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Abstract 

This study examined the current thin asphalt overlay practices implemented in Nebraska. 

To that end, the mechanical properties and performance characteristics of the two mixtures (i.e., 

SLX and SPH) were compared by carrying out laboratory tests such as dynamic modulus test, 

dynamic creep test, static creep-recovery test, semi-circular bending test, and Hamburg wheel 

tracking test. The laboratory test results were also used to characterize the material properties for 

pavement performance prediction simulation. Structural performance analysis was conducted 

using the MEPDG and finite element method in order to compare the pavement structures with 

the two different mixtures (i.e., SLX and SPH). In addition, a life-cycle cost analysis (LCCA) 

was performed to compare the economic benefits associated with the thin-lift overlay to the 

conventional overlay practice. This provided insights into how the thin asphalt overlay with the 

SLX mixture behaved compared to the previous practice, which replaced the old asphalt with the 

SPH mixture. Laboratory results clearly showed that the SLX mixture behaved similarly to the 

SPH mixture in terms of mixture stiffness, rutting potential, and cracking resistance. However, 

the Hamburg wheel tracking test found that the SLX mixture had greater moisture susceptibility, 

a result that requires more investigation. Pavement performance simulation results from finite 

element analysis showed that the rutting and cracking potential of the pavement with SLX thin 

overlay mixture was lower than the pavement with SPH mixture. MEPDG simulations predicted 

that both pavements would perform satisfactorily during their expected design life, but the 

LCCA indicated that the practice of using the thin SLX preservation technique can reduce both 

the agency’s and user’s costs compared to the conventional SPH rehabilitation practice. Both 

performance prediction results need to be compared to actual field performance data. Only one-
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year field performance is available to date, which needs to be continuously monitored to judge 

how both pavement structures perform. 
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Chapter 1 Introduction 

Pavement preservation is a cost-effective technique that extends pavement life, improves 

safety, and meets motorist expectations (FHWA 2006). There are several techniques for 

preserving asphalt pavements, including chip seals, slurry seals, microsurfacing, fog seals, crack 

treatment, and thin asphalt overlays. Among the techniques mentioned above, thin asphalt 

overlays are typically 38.1 mm or less (1.5 inch or less) in thickness, and they are comprised of 

finer aggregates (a nominal maximum aggregate size [NMAS] of 12.5 mm or less) compared to 

the aggregates in typical Superpave asphalt mixtures (Newcomb 2009). 

Also known as “thin lifts,” thin asphalt overlays offer an economical resurfacing, 

preservation, and renewal paving solution for roads requiring safety and smoothness 

improvements. Thin asphalt overlays not only provide a new pavement surface for a fraction of 

the cost of rebuilding a roadway, but they are also the only preventive maintenance technique 

that simultaneously improves the structural value and extends the pavement's service life. 

Although thin asphalt overlays are more expensive in initial cost compared to other proven 

pavement preservation surface treatments (e.g., microsurfacing or chip seals) (Brown and 

Heitzman 2013), proponents affirm that they provide an increased smoothness with a quieter ride 

than the other surface treatments in the short term. Additionally, their durability is higher in the 

long term, which is due to a slight structural enhancement to the pavement (Newcomb 2009). 

Thin asphalt overlay applications are most effective for roads in good structural condition 

that need resurfacing due to cracking, raveling, rutting, aging, oxidation, or minor disintegration. 

It is noteworthy that thin asphalt overlays are not considered a solution for roadways requiring 

significant structural rehabilitation, but are common techniques for pavement preservation. Thin 
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asphalt overlays improve ride quality, decrease pavement distresses, maintain surface 

geometrics, mitigate noise levels, reduce life cycle costs, and provide long-lasting service. 

Among different types of thin lift overlays, thin hot-mix asphalt (HMA) overlay has 

gained popularity in recent years due to its long expected extended life and inexpensive 

annualized cost. Although the initial cost of thin HMA overlay is higher than some types of 

preserving layers (i.e. fog seals and crack seals), a low annualized cost of thin HMA overlay 

could be achieved due to long life extension (Brown and Heitzman 2013). Many states such as 

Texas (Scullion et al. 2009; Walubita and Scullion 2008; Wilson et al. 2013), Michigan (MDOT 

2005), Ohio (ODOT 2002), and New York (NYDOT 2008) attempted to use thinner HMA 

overlay to reduce the thickness of HMA overlay to less than 25.4 mm (1 inch). 

Recently, thin asphalt overlays have been also implemented in the state of Nebraska as a 

promising pavement preservation technique. One inch thick asphalt concrete mix (SLX) is 

typically overlaid on top of the milled old asphalt layer. This new practice is different from the 

previous standard maintenance practice that usually removes the top two-inch of the old asphalt 

layer and replace the two-inch layer with a new asphalt mix (such as SPH or SPR). The SLX is 

usually designed with PG binder 64-34 by adding warm-mix asphalt (WMA) additive and 25-

35% reclaimed asphalt pavement (RAP) materials. WMA adds further benefits to the mix by 

allowing the asphalt mix to be transported farther or constructed in cooler weather. RAP reduces 

the price of the mix and potentially enhances performance, especially rut resistance. The milling 

of the existing pavement surface can also enhance the overlay performance and provide recycled 

materials for the future. 

