation of ACTG is:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Assume there are N sequences with exactly one motif occurrence in each sequence.

Let ni represent the starting position of the motif in the ith sequence. The algorithm

has two phases. The first phase is the initialization phase, where random ni values

are assumed and different nucleotide frequencies are computed. The second phase is

the predictive update phase. In this phase, each of the N sequences is processed in

a random order to improve its corresponding ni value by the use of position weight

matrix. Once a local solution of nis is obtained, the whole process is repeated until a

local optimum is reached. This local optimum, ni values, together with the nucleotide

frequencies describes the motif and its position in each sequence.

Bailey et al. [7] introduce the MEME algorithm. It is based on the Expecta-

tion Maximization concept [24]. Expectation Maximization is an iterative method

of calculating maximum likelihood estimates of statistical models with hidden/latent

variables. It alternates between two steps, expectation step (E step) and maximiza-

tion step (M step). During E step, it creates a function (g) which calculates the

log likelihood using the current estimate of the model parameters. In the M step,

it calculates new parameters which maximizes the function g. This is continued till

convergence is reached [13]. In this paper the authors test different starting points for

estimating a probabilistic model of a motif, and chooses the model with the highest

log likelihood. Once the model of a motif has been output, it removes all traces of the
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motif from the input data and looks for new motifs. MEME has a time complexity

of O(n2),where n is the total number of characters in the provided dataset.

Simcha et al. [29] discuss the potential limitations of different algorithms for de

novo motif discovery. They introduce a logistic regression based method, the LR

algorithm as well as a generalized version of LR called ALR. The authors design cer-

tain tests using both synthetic and real data to evaluate the performance of motif

discovery algorithms as classifiers. They show that all the algorithms tested gave poor

results. It leads to the conclusion that improvements are needed in the existing com-

putational techniques for motif discovery. Integration of biological knowledge coupled

with high-throughput data would increase the accuracy of the existing algorithms.
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Chapter 4

Background

In this chapter, we briefly present the idea of string representation of motifs and

introduce Probabilistic Suffix Trees. Ron et al. [27] showed that PSTs are a suitable

statistical approach for modeling biological sequences. It is based on the idea that

for a sequence, the probability distribution of the next symbol can be accurately

approximated by just the last L symbols of that subsequence.

4.1 Motif representation

In our method we use string representation of motifs. This is letter representations

of a motif. In its simplest form it can be an exact sequence of letters (nucleotides)

describing the motif. For example ATGCAAA describes a length-7 motif whose letters

are A, T, G, C, followed by 3 A’s in that order. Or it can be used to describe a general

pattern. For instance, AAAnnTGC represents a length-8 motif which always starts

with AAA and ends with TGC. The middle two positions can be anything.

We use an 11-letter alphabet Σ = {A, T, G, C, r, y, s, w, m, k, n} in the syntax

of the string representation of motifs. The last seven symbols are degenerate symbols

that represent multiple nucleotides. Table 4.1 shows the multiple representations of

the degenerate symbols. The degenerate symbols are useful in the event we represent
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Table 4.1: Degenerate symbols and their meaning

Symbol Nucleotides
r A or G
y C or T
s C or G
w A or T
m A or C
k G or T
n A or C or G or T

a motif whose instances vary in some positions. For instance AArTG represents that

both instances of this motif, AAGTG and AAATG.

4.2 Probabilistic Suffix Trees

In this section we review the concept of the Probabilistic Suffix Tree. Probabilistic

Suffix Trees (PST) were introduced by Ron et al. [27]. A PST defined over an alphabet

Σ is a non-empty tree where each node can have a maximum out-degree of |Σ|. The

edges from a node are labeled by symbols from Σ such that no two edges have the

same label. Each node is labeled by a string x and a probability distribution Γ, where

x is the string obtained by traversing from the current node to the root. Γ denotes

the probability distribution of the different symbols of Σ after observing string x.

Terminology related to PSTs

Before going into the details of the construction of a PST we present relevant defini-

tions. Let P (x) be the probability of observing a string x in a given dataset of strings

S. It is defined as

P (x) = Nx/N ,
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where Nx = Number of occurrences of x in S (overlaps included) and N = Total

number of (overlapping) occurrences of any string of length |x| in S. Let P (α | x) be

the conditional probability of observing a symbol α after string x in S. It is defined

as

P (α | x) = Nxα/Nx∗ ,

where Nxα denotes the number of occurrences of string “xα” in S (overlaps included)

and Nx∗ denotes the number of occurrences of string x followed by any symbol in S.

For instance consider the string AAATGCGTAAA. In this string, AAA occurs 2

times while the total number of length-3 strings that can be found is 9. Following

the above definition P (AAA) = 2/9. To illustrate P (T | AA): NAAT = 1 as T occurs

after AA only once while NAA∗ = 3 as the number of length-3 strings starting with

AA is 3. So P (T | AA) = 1/3.

In a PST, if the label of node is x1x2 · · · x|x|, then the label of its parent would be

x2 · · ·x|x|.

For a string x = x1x2 · · ·x|x|, we define the function Υ as Υ(x) = x2 · · ·x|x|. So in

a PST, Υ(node) gives the label of its parent.

Building a PST

Five parameters, L, ρ, δ, κ and ζ, are associated with the construction of a PST

TS (constructed from dataset S), where L is the depth of the tree, ρ the minimum

probability for any string to be considered as a node in the tree, δ, the difference in

the prediction abilities of a child and its parent, κ, a factor used to smooth the prob-

abilities of the symbols at any node, and finally, ζ, which together with κ determines

the threshold of the conditional appearance of a symbol. Let D denote the strings

that will be used to construct the PST. The pseudocode for constructing TS is given
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as Algorithm 1. It is adapted from Bejerano [9] and Ron [27].

Given a dataset S, a PST TS is constructed by Algorithm 1 as follows: Algorithm 1

starts with the development of the first level of nodes in the PST. The symbols in

the alphabet become the first level of nodes. Each string x associated with a node is

examined to check if it has potential for extension. The extented strings are obtained

by appending the current node label (x) to each symbol (σ) from the alphabet (Σ).

If the probability of this new string σx exceeds ρ, σx is added to the list of strings to

be checked. For a string x to be added as a node to the tree, it needs to satisfy two

conditions.

• The probability that some symbol σ from Σ can appear after x, exceeds some

threshold.

• The predictive ability of the node is greater than its parent.