Clearly, the new implementation of thin asphalt overlays is a promising pavement 

preservation strategy for our state in the future. The incorporation of WMA technology and RAP 
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in the mix is also highly desirable in terms of cost saving and the preservation of the 

environment and natural resources. Nonetheless, there is still a need to evaluate the current thin 

overlay practices to maximize their benefits and to judge if the new practice is adequate and/or 

comparable to the old rehabilitation practice in order to meet functional-structural performance 

expectations. 

1.1 Research Objectives and Scope 

The primary objective of this research is to evaluate the current thin asphalt overlay 

practices implemented in Nebraska. To that end, two mixtures (i.e., SLX and SPH) are compared 

by conducting laboratory tests that measure their mechanical properties and performance 

characteristics. The laboratory test results are also used in the MEPDG analysis and finite 

element modeling for predicting pavement performance behavior. This provides insight into how 

the one-inch thick asphalt overlay with SLX behaves compared to the previous practice, which 

replaced the old two-inch thick asphalt with a new mixture of SPH. 

1.2 Organization of the Report 

This report consists of seven chapters. Following the introduction chapter, chapter 2 

summarizes the literature review on thin asphalt overlays. Chapter 3 describes material selection 

and sample fabrication processes. Chapter 4 introduces the laboratory tests conducted for the 

characterization of mechanical properties of SLX and SPH mixtures. These tests include the 

dynamic modulus, static multiple stress creep-recovery, dynamic creep, semicircular bending 

fracture, and Hamburg wheel tracking tests. In chapter 5, the material properties to conduct 

pavement performance simulations are identified. Chapter 6 describes the MEPDG predictions, 

LCCA, and finite element simulations of pavement performance. Finally, chapter 7 summarizes 

the main findings and major conclusions of this study. 
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Chapter 2 Background 

Thin asphalt overlay is generally defined as a rehabilitation and preservation treatment 

layer with a thickness less than 38.1 mm (1.5 inches). The nominal maximum aggregate size 

(NMAS) in this type of preservation layers was less than 12.5 mm (0.5 inch) (Newcomb 2009). 

While this application can provide some structural strengthening, it is generally not used as a 

structural layer or designed to behave in a structural manner.  

2.1 Benefits of Thin Asphalt Overlays 

The National Asphalt Pavement Association (NAPA) reported several benefits of thin 

asphalt overlay applications (Newcomb 2009), including: 

• long service life, 

• low life cycle cost, 

• minimized traffic delay due to less curing time, 

• minimized dust, 

• recyclability, 

• smooth, sealed, and safe driving surface, and 

• reduced tire-pavement noise generation. 

Jahren et al. (2007) proposed a decision matrix to select an appropriate preservation 

treatment for different distress types and conditions, such as traffic volume and surface friction. 

As seen in Table 2.1, thin asphalt overly was recommended in all distresses and conditions 

excluding the case of alligator cracking. It is noted that only seal coat was marginally 

recommended for the alligator cracking, while it was not applicable in heavy traffic. 
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Table 2.1 Decision matrix (Jahren et al. 2007) 

Factor 

Preservation Treatments 

Fog  
seal 

Seal  
coat 

Slurry  
seal Microsurfacing 

Thin asphalt 
overlay 

(38.1mm) 

Tr
af

fic
 v

ol
um

e AADT<2,000 
(low traffic) R R R R R 

2,000>AADT>5,000 
(medium traffic) R M M R R 

AADT>5,000 
(heavy traffic) R NR NR R R 

Bleeding NR R R R R 
Rutting NR NR R R R 

Raveling R R R R R 

C
ra

ck
in

g Few tight cracks R R R R R 
Extensive cracks NR R NR NR R 

Alligator cracking NR M NR NR NR 
Low friction I I I I I 

R=Recommended NR=Not Recommended M=Marginally Recommended I=May Improve  
AADT: Annual Average Daily Traffic 
 

Brown and Heitzman (2013) evaluated several pavement preservation techniques, 

including crack treatment, fog seals, cheap seals, microsurfacing, slurry seals, and thin asphalt 

overlay. As shown in Figure 2.1, initial costs, expected extended life of pavement, and an 

annualized cost were investigated based on responses to the Federal Highway Administration 

(FHWA) from five selected states. Although crack treatment, fog seals, and chip seals had lower 

annualized costs than thin asphalt overlay, they could only provide limited benefits such as 

filling out cracking and/or sealing a cracked surface layer. On the other hand, thin asphalt 

overlay can correct rutting and improve smoothness and friction with long expected pavement 

life extension and inexpensive annualized cost. 
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Figure 2.1 Typical unit costs and pavement life for specific maintenance and preservation 

treatments (Brown and Heitzman 2013) 

 

2.2 Specifications of Thin Asphalt Overlay Materials, Mixtures, and Structures 

2.2.1 Aggregate 

The thickness of thin asphalt overlays are associated with NMAS. In order to ensure 

adequate compaction, the overlay thickness to NMAS ratio should be maintained in the range of 

3:1 to 5:1 (Brown et al. 2004). Given the fact that the thickness of thin asphalt overlays is 

generally less than 38.1 mm (1.5 inches), NMAS must be 12.5 mm or less. As shown in Table 

2.2, most states used aggregates with NMAS of 4.75 mm to 12.5 mm for thin asphalt overlays.  
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Table 2.2 NMAS requirements for a variety of states 

NMAS (mm) State (mixture) 

9.5 Nebraska (SLX), Nevada, Utah, Mississippi (Mix 1), 
Massachusetts, Indiana, Missouri, Michigan 

12.5 Alabama, North Carolina, Ohio (Type B) 
6.3 New York, Maryland 
4.75 Georgia, Mississippi (Mix 2), Ohio (Type A) 

NMAS: Nominal Maximum Aggregate Size 
 

The quality of aggregates was also specified by states based on predicted traffic, vehicle 

speed, and the type of overlaid pavement, as summarized in Table 2.3. Durability in terms of Los 

Angeles abrasion and sulfate soundness, as well as aggregate angularity and shape in terms of the 

number of fractured faces, is commonly checked for coarse aggregates (Newcomb 2009). For 

fine aggregates measures of cleanliness, such as sand equivalent values, are typically measured 

and specified (Newcomb 2009). 

 

Table 2.3 Aggregate quality requirements for a variety of states 

Uncompacted 
Void 

Content, % 
(FA) 

Sand 
Equivalent % 

(FA) 

1 
Fractured 
Face, % 

2 or More 
Fractured 
Faces, % 

Sulfate 
Soundness, % 

loss 

Los Angles 
Abrasion, % 

loss 
State 

45 - - - 10 48 Alabama 
40 - - - - - Maryland 
- - 95 95 - 40 Michigan 
-  90 80 12 37 Nevada 

43 45 - - - - New York 
40 45 100 85 15 35 North Carolina 
- - 100 - 12 40 Ohio 
- 45  95 20 30 Texas 
- 45  90 16 40 Utah 

FA: Fine Aggregate 
 

7 
 



2.2.2 Binder 

To select an appropriate performance grade (PG) binder, temperatures and equivalent 

single axle loads (ESAL) were considered. As seen in Table 2.4, different states used various 

types of binders. Nebraska specifies PG 64-34 in its thin lift overlay mixtures (NDOR 2013), 

while Georgia, Missouri, and Virginia specify PG 64-22 (Newcomb 2009; Ahmed et al. 2013; 

Druta et al. 2013). Modified binders are used by Alabama, Florida, Michigan, New York, and 

Ohio (NYDOT 2008; Newcomb 2009). 

 

Table 2.4 Comparative listing of bitumen in different states 

State PG State PG 
Nebraska 64-34 Mississippi 76-22 
Alabama 76-22 M* Missouri 64-22 
California Depend on Climatic Region New Jersey 76-22 

Florida 67-22, 76-22 M New York 64-22 M, 76-22 M 
Georgia 64-22 

North Carolina 
76-22 for high ESAL§ 
64-22 for low ESAL Indiana 70-28 

Iowa 70-22, 64-22 Ohio 76-22 M 
Massachusetts 52-28 Texas 70-22, 76-22 

Michigan 64-28 M, 70-22 M Virginia 64-22 
* Modified Binder  § Equivalent Single Axle Loads 
 

2.2.3 Volumetric mix design 

To meet structural and functional requirements of thin asphalt overlay, mix design 

specifications were designated. As shown in Table 2.5, Ndesign, air voids, voids in mineral 

aggregate (VMA), voids filled with asphalt (VFA), and asphalt content were specified by 

different states (Newcomb 2009, NDOR 2013). It is noted that only Ohio used the Marshall 

method to design thin lift mixture, while the rest of states designed the mixture using Superpave 

mix design.  
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Table 2.5 Mix design requirements in different states 

Asphalt 
Content (%) VFA§ (%) VMA* (%) Design Air 

Voids Ndesign State 

5.3 - 16 4 50 Nebraska (SLX) 
5.5 - 15.5 - 60 Alabama 

6-7.5 50-80 - 4-7 50 Georgia 
5-8 - - 4 65 Maryland 
- 65-78 15 4 75 Massachusetts 
- - 15.5 4.5-5 - Michigan 

6.1 - 16-19 4-5.5 50-75 Mississippi 
- - 12-22 3-6 - Nevada 
- 70-78 16 4 75 New York 

4.6- 5.6 -  - - North Carolina 
6.4 - 15 3.5 50-75 Ohio 

6.8-8 - 16 - 50 Texas 
- 70-80 - 3.5 50-125 Utah 

* Voids in Mineral Aggregate  § Voids Filled with Asphalt 
 
 
2.2.4 Thin asphalt overlay thickness and its service life 

Thin asphalt overlays with a thickness range of 15.8 mm to 50.8 mm (0.625 inch to 2 inches) 

have been used nationally and internationally, as seen in Table 2.6. It was reported that the 

expected extended service life was about 5 to 16 years (Newcomb 2009; Walubita and Scullion 

2008; Watters 2006).  
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Table 2.6 Comparative thickness and service life in different states and countries 

Expected service life, years Thickness, mm US States 
(mixture) 

- 25.4 Nebraska (SLX) 
- 25.4-50.8 Alabama 
- 25.4-38.1 Arizona 
- 30.4 California 

10 < 25.4 Georgia 
7-10 31.8-38.1 Illinois 
9-11 19 Indiana 

- 19-25.4 Maryland 
- < 25.4 Michigan 
- 19-38.1 Minnesota 
- 19-25.4 Mississippi 
- 45 Missouri 

5-8 - New York 

16 
15.8-28.5 Ohio (Type A) 
19-38.1 Ohio (Type B) 

 25.4 Texas 

Expected service life, years Thickness, mm International 
Countries 

10 20 Austria 
8 20-40 Canada 
- 12.7-30.4 New Zealand 

10-15 20.3-40.6 United Kingdom 
 
 
2.3 Laboratory Performance Tests 

As seen in Table 2.7, some states and countries conducted different laboratory tests to 

evaluate the mixtures used in thin asphalt overly and to predict pavement distresses such as 

rutting, cracking, and moisture-induced damage. Walubita and Scullion (2008) and Scullion et al. 