If a parent and a child have same predictive powers, then there is no point in adding

the child to the tree. Once a node is added to the tree, the probability distribution

of each symbol of the alphabet (Σ) at the node is calculated and stored. This whole

process is repeated until the tree reaches the specified length or runs out of iterations.

Example

Consider the set of strings S = {AAATGCTT, ACTATGCA, ATGCATGC, TTGCATGC}.

Dataset S is given to the Build-PST-Tree algorithm with the following parameters:

L = 3, ρ = 0.0001, δ = 1.05, κ = 0.001, and ζ = 0. Figure 4.1 show the different

stages of the development of the tree.

In the graphical representation, each node is labeled with the string associated

with it and all outgoing edges from a node are labeled with the probability of the
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Algorithm 1 Build-PST-Tree (L, ρ, δ, κ, ζ)

Initialize TS to a single root node and D ← {σ ∈ Σ : P (σ) ≤ ρ}.
/* D initially starts off with single length strings (which are the symbols in alphabet
Σ), whose probability should be less than ρ */

while D 6= ∅ do
Select any x ∈ D

Remove x from D

If there exists a symbol σ ∈ Σ such that

P (σ | x) ≥ (1 + ζ)κ (4.1)

/* constraint on the probability that symbol σ
appears after string x */
and

P (σ | x)

P (σ | Υ(x))
≥ δ or

P (σ | x)

P (σ | Υ(x))
≤ (1/δ) (4.2)

/* comparing predictive powers of a node and its parent */

then add a node labeled x to TS and all nodes on the path from the deepest node
in TS which is a suffix of x

If |x| < L and ∀ς ∈ Σ if P (ςx) ≥ ρ add ςx to D /* calculating the probability
distribution of the symbols of Σ at the newly added node */

end while

For each node labeled x in TS, the probability distribution of the symbols is set as
follows:

Γ(σ) = (1− |Σ|κ)× P (σ | x) + κ (4.3)
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next symbol. For instance, in Figure 4.1(b), the probability of symbol T appearing

after node labeled A is 0.624.

The initial stages of the development of the PST is described below. D is a set of

strings that may potentially become nodes in the tree, if the requisite conditions are

satisfied. Initially there is only the root node and D is initialized to {A, T, G, C}.

String A is removed from D and tested for the two conditions described earlier. Since

both conditions P (A | A) = 0.25 > 0.001 = (1 + ζ)κ and P (A | A)/P (A) = 0.888

< 0.952 = (1/δ) are satisfied, a node labeled A is added to the root. Also, since

P (AA) = 0.035 > ρ = 0.0001, string AA is added to D. Based on P (TA) = 0.035

and P (CA) = 0.107 values, TA and CA are also added to D to be checked later by

the algorithm. It should be noticed that since P (GA) = 0, GA is not added to D.

Following this, the probability distribution of the symbols at node A are calculated

using equation 4.3 in Algorithm 1 and stored. Then, T is removed from D and

similar procedure is followed. Let us look at what happens when AA is removed from

D. P (A | AA) = 0.5 > (1 + ζ)κ and P (A | AA)/P (A | A) = 2.0 > δ. So the node

AA is added to the tree as a child of node A. The probability distribution at node

AA is calculated and stored. In this way D is checked and updated in each iteration

until D becomes empty. Figures 4.1(a)-4.1(c) show the stage-by-stage development of

the PST. Figure 4.1(a) shows the PST with only root node and its four child nodes.

Figure 4.1(b) shows further development of the tree. Node A has three children

labeled AA, TA and CA. Node T also has three children, node G has no children and

node C has two, AC and GC. Finally, Figure 4.1(c) shows the final stage of the PST

when the specified length L = 3 is reached. There are only three nodes labeled with

length 3 strings; AAA, ACT and GCT.
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(a) PST when len=1

(b) PST when len=2

(c) PST when len=3

Figure 4.1: Graphical representation of PST at different stages of construction

Scoring using PST

A PST can be used to compute the probability of occurrence of a string x. Let

PTS(x) denote the probability of x to be generated by the PST TS. This probability

is calculated as the product of individual probability of each letter in x. Let xi be the

ith letter in x and x1..i−1 be the prefix of x that ends in position i−1. The probability

of xi is obtained by searching for the longest suffix of x1..i−1 that appears in the PST,

and using the probability distribution value of letter xi at that node.
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For instance, given the PST TS from the previous example,

PTS(ATGC) = PTS(A)× PTS(T | A)× PTS(G | AT )× PTS(C | ATG).

PTS(A) is the probability of symbol A at the root node which is 0.25. For PTS(T | A),

the deepest suffix of A which appears in the tree is A. So PTS(T |A) is the probability

of T at node A which is 0.6235. Similarly PTS(G | AT ) is the probability of symbol

G at node AT (since node AT appears in the tree) and is equal to 0.997. Finally for

PTS(C | ATG), since the deepest suffix of ATG is G, it is equal to the probability of

symbol C at the node G which is 0.997. So

PTS(ATGC) = 0.25× 0.6235× 0.997× 0.997 = 0.1549.

In the context of the PST approach, we define the score of a string x (as measured

by a PST), Ψ(x) = PPST (x).

Now we consider a string which is not a motif. Let a string y of length m be not

a motif. Then each symbol in y is independent of others in the string. That is a

symbol in any position in y has the same absolute probability as the symbol in the

dataset. Thus the probability of any symbol yi in y = PTS(yi). And the score of y as

measured by PST TS is

Ψ(y) =
∏
i

PTS(yi).

For instance, if the string y = TGAC is not a motif, then the score of y is Ψ(y) =

PPST (y) = PTS(T ) × PTS(G) × PTS(A) × PTS(C). The probability of each symbol is

obtained from the dataset. This is our null model.
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Chapter 5

Finding motifs of a fixed length

In this chapter we propose an approach using Probabilistic Suffix Trees to find length-

m motifs in a given set of DNA sequences.

5.1 Proposed motif finding method

Parameters

Our motif finding process involves a total of seven parameters. Five parameters (L,

ρ, δ, κ, and ζ) are used for building the tree. These parameters can be set by the

user.