(2009) evaluated various thin asphalt overlay mixes to determine if they could guarantee 

adequate resistance to both rutting and cracking when subjected to different traffic and 

environmental conditions. The Hamburg wheel tracking test and overlay test were used to assess 

rutting and cracking potential. It was found that fine-graded mixtures with a 9.5 mm NMAS 
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aggregate gradation predominantly consisting of Type F rock and screenings, and an asphalt 

binder content of over 7 percent was a promising candidate mix for use of thin overlay asphalt 

mixes.  

Powell and Buchanan (2012) used the Asphalt Pavement Analyzer (APA) to assess the 

rutting potential of mixtures with different NMAS (4.75, 9.5, and 12.5 mm) for thin asphalt 

overlays. It was concluded that the performance of the 4.75 mm NMAS thin asphalt overlays 

was comparable to that of thin asphalt overlays with 9.5 and 12.5 mm NMAS. 

Mogawer et al. (2013) collected plant-produced mixtures from each thin asphalt overlay 

trial field in Minnesota, New Hampshire, and Vermont, and conducted a series of laboratory tests 

to measure mixture stiffness, moisture susceptibility, rutting potential, and cracking resistance. It 

was concluded that all mixtures had a high resistance to cracking, including reflective cracking 

and low temperature cracking, but this resistance could be reduced by adding RAP into the 

mixtures. On the other hand, half of the mixtures did not meet the rutting specification criteria, 

but no mixtures have exhibited rutting in the field. 
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Table 2.7 Summary of the laboratory tests 

State Testing method To identify Reference 

Alabama • Asphalt Pavement Analyzer • Rutting Powell and 
Buchanan (2012) 

MN*, 
NH§, VT† 

• Dynamic Modulus test 
• Hamburg test 
• Overlay Tester 
• Asphalt Concrete Cracking 

Device 
• Semi-Circular Bending test 

• Mixture Stiffness 
• Moisture Susceptibility 
• Reflective Cracking 
• Low Temperature 

Cracking 
• Fatigue Cracking 

Mogawer et al. 
(2013) 

Texas • Hamburg Wheel Tracking 
• Overlay Tester 

• Rutting 
• Cracking 

Walubita and 
Scullion (2008) 
Scullion et al. 

(2009) 

Virginia • Model mobile load 
simulator 

• Rutting 
• Fatigue 

Druta et al. 
(2014) 

Country Testing method To identify Reference 

South 
Africa 

• Model Mobile Load 
Simulator 

• Pendulum Friction 

• Rutting 
• Skid Resistance 

Pretorius et al. 
(2004) 

Australia • Cantabro • Durability 
• Binder Film Thickness 

Walubita and 
Scullion (2008) 

Unite 
Kingdom  

• Indirect Tensile Stiffness 
Modulus 

• Dynamic Creep 
• Mixture Stiffness Nicholls et al. 

(2002) 

*MN: Minnesota   §NH: New Hampshire   †VT: Vermont 
 

2.4 Pavement Performance Predictions 

The Mechanistic-Empirical Pavement Design Guide (MEPDG) was mainly used to 

investigate the structural performance of pavement structures with asphalt concrete overlays, as 

summarized in Table 2.8. Overlays with a thickness over 50.8 mm (2 inches) were considered for 

MEPDG simulations, while pavement structures with 25.4 mm (1 inch) thin overlay were 

simulated in Louisiana. Rutting, cracking, and the International Roughness Index (IRI) were 

major predicted distresses using MEPDG. 
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Table 2.8 Summary of the studies using MEPDG for the performance prediction of overlays 

State Performance indicator Overlay thickness (mm) Reference 

South 
Dakota 

• Longitudinal cracking 
• Fatigue cracking 
• Transverse cracking 
• Rutting 
• IRI 

50.8-127.0 Hoerner et al. 
(2007) 

Tennessee 
• Rutting 
• IRI 

108.0-343.0 Zhou et al. (2013) 

Louisiana 
• Rutting 
• Fatigue cracking 
• IRI 

25.4-121.9 Wu et al. (2008) 

Minnesota • Transverse cracking 50.8 Johanneck et al. 
(2011) 

Utah 
• Rutting 
• Fatigue cracking 
• IRI 

45.7-58.4 Guthrie and 
Butler (2011) 

Washington 
• Rutting 
• Fatigue cracking 
• Reflective cracking 

50.8 Khazanovich et 
al. (2013) 

Alberta 
(Canada) 

• Rutting 
• Fatigue cracking 
• IRI 

50.0-120.0 Norouzi et al. 
(2014) 

IRI: International Roughness Index 

 

Another structural performance analysis tool is finite element modeling, which, compared 

to MEPDG, can provide more flexibility in selecting geometries, boundary conditions, and 

choosing materials in the analysis. There were a few studies that used finite element modeling 

for evaluating asphalt overlay pavement structures. Baek and Al-Qadi (2009) investigated 

reflective cracking of HMA overlays using finite element models that consisted of a 57-mm-

thick overlay over a 200-mm-thick joint plain concrete pavement. As shown in Figure 2.2, 
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cohesive elements were embedded over the transverse joints, where reflective cracking 

potentially occurred in HMA overlays. 

 

 
Figure 2.2 Reflective crack modeling in HMA overlay (Baek and Al-Qadi 2009) 

 

Dave and Buttlar (2010) studied thermal reflective cracking of asphalt concrete overlays 

caused by a single, critical daily cooling event using finite element simulations and cohesive 

zone models, as shown in Figure 2.3. The type and thickness of overlays, joint/crack spacing, 

and the level of rubblization in the Portland cement concrete layer were varied to find several 

key material and pavement structure variables in the thermal reflective cracking mechanism. 

  
(a) FE mesh showing the complete domain 

Region shown 
below 
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Ahmed et al. (2013) conducted finite element simulations to evaluate the structural 

performance of thin-bonded overlays. As shown in Figure 2.4, a thin overlay with 19 mm 

thickness and an old asphalt layer with 150 mm thickness were placed on granular base and soil 

subgrade in the finite element pavement model. Cohesive zone fracture elements were also 

employed to predict thermal and reflective cracking; the fracture properties for the model were 

obtained from a newly developed compact tension test. 

 

 
Figure 2.4 Finite element model (Ahmed et al. 2013) 

  

 
(b) FE model details in the vicinity of the PCC joint 

 
Figure 2.3 Finite element model (Dave and Buttlar 2010) 
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Chapter 3 Material Selection and Sample Fabrication 

This chapter describes the materials used and the sample fabrication process for this 

study. Two asphalt mixtures (SPH and SLX) paved during construction in July 2014 were 

collected and brought back to the laboratory. The asphalt mixtures were reheated to fabricate 

samples at the field compaction temperature. 

3.1 Materials 

Table 3.1 and Table 3.2 summarize the basic information on the SPH mixture and the 

SLX mixture, respectively, including percent of aggregates, aggregate gradation of the mixtures, 

and asphalt binder contents. Figure 3.1 shows the aggregate gradation of the mixtures and Figure 

3.2 depicts the mixture microstructures. As shown in the aforementioned tables and figures, the 

SLX mix is composed of finer aggregates, with a nominal maximum aggregate size (NMAS) of 

9.5mm, while the SPH mixture contains coarser aggregates with a NMAS of 12.5mm. Both 

mixtures were made of the same binder grade of PG 64-34. It should be noted that the amount of 

the virgin binder content added to the mixtures was 3.38% to the SPH mixture and 4.20% to the 

SLX mixture based on their recycled asphalt binder content.  
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Table 3.1 SPH mixture information 

Material 
% 

Agg. 

Aggregate Gradation (% Passing on Each Sieve) % 

Binder 19mm 12.5mm 9.5mm #4 #8 #16 #30 #50 #200 

¾” 

CHIPS 
10 100 60 18 2.0 2.0 1.0 1.0 1.0 1.0 

5.2 

CR. 

Gravel 
53 100 100 100 92.7 73 45.2 29.1 16.2 6.3 

2A 

Gravel 
5 100 95.4 90.9 68 27.3 8.6 3.5 1.1 0.2 

Millings 32 100 94 90 68 41 29 23 19 8 

Combined 100 93.9 88.1 74.5 53.4 33.8 23.1 14.8 6 

 

Table 3.2 SLX mixture information 

Material 
% 

Agg. 

Aggregate Gradation (% Passing on Each Sieve) % 

Binder 19mm 12.5mm 9.5mm #4 #8 #16 #30 #50 #200 

3/8” 

CHIPS 
20 100 100 100 11.4 4.8 4.1 3.7 3.4 2.7 

5.5 
CR. 

Gravel 
50 100 100 100 92.7 73 45.2 29.1 16.2 6.3 

Millings 30 100 94 90 68 41 29 23 19 8.0 

Combined 100 98 97 69 49.8 32.1 22.2 14.5 6.1 
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Figure 3.1 Aggregate gradation of the mixtures 

 

 

 
Figure 3.2 Picture of mixture microstructures 
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3.2 Specimen Fabrication  

3.2.1 Dynamic modulus, dynamic creep, and static creep-recovery test specimens 

As illustrated in Figure 3.3, the Superpave gyratory compactor was used to mold the 

cylindrical samples with a diameter of 150 mm and a height of 170 mm for the dynamic 

modulus, dynamic creep, and uniaxial static creep-recovery tests. The compacted samples were 

then cored and sawn to produce testing specimens targeting an air void of 4% ± 0.5% with a 

diameter of 100 mm and a height of 150 mm. To measure the axial displacement of the specimen 

during the tests, epoxy glue was used to fix mounting studs to the surface of the specimen so that 

the three linear variable differential transformers (LVDTs) could be attached to the surface of the 

specimen at 120o radial intervals with a 70 or 100 mm gauge length. Next, the specimen was 

mounted into the testing station for testing.  