We use two more parameters (Θ and ecut), which are used for filtering false posi-

tives. Θ is the score of a string defined by our null model. It is used as a threshold

to distinguish between non-motif strings and potential motifs. The parameter ecut

is a cut-off criterion used to eliminate potential motifs with high e-value. It is set

as per the user’s discretion. Table 5.1 lists the parameters and their values. These

parameters can be empirically optimized for a dataset under consideration.
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Table 5.1: List of parameters used in PST tree building and the search process

Purpose Parameter Value
PST-building L 20

ρ 0.00005
δ 0.5
κ 0.001
ζ 0

Searching and Filtering ecut 0.05

Approach

We use a PST TS to identify the motifs in S. We start with building TS via Algo-

rithm 1 for a given data set S. We consider any string x to be a candidate (i.e.,

potential) motif if its score as computed against TS exceeds threshold Θ. The process

is described as follows. Let L be the set of all leaves in the PST. Let Lµ be the set

of leaves in L of size ≥ µ. We will use the leaves in Lµ in conjunction with a sliding

window W to search for potential motifs. The size of window W is set to m, same

as that of the motifs. If a leaf (string) ` is greater in length than m, then let Sm,` be

the set of m sized substrings of `. We populate Sm,` by simply dragging the window

from the left end of ` to right, one letter at a time, to get all m-sized substrings of

`. Figure 5.1 shows how the sliding window is used with a bigger sized leaf. In the

figure, the leaf is denoted in red color while the window is blue. The leaf is of size

four and the window is of size three.

Then for each `i ∈ Sm,` we search for `i in each sequence s ∈ S. So if `i is found

in s and its score Ψ(`i) > Θ, then we consider `i to be a candidate motif in S. If,

however, |`| < W , we first find the location of ` in the sequence s. Then we place

the window on that location and get all possible m-sized substrings of s, in which `

is a part. This is done by sliding the window left and right, all the while covering `.

Figure 5.2 shows the process of sliding the window. In the figure leaf is colored red
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Figure 5.1: Smaller sliding window on a bigger leaf

Figure 5.2: Bigger sliding window on a smaller leaf

while the window is blue. The leaf is of size four and the window is of size five. We

then score each string thus obtained against TS and compare their scores with the

threshold Θ.

Once a set of candidate motifs CM is obtained, we calculate the statistical sig-

nificance of each candidate. We do this by computing the e-value of its information
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content as defined by Stormo and Hertz [17]. They define e-value of a candidate motif

as the expected number of random strings in the entire dataset which have the same

or more information content as the candidate. In their paper, Stormo and Hertz show

how to calculate the p-value of the information content of any motif represented in

alignment matrix format, and then scale it, based on the size of the dataset to get

the e-value. Alignment matrix is simply a matrix that contains the number of occur-

rences of each nucleotide at each position in an alignment. They define p-value of

the information content (ic) of a given alignment matrix as the probability of finding

an information content ≥ ic given the alignment matrix details (width of the motif,

and the matrix contents). Information content ic of an alignment matrix is defined

as follows:

ic =
W∑
j=1

4∑
i=1

fijln(fij/pi)

where W is the width of the alignment, pi is the background probability of symbol i

and fij is the frequency of symbol i at position j. They show that they can accurately

estimate the p-value using large-deviation statistics. We represent each candidate

motif in alignment matrix form and use their method to calculate the p-value and

subsequently the e-value of that candidate motif. While calculation the e-value, we

assume each sequence can contribute zero or more times to a motif alignment matrix

and use the appropriate formula for calculating the dataset size. Once the e-values

of all the candidates have been computed, we use a cut-off value ecut to filter the

candidates in CM . Those with e-value≤ ecut are retained while the rest are discarded.

Figure 5.3 describes our proposed approach for motif finding using PST.
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Figure 5.3: PST based approach for finding motifs of length m from dataset S

5.2 Experiments

5.2.1 Experiment 1 on Synthetic Data

Objective

The objective of the experiment is to see how our PST based approach performs, in

terms of the unbiased validation method suggested by Simche et al. [29].
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Dataset

Four synthetic datasets are constructed: C1, C2, C3 and C4. Each dataset is built

around a single type of motif. That is, all sequences of dataset Ci have the motif mi

in them. Thus the presence of a particular motif should identify whether a sequence

belongs to the corresponding dataset or not. In each sequence a single instance of the

motif is placed at random. The sequences are generated in such a manner such that

the probability distribution of the nucleotides in the dataset Ci is the same as that in

the genomic sequences from the Saccharomyces Genome Database (SGD) [3]. The size

of the planted motifs is 8 nucleotides. Each sequence is 1000 nucleotides long. Each

dataset has 1000 sequences. The motifs are completely distinct from each other, that

is, each has a Hamming distance of 8 from each other. For simplicity’s sake, the four

motifs used are ‘AAAAAAAA’, ‘TTTTTTTT’, ‘GGGGGGGG’ and ‘CCCCCCCC’.

So C1 contains the motif ‘AAAAAAAA’, C2 contains the motif ‘TTTTTTTT’, C3

contains the motif ‘GGGGGGGG’, and C4 contains the motif ‘CCCCCCCC’. This is

done so as to facilitate easy distinction of the clusters among themselves. That is, it

should be easy to distinguish the four clusters solely based on the presence or absence

of the respective motifs. This experimental setup is adapted from the planted motif

simulation scenario of Simche [29]. Four test datasets DC1, DC2, DC3 and DC4 are

also constructed. Each dataset DCi contains 200 sequences; 100 sequences from Ci

and 100 from the other three datasets combined.

Methodology

A PST TCi
is built on Ci and used to identify motifs in Ci as shown in Figure 5.3. The

set of motifs returned is converted to the corresponding Position Frequency Matrix

form (PFMi). PFMi is used to compute the probability that a sequence s contains
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the motif mi which in turn indicating that probability that s ∈ Ci. The probability

that a sequence s belongs to cluster Ci is given by:

(|s|−|m|+1)∑
pos=1

(pos+|m|−1)∏
j=pos

(
PFMi[sj, j − pos+ 1]

NRMi

)
where

(pos+|m|−1)∏
j=pos

(
PFMi[sj, j − pos+ 1]

NRMi

)

corresponds to the probability that motif represented by PFMi is present in sequence

s at position j. Since the exact location of the motif is not known, all possible

positions (|s| − |m| + 1) are accounted for by using the summation term. So the

formula basically sums up the the probability that motif mi is present in the position

pos for all permissible values of pos. The PFMi is thus used as a classifier for the

sequences in DCi and the performance is measured using area under ROC curve

(AUC) [14]. A ROC curve is a graphical plot which evaluates the performance of a

binary classifier (in this case PFMi). The area under ROC quantifies the performance

of the classifier. In the worst case the area is 0.5 indicating that the classifier is no

better than a coin flip. In the best case scenario the value of the area is 1.0, which

indicates a perfect classifier. This is repeated for all the four datasets C1 through C4.