 

 

Figure 3.3 Specimen fabrication and uniaxial testing configuration 

 

19 
 



3.2.2 Semi-circular bend fracture test specimens 

Figure 3.4 demonstrates the specimen production process and fracture testing 

configuration for the SCB fracture test. The Superpave gyratory compactor was used to produce 

tall compacted samples: 150 mm in diameter and 170 mm in height. Three slices (each with a 

diameter of 150 mm and a height of 50 mm) were obtained by removing the top and bottom parts 

of the tall sample. Finally, the slice was cut into two identical halves and the saw machine was 

used to make a vertical notch: 15 mm long and 2.5 mm wide. 

 

 

Figure 3.4 SCB specimen fabrication and fracture testing configuration 

 

3.2.3 Hamburg wheel tracking test specimens 

To fabricate Hamburg wheel tracking test (HWTT) specimens, a Superpave gyratory 

compactor was used to produce cylindrical specimens with a diameter of 150 mm and a height of 

62 mm by targeting an air void of 7 percent ± 0.5 percent. A masonry saw was used to cut along 

the edge of the cylindrical specimens. Then the specimens, which were fitted with high-density 

polyethylene molds, were placed in a stainless steel tray mounting system as shown in Figure 

3.5. 
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(a) cut specimen after compaction 
 

 
 

(b) cylindrical specimen mounting system 
Figure 3.5 Hamburg wheel tracking test specimen sawn and mounting system 
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Chapter 4 Laboratory Tests and Data Analysis 

This chapter describes laboratory tests conducted for this study and test results. Various 

laboratory tests, including a dynamic modulus test, dynamic creep test, static creep-recovery test, 

SCB fracture test, and Hamburg wheel tracking test were performed to compare the performance 

behavior and to characterize material properties of asphalt mixtures (SPH vs. SLX). 

4.1 Dynamic Modulus Test and Results 

The dynamic modulus test was conducted to characterize the linear viscoelastic stiffness 

of the asphalt mixtures. The test was conducted using an asphalt mixture performance tester, also 

known as AMPT. The test procedure was following the AASHTO TP79 standard (AASHTO 

2008; AASHTO 2011). Three temperatures of 4, 20, and 40 °C and six or seven loading 

frequencies of 25, 10, 5, 1, 0.5, and 0.1 Hz, and 0.01 Hz (40 °C only) were used, and the 

frequency-temperature superposition concept was applied to obtain the linear viscoelastic master 

curves at a target reference temperature of 20 °C. Two replicates were tested, which obtained the 

average values of dynamic modulus at each different testing temperature over the range of 

loading frequencies. For details, Figure 4.1 (a) shows an example of constructing a master curve 

for SPH specimen #1. Based on this process, each master curve of each tested specimen is 

developed, as shown in Figure 4.1 (b). Finally, average values of dynamic modulus are obtained 

and plotted in Figure 4.1 (c). As shown in Figure 4.1, the test results between the replicates were 

very repeatable and both mixtures showed very similar viscoelastic stiffness characteristics. The 

measured dynamic modulus of each mixture will be used for the MEPDG simulation and finite 

element pavement modeling. 
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(a) development of a master curve 

 

 
(b) individual master curve 
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(c) averaged master curve for each mixture 

 
Figure 4.1 Dynamic modulus test results 
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mixture: the accumulative permanent strain measured at 10,000 cycle of the SPH mixture was 

approximately 9% lower than the SLX mixture. This implies that both mixtures will present 

similar rutting resistance at a 40 ˚C service temperature.  

 

 
(a) individual 

 

 
(b) average 

 

Figure 4.2 Dynamic creep test results 
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4.3 Static Creep-Recovery Test and Results  

The static multiple-stress, creep-recovery test was conducted to identify the stress-

dependent, nonlinear behavior of the asphalt mixtures. At a test temperature of 30°C, a creep 

stress was applied to the specimens for 30 s (followed by a 500-s recovery period), and the 

vertical displacement (in compression) was monitored with the three linear variable differential 

transducers. A large range of creep stresses was applied to identify the level of (stress-

independent) linear viscoelastic range and to characterize the stress-dependent nonlinear 

behavior of each mixture. Static creep compliance, which defines a ratio of time-dependent strain 

to the applied static stress, was monitored over loading time to determine linear viscoelastic 

stress levels based on the homogeneity concept. In the theory of linear viscoelasticity, the 

homogeneity concept indicates that the ratio of strain response to any applied stress is 

independent of the magnitude of the stress. As illustrated in Figures 4.3 (a) and (b), preliminary 

tests with a large range of creep stresses indicated that both of the mixtures were linear 

viscoelastic up to 600 kPa in the uniaxial creep stress. In other words, nonlinear viscoelasticity 

began when the stress level was greater than about 600 kPa. Therefore, any creep-recovery curve 

within the linear viscoelastic range (600 kPa in this case) can be used to determine the linear 

viscoelastic properties. Other creep-recovery curves obtained from stress levels that were greater 

than the linear viscoelastic range can be used to characterize the stress-dependent nonlinear 

viscoelastic properties of each mixture. It should be noted that the characterization of these 

stress-dependent nonlinear viscoelastic properties of asphalt mixtures is not presented herein 

because it is outside the scope for this paper, but it is well described in other studies (Ban et al. 

2013; Im et al. 2015). These stress-dependent nonlinear viscoelastic properties of asphalt 

mixtures can be used with finite element analyses (FEA) for further simulation of the pavement’s 

26 
 



rutting performance. Any significant findings from the FEA simulation results will be presented 

in a later publication.  

Figures 4.3 (c) and (d) present the results of multiple stress creep-recovery tests of each 

mixture. Each strain curve at a specific creep stress level was averaged from two or three 

replicates. Test results between replicates generally were similar, so the averaged curves 

presented in the figure were used to estimate the deformation characteristics of each mixture. As 

shown in the figure, higher stress levels generated greater creep strain and provided less recovery 

at the test temperature (30 °C). The SPH mixture exhibited a bit lower creep compliance or strain 

than those of the SLX mixture at the same stress levels. One interesting observation from these 

figures is that both mixtures showed similar deformation characteristics until the stress level of 

600 kPa, which is the level of linear viscoelastic range, however, the strain difference between 

the two mixtures increased as the stress level increased, as demonstrated in Figures 4.3 (e) and 

(f). These results clearly indicate the stress level- and material-dependent characteristics of the 

two mixtures.   

 

  
(a) creep compliance of SPH mixture (b) creep compliance of SLX mixture 

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

0 5 10 15 20 25 30

C
re

ep
 C

om
pl

ia
nc

e 
(1

/k
Pa

)

Time (s)

400kPa 500kPa 600kPa
700kPa 1000kPa 1300kPa
1600kPa

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

0 5 10 15 20 25 30

C
re

ep
 C

om
pl

ia
nc

e 
(1

/k
Pa

)

Time (s)

200kPa 500kPa 600kPa
700kPa 1000kPa 1300kPa
1600kPa

27 
 



  
(c) creep-recovery strain of SPH mixture (d) creep-recovery strain of SLX mixture 

  
(e) creep strain at 30 sec (f) recovery strain at 500 sec 

 
Figure 4.3. Repeated creep-recovery test results of each mixture 
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from the edges of the specimen) were used to support the specimen. Reaction force at the loading 

point was monitored by the data acquisition system installed in the mechanical testing machine.  

Figure 4.4 presents the SCB test results by plotting the reaction forces at the point of the 

load application as the loading time increases. The test results among the replicates were 

repeatable without large discrepancies. The coefficient of variation (COV) in the peak force for 

each loading case of the SPH mixture was between 11.1% and 15.6%, while the SLX was 

between 3.9% and 16.8%. The COV values obtained in this study were reasonable compared to a 

recent study that showed a range between 15% and 34 % (Marasteanu et al. 2007). As seen in 

Figure 4.4, the rate-dependent behavior was observed from both asphalt mixtures: the peak force 

slightly increases as the loading rate becomes higher. Also, the fracture behavior of both asphalt 

mixtures (SPH and SLX) was compared and exhibited similar fracture characteristics. The 

fracture properties of each mixture are then determined by means of the cohesive zone 

computational modeling of the SCB fracture test as presented in the following chapter.  
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(a) SPH mixture 

 

 
(b) SLX mixture 
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(c) comparison between SPH mixture and SLX mixture (average) 

 
Figure 4.4 SCB test results 
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test applies somewhat unrealistic (harsh loading-environment) conditions that may not represent 

actual field performance of mixture moisture damage. With respect to stripping, a stripping 

inflection point (SIP) was determined based on the standard method as shown in Figure 4.6. As 

shown, the SIP of the SLX mixture was around 12,000, while that of the SPH was not 

determined since stripping did not occur during the test. However, from the visual observation 

seen in Figure 4.5 (b), both mixtures did not show much difference in the degree of stripping. 

 

 
(a) typical image after testing 

 

 
(b) a closer look for stripping observation 

 
Figure 4.5 Images of Hamburg wheel tracking test specimens after testing 
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Table 4.1 Summary of Hamburg wheel tracking test results of each mixture 

1st. Round Test 

Number of Passes Rut Depth (mm) Number of Passes 

SPH SLX 
5,000 -2.27 -3.48 5,000 

10,000 -2.69 -5.25 10,000 
15,000 -3.41 -11.55 15,000 

20,000 (Pass) -4.38 -12.59 15,400 (Fail) 
2nd. Round Test 

5,000 -2.54 -3.47 5,000 
10,000 -3.18 -5.66 10,000 
15,000 -4.00 -11.38 15,000 

20,000 (Pass) -4.80 -12.05 15,300 (Fail) 
 
 
 

 
Figure 4.6 Plot of Hamburg wheel tracking test results of each mixture 
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Chapter 5 Characterization of Material Properties 

In this chapter the dynamic modulus test, static multiple stress creep-recovery test, and 

SCB fracture test results presented in the previous chapter are used to characterize material 

properties for computational pavement performance simulation. Using dynamic modulus test 

results, viscoelastic properties such as Prony series coefficients and time-temperature shift 

factors were identified and static multiple stress creep-recovery test results were used to obtain 

viscoplastic parameters for rutting simulation. Fracture properties for cracking simulation were 

also determined from the SCB test results. This chapter contains a brief explanation on 

characterizing material properties. More details on the model used to characterize the material 

properties and identification process is presented in Appendix A.  