Result

The average area under ROC curve returned by our PST method on the synthetic

dataset is 0.983. This shows the quality of the motifs found by our PST based

approach given a set of sequences. It is capable of finding motifs which can accurately

classify the cluster they belong to from other clusters. This is a good validation of

the performance of our PST-based method. Figure 5.4 shows an instance of the ROC

curves for each of the four datasets.
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(a) ROC curve for dataset DC1

(b) ROC curve for dataset DC2

(c) ROC curve for dataset DC3

(d) ROC curve for dataset DC4

Figure 5.4: ROC curves for each of the four datasets
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5.2.2 Experiment 2 on Synthetic Data

Experiment 2 is a repetition of Experiment 1 in the exact same manner, with different

datasets. The motifs planted in the datasets are now real Saccharomyces motif strings

taken from the JASPAR database (http://jaspar.genereg.net).

JASPAR is the largest open-access database of Position Frequency Matrix (PFM)

profiles describing the binding sites of transcription factors from multiple species [21].

These are based on published experiments from various different sources. The pro-

files are manually curated. Putative binding patterns are confirmed by independent

publications. We use JASPAR database for validation purposes.

Let the four constructed datasets be E1, E2, E3 and E4. The motifs used in this

experiment are: ‘TCCGCGGA’, ‘GTTACGAT’, ‘ACACGAAA’ and ‘CACTGCGA’.

Let the four test datasets be DE1, DE2, DE3 and DE4. They are created in the same

way DCi was created from the Cis. The experiment is done in the exact manner as

the previous one

Result

With the given set of motifs, our PST-based method performs poorly. The average

area under ROC curve returned is 0.535. On closer examination we see, that although

our method identifies the given motif in each cluster, it also discovers several false

positives which results in the poor ROC performance.

5.2.3 Evaluation Metrics

We use the following metrics to evaluate the quality of predicted results by our ap-

proach when applied on real datasets. A predicted motif of size m bases is considered

to be correct if it:
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1. matches a true motif of size m.

2. is a proper substring of a true motif of size > m.

3. overlaps its last (first) m − 1 bases with the first (last) m − 1 bases of a true

motif of size m.

The last case identifies string which have high overlap with a true motif. In many

applications, the user might find such information useful.

We formally define correctness as follows:

correctness =

∑ |x|/|x|
|Xm|

∀x ∈ Xm ,

where Xm is the set of predicted motifs of length m, x is any motif from the set Xm,

and x corresponds to the true motif which x identifies following any three of the cases

mentioned above.

We define coverage as the fraction of same sized true motifs discovered by our

approach:

coverage =
|X̂m|
|Ym|

,

where Ym is the set of all true motifs of size m bases and X̂m is the set of all candidate

motifs of size m which exactly matches some motif in Ym.

To illustrate the definitions we give the following example. Let us assume in a

dataset there are 10 true motifs of size 8 and 6 true motifs of size 12. Let our method

predict 10 motifs of size 8. Upon comparison it is seen that 6 of our predicted motifs

match perfectly with 6 true motifs and 2 are substrings of the larger true motifs. One

motif overlaps with the the left end of a true size 8 motif by 7 base-pairs and one

motif has no match. So m = 8, |Xm| = 10, |X̂m| = 6 and |Ym| = 10. Then by the
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above definitions,

correctness =
6 + 2 + (7/8)

10
= 0.875

and

coverage =
6

10
= 0.6 .

5.2.4 Experiment and Validation on Yeast dataset

Dataset

We downloaded genomic sequences from the Saccharomyces Genome Database (SGD) [3].

These sequences are upstream sequences of the orginal ATG for all Yeast genes ex-

cept the ones marked dubious or pseudogene. We process the sequences to get exactly

1000 base pairs upstream for each gene. We also remove sequences that contain con-

secutive degenerate symbols for the sake of simplicity. After processing, we have our

dataset DSacc, consisting 5917 sequences. We use PWM representations of 177 known

Saccharomyces motifs from the JASPAR database for validation.

Experiment

We construct PST TSacc from the dataset DSacc. Once TSacc is obtained, we use it

to predict motifs (Mmaybe) for the whole dataset. We then calculate correctness and

coverage of our method. We do this process for different values of motif size starting

from 6 through 12 nucleotides. The whole process is repeated for different values of

ecut from 0.0 to 100. The objective of the experiment is to find out which value of

ecut gives the best combination of correctness and coverage.
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Results

Table 5.2 lists the correctness and coverage values for different motif sizes and for

different values of the parameter ecut.

For any motif size, correctness = 1.0 implies that the motif discovered by our

method is either a true motif or a substring of a larger true motif. A coverage =

1.0 implies that our method could discover some motif strings belonging to all the

different PWMs of a particular size.

From this table, we see that correctness = 1.0 for all values of ecut for sizes 6, 7,

8 and 9. However, the coverage values are very low; never exceeding 0.512. This

means that it does not find all motifs of those sizes from the data set. For motif

sizes of 10, 11 and 12, the correctness values decrease with increasing ecut. However,

it never drops below 0.9. On the other hand, coverage is much better than for the

smaller sizes, remaining between 0.888 and 1.0. Inspecting the different values, we

select ecut = 0.05 to be the threshold for future use with unknown/new data.

We see for smaller sizes, we have perfect correctness values and pretty low coverage.

However, for bigger sizes, both our correctness and coverage values are better than

0.96.

5.2.5 Comparison with MEME

We compare the performance of our method with respect to a popular motif finding

software called MEME [5]. For objective evaluation of the proposed method, the

dataset and motif length used is the same as used by MEME. We test the two methods

on both synthetic and real data.
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Table 5.2: Correctness and Coverage values for motifs of size 6 through 12 in Yeast
dataset

EValue Motif Size Correctness Coverage
0.001 6 1.0 0.1
0.001 7 1.0 0.1
0.001 8 1.0 0.326
0.001 9 1.0 0.434
0.001 10 0.998 0.8
0.001 11 0.979 0.888
0.001 12 0.915 1.0

0.005 6 1.0 0.1
0.005 7 1.0 0.1
0.005 8 1.0 0.326
0.005 9 1.0 0.478
0.005 10 0.998 0.9
0.005 11 0.979 0.888
0.005 12 0.913 1.0

0.01 6 1.0 0.1
0.01 7 1.0 0.1
0.01 8 1.0 0.326
0.01 9 1.0 0.478
0.01 10 0.998 0.9
0.01 11 0.979 0.888
0.01 12 0.909 1.0

0.05 6 1.0 0.1
0.05 7 1.0 0.1
0.05 8 1.0 0.346
0.05 9 1.0 0.521
0.05 10 0.998 0.9
0.05 11 0.978 0.888
0.05 12 0.905 1.0

0.1 6 1.0 0.1
0.1 7 1.0 0.1
0.1 8 1.0 0.346
0.1 9 1.0 0.521
0.1 10 0.998 0.9
0.1 11 0.977 0.888
0.1 12 0.902 1.0
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Table 5.3: MEME vs our method on Synthetic data

Dataset Method Correctness Coverage
C1 MEME 1.0 1.0
C1 Our method 0.892 1.0

E1 MEME 1.0 1.0
E1 Our method 0.186 1.0

Synthetic Data Experiments

We use the dataset C1 with the single planted motif ‘AAAAAAAA’ in Section 5.2.1

for this experiment. We make both methods find all motifs of length 8 bases in C1.

We repeated the above experiment with dataset E1 containing the planted motif ‘TC-

CGCGGA’ from Section 5.2.2. Table 5.3 shows the correctness and coverage values

of both methods for both datasets. As we can see, both methods have perfect cover-

age, that is all motifs were found. For dataset C1, MEME has a perfect correctness

(1.0) while our method is less than 1. This indicates the presence of false positives.

We found that the PST-based method considered strings such as ‘TAAAAAAA’,

‘GAAAAAAA’, ‘CAAAAAAA’ etc, as motifs which is why we got lower correctness

value. In case of dataset E1, our method has significantly low correctness value. An

inspection of our predicted motifs, reveals that numerous predicted motifs overlapped

the true planted motif by six out of eight bases at either end. This is the reason for

the low correctness value of our method.

Small-sized motif discovery

First we compare peformance of our method with MEME for motifs of small size. The

data set selected to be used consists of 1000 sequences randomly selected from the

Yeast dataset used in the previous section. Both MEME and our method are operated

on this dataset, to find ten motifs of size-6 bases. MEME lists 10 tentative motifs
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Table 5.4: Performance of MEME and our method for finding motifs of size-6 bases

Method Motifs found Correctness Coverage
MEME 0 0.0 0.0

Our Method 2 1.0 0.1

Table 5.5: Performance of MEME and our method for finding motifs of size-8 bases

Method Motifs found Correctness Coverage
MEME 10 1.0 0.08

Our Method 115 1.0 0.285

but all of them have e-values of the order of 108 (as calculated by MEME). That

indicates that these motifs are not statistically significant. Our method finds two

statistically significant motifs with e-values < 0.05. Table 5.4 lists the performance of

both methods.

Motif discovery accuracy

In this comparison, we try to see which approach performs better by finding more

correct motifs from a given dataset. We use the same data set which is used for

the small-sized motif discovery experiment. We operate our method and the MEME

software to find all motifs of size 8 bases from the provided dataset. MEME took a

long time and we killed the process after 2 - 3 days. In that time, it only produced

10 significant motifs.Table 5.5 shows the performance of both methods. As Table 5.5

shows, our PST based approach gives more number of correct significant motifs than

MEME from the same dataset in a much shorted amount of time. So we see, that in

synthetic datasets, MEME outperforms our method, whereas in real dataset, PST-

based method is much better than MEME. This can attributed to the fact that in

real datasets motif distribution is not as simple as we had in the synthetic ones.
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Table 5.6: Motifs found by PST method on Arabidopsis thaliana datasets

Dataset Motifs Found by Our method Motifs which were matched by Tomtom
Abig 910 906

5.2.6 Experiment on Arabidopsis dataset

Dataset

Experiment

We construct PST, TAra from the processed dataset Arabig. Once TAra is obtained,

we use it to predict motifs Mara of length 8 bases from Arabig. For validation purpose,

we use Tomtom Motif Comparison Tool [16] to see if the motifs in Mara match to any

entries in the JASPAR AradibopsisDAPv1 database. Tomtom is a motif comparison

tool that compares given query motifs to databases of known motifs (target). It is a

tool for quantifying the similarity between query motif and target motifs. It lists for

each query, a list of target motifs ranked in ascending order by e-value of the match.

That is, the first match is the best one. We only consider the best match (lowest

e-value), whenever we use Tomtom. Default values are used for the Tomtom search.

In this case, we want to see, if the motifs predicted by our PST-based method match

with publicly known Arabidopsis transcription factor binding sites.

Results

Table 5.6 lists the results for the above experiment. Dataset Arabig returned 910

significant size-8 motifs. We see that Tomtom did not find any match for four out of

910 (0.004%) motifs. These 4 unmatched ones, might indicate some novel, yet to be

identified motifs in the A. thaliana dataset.
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5.3 Discussion

From our experimental results we find that our method gives good correctness values

for different sized motifs. For motif sizes ≥ 10 bases, the coverage is nearly perfect.

To inspect the low coverage value for smaller sized motifs, we checked the different

candidate motifs before the filtration by ecut step. It appears that a majority of the

candidates get filtered due to their high e-value that otherwise could have improved

the coverage. There are two possible explanations for this. That is, our assumption

that a candidate motif has to be rare, i.e., low e-value to be a true motif may be too

stringent. The other is we need to use a less stringent form of e-value calculation

for establishing the statistical significance of our discovered motifs. MEME uses a

form of e-value calculation method similar to ours, which is probably why they also

had low discovery rate for small sized motifs as shown in the previous section. We

further check and observe that many of the candidate motifs which have high e-values

appear as substrings of valid motifs (e-value ≤ 0.05) of higher sizes. Our experiments

on the A. thaliana dataset reveal our PST-method can operate on datasets of size

approx. 33,000 sequences, with most (≈ 99%) of the motifs returned matching to

known Arabidopsis motifs.
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Chapter 6

Finding motifs of a range of lengths

In this chapter, we look at the problem of finding all motifs between sizes m1 and mn

(where m1 ≤ mn) from a given dataset S of DNA sequences.

6.1 Method

The following steps describe our approach to solving this problem.

1. Use the method described in section 5.1 to find motifs of sizes m1 through mn.

2. Remove motifs of size mi if it is a substring of any motif of size mj where

mi ∈ {m1, . . . ,mn} and mj ∈ {mi+1, . . . ,mn}.

The logic behind step 2 is as follows. If a string appears in both a small and larger

motif list, then it is probably part of a bigger motif which remains conserved. So it

makes sense to report it only once as a part of the bigger motif. Also, reporting it

twice will falsely boost the performance measure of the approach.

Step 2 will affect the coverage value for any motif size. This is because the number

of strings reported for smaller motifs are likely to decrease. For a sanity check we

used our Yeast data set to find motifs form size 7 to 12. The results are detailed in
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Table 6.1: Correctness and Coverage values for motifs of size 6 through 12 in Yeast
dataset for e-value = 0.05

Motif Size Correctness Coverage
8 1.0 0.041
9 1.0 0.043
10 1.0 0.3
11 1.0 0.556
12 0.904 1.0

Table 6.1. As expected, the coverage dropped for each size less than 12. However the

correctness increased for sizes 10 and 11.

6.2 Application

6.2.1 Motivation

Dr. Steven Harris’s lab at UNL uses black yeast Exophiala dermatitidis as their

model system to investigate the molecular basis of physiological and morphological

traits that allow these organisms to survive extreme environments. The accumulation

of pigments, melanin and carotenoids likely play a key role in the stress tolerance

of E. dermatitidis. CDC42 and Rac1 are molecular GTPases which are conserved

across eukaryotes and involved in a number of signaling mechanisms. Molecular

genetics studies using these GTPases in E. dermatitidis revealed the involvement of

carotenoid synthesis pathway. To determine whether the deletion of cdc42 reveals

the involvement of other pathways besides the carotenoid synthesis pathway, they

performed RNAseq analysis on Exophiala dermatitidis and three albino mutants.

Transcriptomics analyses was done with Pvalue 0.05. Let the three mutants be called

C, G and R. The C mutant has CDC42 gene deletion. We use the upstream 1000 base

DNA sequences of three albino mutants (from BROAD [1]) to find over-represented
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motifs in each mutant. We look for motifs of size 7 to 9 bases. Let mC, mG and mR

represent the sets of motifs for Cmutant, Gmutant and Rmutant, respectively. From

these three sets, we categorize the motifs into the following different groups.

1. Motifs common to all three strains. Let them be represented by mCGR.

2. Motifs specific to Cstrain and not present in mR and mG; represented by

mC CGR.

3. Motifs common to Gstrain and Rstrain but not present in Cstrain. Let mRG

represent that set.

The differential gene expression analysis using DEseq2 revealed a set of upregu-

lated and downregulated genes in each of the mutants. Our objective is to identify

DNA Motifs which can lead to candidate transcription factors. In turn these tran-

scription factors could be part of the regulatory mechanisms involved in different

pathways which are part of the transcriptomic analysis. To this end, we categorize

the motifs into the three groups mentioned above. We hypothesize that motifs in mC

CGR would help us in identifying the transcription factors specific to the effect of

cdc42 deletion. In both Gmutant and Rmutant, Rac1 is constitutively expressed and

over expressed, respectively. So mRG will indicate transcription factors which affect

pathways in conjunction with cdc42. Finally motifs in mCGR will reveal common

pathways between all three mutants irrespective of the absence/presence of cdc42.

The motifs in the different groups thus obtained are then compared against public

databases to see, it they match any known transcription factors. This is done using

the Tomtom Motif Comparison Tool [16]. The JASPAR CORE 2016 database is used

for matching the motifs. Once a tentative list of transcription factors is obtained from
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Table 6.2: Motifs for the three mutant strains of E. dermatiditis.

Motif Size 8 Motif Size 9
mC 13 364
mG 12 170
mR 14 238

mCGR 1 123
mRG 1 9

mC CGR 10 154

the Tomtom match results (based on available literature), these will be experimentally

verified in the lab.

6.2.2 Results

Table 6.2 lists the number of motifs of different sizes found in the three strains as well

as the different groups of motifs we are interested in. All these motifs are significant

(e-value ≤ 0.05). No separate motifs of size 7 were found, i.e., any motifs of size 7

must have shown to be substrings of size 8 or size 9. So those are not included in

Table 6.2.

In Table 6.3 we list the five motifs of highest occurrence in sets mCGR, mRG

and mCCGR for the two sizes.

The best match for each motif in Table 6.3 as given by Tomtom is listed in

Table 6.4. We present the match which has the lowest e-value for each motif. As

we can see, all except one motif (‘CCAGTGGTG’ in mRG) found matches to some

transcription factor or the other. Also in some cases different motifs matched with

the same transcription factor.

Table 6.5 shows whether every motif in the groups mCGR, mRG and mC CGR

got a match with TomTom. It also shows the total number of distinct transcription

factors found by Tomtom for each group. For instance the motifs of size 9 in group
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Table 6.3: Five of the highest occurring motifs

Motif Size 8 Motif Size 9
mCGR CATCAACA TACCTAGGT

ACCTAGGTA
CAACTTGAA
TTCAAGTTG
GTTCAAGTT

mRG GAGAAGGA CCAGTGGTG
CATTGTACA
CCAGCCTCG
GCACTGCAC
GCAGTAGTA

mC CGR GAAGATGA ACTTGAACC
GAGGACAA CTGCTGCTG
TTTCTTTC TTGAAGTTG
TTGAAGTC AGCCTCGTC
CAGCAACA CACTGGCAT

mCGR match with 50 different transcription factors. Table 6.6 lists the 5 most com-

mon transcription factor matches found by TomTom for each motif group. Only the

best match for each motif returned by TomTom was taken into account for construct-

ing Table 6.6. Table 6.7 contains the results of performing blastp of the transcription

factors mentioned in Table 6.6. The idea is to verify if, a homologue of these TFs exist

in Exophiala or not. These could be used a starting point for the wet lab (knock-out)

experiments. Each of these TFs will be deleted systematically one by one and the

resulting phenotype will be observed.

Till now, not much work has been on Exophiala dermatitidis. So the results

obtained by analyzing these motifs will be a starting point for novel work. That fact

that our PST-based approach can quickly identify motifs in the given datasets helps

speeding up the entire process.
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Table 6.4: Tomtom matches of the highest occurring motifs in mCGR, mRG and
mC CGR

Motif-Group Motif Matched Transcription Factor
mCGR CATCAACA HCM1
mCGR TACCTAGGT ceh-22
mCGR ACCTAGGTA T
mCGR CAACTTGAA ceh-22
mCGR TTCAAGTTG ceh-22
mCGR GTTCAAGTT Nr5a2
mRG GAGAAGGA Gata1
mRG CCAGTGGTG -
mRG CATTGTACA SOX10
mRG CCAGCCTCG NKX2-3
mRG GCACTGCAC SOX8
mRG GCAGTAGTA odd (C2H2 zinc finger factors)

mC CGR GAAGATGA STAT1::STAT2
mC CGR GAGGACAA ROX1
mC CGR TTTCTTTC AZF1
mC CGR TTGAAGTC BZIP60
mC CGR CAGCAACA RAV1
mC CGR ACTTGAACC ct
mC CGR CTGCTGCTG odd (C2H2 zinc finger factors)
mC CGR TTGAAGTTG ceh-22
mC CGR AGCCTCGTC CREB3L1
mC CGR CACTGGCAT SOX21

Table 6.5: TomTom match summary for all 3 motif groups

Motif-Group Motif-Size Motif Count Motifs with no matches Distinct Transcription Factor Matches
mCGR 8 1 0 1
mCGR 9 123 14 50
mRG 8 1 0 1
mRG 9 9 1 8

mC CGR 8 10 0 7
mC CGR 9 154 8 86

Table 6.6: Top5 Transcription factor matches by TomTom

Motif-Group Motif-Size Transcription Factor
mCGR 8 HCM1
mCGR 9 MYB3,NFIC,BHLH112,Nr5a2,AZF1
mRG 8 Gata1
mRG 9 Gata1,SPL4,ATHB-16,odd,SOX8

mC CGR 8 ROX1,HCM1,AZF1,BZIP60,SPT2
mC CGR 9 SOX8,ZNF263,ARR1,NFIC,SOX4
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Table 6.7: E. dermatiditis homologues of Tomtom transcription factors

Motif-Group Transcription Factor Species E. dermatiditis homologue Identity (%)
mCGR HCM1 Saccharomyces cerevisiae XP 009157984.1 52
mCGR MYB3 Arabidopsis thaliana XP 009160990.1 35
mCGR NFIC Homo sapiens - 0
mCGR BHLH112 Oryza sativa Japonica Group - 0
mCGR Nr5a2 Mus musculus - 0
mCGR AZF1 Saccharomyces cerevisiae XP 009157167.1 41
mRG Gata1 Mus musculus XP 009157917.1 63
mRG SPL4 Arabidopsis thaliana - 0
mRG ATHB-16 Arabidopsis thaliana XP 009160882.1 34
mRG odd Drosophila melanogaster XP 009160737.1 36
mRG SOX8 Homo sapiens XP 009158160.1 34

mC CGR ROX1 Saccharomyces cerevisiae XP 009158160.1 49
mC CGR BZIP60 Arabidopsis thaliana XP 009159711.1 40
mC CGR SPT2 Saccharomyces cerevisiae - 0
mC CGR ZNF263 Homo sapiens XP 009160737.1 47
mC CGR ARR1 Saccharomyces cerevisiae XP 009161509.1 40
mC CGR SOX4 Homo sapiens XP 009158160.1 36
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Chapter 7

Finding motifs in ChIP-seq data

ChIP-seq or chromatin immunoprecipitation sequencing [18, 25] is a great tool for

identifying DNA-protein interaction sites across genomes. In a typical ChIP-seq ex-

periment, the protein to be studied is first cross-linked to its DNA binding sites. The

chromatin is then fragmented into smaller segments (150–500 nucleotides long). The

DNA-protein complex is then immunoprecipitated and subsequently sequenced. The

sequenced short fragments thus obtained are called tags. After this stage the num-

ber of tags available is huge (in millions). The tags are then mapped to a reference

genome. Regions with high density of tag mapping are called peaks. The peaks indi-

cate tentative protein binding sites in the genome. There are a large number of tools

available for identifying genome regions with peaks. Once a set of tag enriched sites

(peaks) are obtained, their sequences can then be fed to motif-finding algorithms to

identify consensus motifs in those sites. These motifs will indicate the transcription

factor binding sites for the genome and the protein under consideration.

In this chapter we show that our PST based approach can be used to identify

motifs in the sequences of ‘peaks’ obtained from ChIP-seq experiment. These in

turn will help in the identification of potential transcription factor binding sites. We

validate and compare the performance of our method by comparing with the motifs
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generated by MEME-ChIP tool [20].

7.1 Method

Let S denote the set of peak site sequences. We use the following steps to obtain

motifs from S.

1. Each sequence in S is processed in the following way.

• If a sequence consists of only Ns, it is removed from S.

• If a sequence has regions of consecutive Ns, those regions are spliced out.

The splice sites are remembered.

2. Use the method described in Section 6.1 to find motifs of sizes m1 through mn

in the processed dataset S. If the position of any motif overlaps any splice site,

that particular occurrence of the motif at that position is not considered while

calculating its e-value.

3. Motifs obtained after Step 2 are further screened to account for the fact that

motifs are expected to occur near the center of the peak sequences. We introduce

two parameters fmaj and lcntr for the screening process. lcntr is used to specify

the length of the region around the center of a peak sequence. lcntr = 100 means

a region of 50 nucleotides on both sides of the center of a peak sequence. We

define fmaj as

fmaj =
number of occurences of the motif within the center region of all sequences

total number of occurences of the motif in all sequences
.

So if the majority ( > fmaj) of locations of any motif falls within lcntr nucleotides

around the center of the peak sequences, it is retained as a valid motif. Oth-
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erwise it is excluded. The values of fmaj and lcntr can be set by the user. As

default values we use fmaj = 0.5 and lcntr = 100.

7.2 Experiment

7.2.1 Dataset

We use the Klf1 dataset described in the MEME-ChIP paper [20]. We downloaded

the dataset from the MEME-Suit website [2, 6]. It consists of peak regions obtained

by performing KLF1 ChIP-seq in mouse [30]. The dataset consists of 904 peak se-

quences each 500 bases long. KLF1 is one of the few transcription factors which

plays an important role in erythropoiesis, the production of erythrocytes [30]. KLF1

is the founding member of a family (KLF) of 17 transcription factors. They all play

important roles in different biological processes [28].

7.2.2 Result

We used our method to identify motifs 6 to 30 nucleotides long from the processed

Klf1 dataset. We then use these motifs to identify the transcription factors they

match using Tomtom. Table 7.1 lists the number of significant motifs obtained by

our method. In this table we summarize for each size, the total number of distinct

motifs, the number of motifs with no matches to any transcription factor, and the

number of distinct transcription factors matched. For the last one, we consider, only

the best match (lowest e-value) returned by Tomtom. We only include those motif

sizes that gave valid motifs.

Tomtom matched our motifs (from sizes 6 to 30 bases) to 26 different transcription

factors. The JASPAR Core Database 2016 was used for the Tomtom matching. We
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Table 7.1: Summary of Tomtom matches for motifs obtained from Klf1 dataset

Motif-Size Motifs Found Motifs with no matches Distinct Transcription Factor Matches
8 1 0 1
9 14 0 12
10 16 0 6
11 33 0 9
12 15 0 4
13 5 0 4
14 4 0 3
19 1 0 1
28 1 0 1

Table 7.2: Transcription factors found by PST approach

Method Transcription Factors
PST-approach Klf1,Klf12,Klf4,ZNF263,Znf423,YRR1,EGR1,Tcf12,SREBF2,Gata1,

KLF5,AFT2,SP8,EGR2,ESR2,NFIC::TLX1,RAP1,CTCF,SP1,KLF14,
KLF16,SP3,RREB1,CREB3L1,SP2,DOF5.3

only consider the best/first match for each motif. The different transcription factors

are provided in Table 7.2.

We also run MEME-ChIP [20] on the same Klf1 dataset. MEME-ChIP is a com-

bination of several tools (MEME, DREME [4] and CentriMo [8]). While MEME

and DREME are motif discovery tools, CentriMo searches for known motifs in the

given dataset. DREME finds short, fixed length motifs and is a much faster tool

than MEME. Unlike MEME, DREME uses regular expression to find motifs. Once

a motif is found, it is removed from the dataset, and the next most significant motif

is searched. The default settings and the JASPAR Core Database 2016 were used as

parameters for running the MEME-ChIP suit. MEME-ChIP returned 44 transcrip-

tion factors which it found enriched in the Klf1 data. These are listed in Table 7.3.

It should be noted all 44 transcription factors identified were obtained by CentriMo,

not by the motif discovery tools. The motifs discovered by MEME and DREME did

not find any matches with Tomtom.
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Table 7.3: Transcription factors found by MEME-ChIP

Method Transcription Factors
MEME-ChIP Klf1,Klf12,Klf4,GATA2,KLF5,Gata1,SP3GAT1,GATA5,

GATA1::TAL1,KLF14,GZF3,DAL80,AFT2,Gata4,GLN3,KLF16,SP8,
GATA3,hkb,elt-3,TBX5,Optix,TBX15,MGA,KLF13,TBX4,SP4,EGR4,
SP1,btd,MET32,Hes1,TCP19,Bhlha15,TCP20,ARALYDRAFT 493022,
MET31,SP2,hlh-1,ARR18,YGR067C,ZNF740,Six4

The whole idea of performing a ChIP-seq experiment is to identify the relevant

binding sites on the sequences, co-regulatory transcription factors and novel motifs.

Tomtom gave multiple matches for each motif, arranged in decreasing order of their

importance. That is, the first match is the best match, followed by the second and

so on. We would like to see how many motifs had Klf1 as its best match and how

many had Klf1 as a match in general (not best). To this end we list for each motif

size, the number of motifs that had Klf1 as the best match and those that had Klf1

as one of its several matches (other than first) in Table 7.4. For instance, in Table 7.4

we see that for motif of size 10, Tomtom gave matches for 16 motifs, of which 8 had

Klf1 as the best match, 6 had Klf1 as a non best match and 2 didn’t have Klf1 in

any of their matches. It can be observed that motifs of sizes 10 to 12 have higher

percentage of Klf1 hits as their best hits. So our PST method was capable of finding

motifs which matched Klf1. It also found matches to other members of KLF family

such as KLFs 4,5,12,14,16. This can be attributed to the fact that KLF family has a

highly conserved DNA-binding domain [28]. In the Tomtom results it can be seen, if

any motif had KLF 4, 5, 12, 14 or 16 as the first match, KLF1 also appeared as its

match (downstream).

Any transcription factors (TFs) other than KLF1 found by ChIP-Seq data, indi-

cate that those TFs might related to KLF1 in some way (co-regulated for example).

Gata1 is one the TFs found by our method. Gata1 is also known to play a critical
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Table 7.4: Klf1 transcription factor count from Tomtom results

Motif-Size Motifs Matched Klf1 as best match Klf1 not as best match
8 1 0 0
9 14 0 5
10 16 8 6
11 33 20 12
12 15 11 4
13 5 0 5
14 4 1 3
19 1 1 0
28 1 1 0

role in erythropoiesis [30].

There are 12 common TFs in the results of the PST-based method and MEME-

ChIP. These are Klf4, Gata1, KLF5, AFT2, SP8, Klf1, Klf12, SP1, KLF14, KLF16,

SP3 and SP2. The rest 14 transcription factors should be verified to see if they are

in some way related to Klf1 or not.

Thus we saw that our PST-based approach, being a de novo motif discovery tool

was robust enough to be applied to ChIP-Seq peak sequences and find motifs in

them. It could identify binding sites for Klf1 from the ChIP-Seq peak sequences. It

also discovered that the dataset had enriched regions for 20 other known motifs.

The sensitivity of our method can be controlled by the user by regulating the

parameters fmaj and lcntr. If the value of lcntr is increased (decreased), the center

region increases (decreases), which in turn increases (decreases) the number of motifs

returned by our method. If the value of fmaj is increased then lesser motifs are selected

as valid motifs and also increases the sensitivity towards matching Klf1 transcription

factor as the best choice. That is, number of motifs for other transcription factors

discovered decreases.
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Chapter 8

Conclusion and Future work

In this dissertation we proposed a PST-based approach for de-novo motif discovery

from a set of DNA sequences. While this is a well studied problem, it does not

have a complete and efficient solution yet. Unbiased validation of motifs obtained by

computational methods is difficult as well. We showed that our method performs well

in accurately finding motifs of different sizes. Compared to MEME, our method finds

more correct motifs (when applied to real datasets). Our method also performed

faster than MEME for datasets with more than 1000 sequences. Our experiments

revealed that the PST method is capable of finding motifs in large datasets (≈ 33, 000

sequences) with good accuracy. We applied our method to identify transcription

factors from the E. dermatiditis genome. We further showed how to use our method

to find protein binding sites in ChIP-Sequencing data. Our method was capable of

finding over-expressed motifs in the ChIP-Seq data that matched with transcription

factors. In the future we would like to address the following issues associated with

our PST-based method.

1. Low motif discovery rates for small sized motifs. We would like to explore other

options for e-value calculation.

2. Handling really big datasets ( > 33,000 sequences) efficiently in terms of memory
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and time. The building of the PST takes a long time if the dataset is large.

3. Parallelize the PST approach. This should help with time management of deal-

ing with big datasets.

4. In the case of ChIP-Seq data, make use of the actual fragmented reads in con-

junction with the peak sequences to find motifs.
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