5.1 Viscoelastic Material Properties 

A three-dimensional representation of Schapery’s nonlinear viscoelastic single-integral 

constitutive model (Schapery 1969) can be expressed as (Lai and Bakker 1996): 
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Viscoelastic material parameters were obtained using equation (5-1). Details are given in the 

Appendix A subsection: A.1 Viscoelastic Material Properties. By minimizing the error between 

the dynamic modulus test results and Prony series equations, the coefficients Dn and λn are 

obtained and summarized in Table 5.1. 
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Table 5.1 Obtained viscoelastic properties 

Time-temperature shift factors 
SPH SLX 

Temperature (ºC) Ta  Temperature (ºC) Ta  
4 2.184 4 2.232 
21 1.000 21 1.000 
40 0.009 40 0.007 

Prony series coefficients 
SPH SLX 

n λn(s-1) Dn(MPa-1) n λn(s-1) Dn(MPa-1) 
0 - 6.69×10-5 0 - 7.24×10-5 
1 1.41×104 2.85×10-5 1 1.04×104 3.08×10-5 
2 1.84×103 3.24×10-5 2 1.37×103 3.34×10-5 
3 2.40×102 6.31×10-5 3 1.80×102 7.04×10-5 
4 3.13×101 1.30×10-4 4 2.37×101 1.46×10-4 
5 4.08×100 2.52×10-4 5 3.12×100 2.95×10-4 
6 5.32×10-1 5.21×10-4 6 4.10×10-1 6.20×10-4 
7 6.94×10-2 1.76×10-3 7 5.39×10-2 2.11×10-3 
8 9.05×10-3 3.30×10-3 8 7.09×10-3 3.90×10-3 
9 1.18×10-3 8.11×10-3 9 9.33×10-4 9.17×10-3 

 

5.2 Viscoplastic Material Properties 

The viscoplastic strain was extracted by subtracting the viscoelastic strain from the total 

stain that was obtained from the static multiple stress creep-recovery test. To characterize the 

viscoplastic deformation of each mixture, the following viscoplastic flow rule proposed by 

Perzyna (1971) was used in this study: 
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Viscoplastic properties were identified by equation (5-2). Details are given in the Appendix A 

subsection: A.2 Viscoplastic Material Properties. As presented in Figure 5.1 and summarized in 

Table 5.2, a similar hardening response of SPH and SLX was observed. This implies that SLX 

had similar rutting potentials to SPH, which agreed with the static creep-recovery test results 

presented in Chapter 4. 

 

 

Figure 5.1 Hardening response of SPH and SLX 

 

 

Table 5.2 Identified viscoplastic material properties (Tref=21ºC) 

 
Γ0

vp(1/s) N k0(kPa) k1 (kPa) k2 

SLX 5.80×10-5 1.40 98.84 1903.85 126.52 

SPH 4.15×10-5 1.23 90.71 1945.15 142.54 
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5.3 Fracture Properties 

The cohesive zone fracture energy (Γc), which is the locally estimated fracture toughness, 

can then be quantified by computing the area below the bilinear traction-separation curve with 

peak traction (Tmax) and critical displacement (δc) as follows: 

 

 max
1
2c cTδΓ =   (5-3) 

 

As detailed in the Appendix A subsection: A.3 Fracture Properties, the fracture properties in the 

bilinear cohesive zone model, Tmax and Γc were determined for each case through the calibration 

process until a good match between the SCB test results and their computational simulations was 

observed. The identified fracture properties for different loading rates are summarized in Table 

5.3. The good agreement between tests and model simulations indicates that the local fracture 

properties were properly defined through the integrated experimental-computational approach. 

From the table, it is clearly seen that the fracture properties of SLX are similar to those of SPH, 

implying that the cracking resistance of SLX is not quite different from that of SPH. 

 

Table 5.3 Cohesive zone fracture properties 

Loading rate 
(mm/min.) 

Fracture 
properties 

Mix type 

SPH SLX 

100 
Tmax (MPa) 7.45 7.50 

Γc (J/m2) 2950 3000 

200 
Tmax (MPa) 7.95 8.00 

Γc (J/m2) 3450 3500 

400 
Tmax (MPa) 7.75 8.00 

Γc (J/m2) 4800 5000 
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5.4 Viscodamage Material Properties 

In order to simulate pavement fatigue cracking, continuum damage mechanics was 

employed in this study. As detailed in the Appendix A subsection: A.4 Viscodamage Material 

Properties, the damage density (φ ) has a range from 0 to 1, where φ = 0 means that the 

material is intact, while φ = 1 means that the material is fully damaged. The damage density can 

be calculated by nominal (damaged) stress (σ) and effective (undamaged) stress (σ ). The 

nominal stress was measured from a cohesive element located in a crack-tip (see Figure A.2) 

during the SCB test simulation with the fracture properties obtained above. The effective stress 

was calculated from an element in the same location during the SCB test without considering 

fracture of the material. Using the thermo-viscodamage evolution law proposed by Darabi et al. 

(2013), the viscodamage parameters were obtained, as summarized in Table 5.4.  

 

Table 5.4 Viscodamage material properties (Tref = 21ºC) 

SPH SLX 

Γvd q k Y0(kPa) Γvd q k Y0(kPa) 

8.55×10-17 4.85 -2.40 1000 2.86×10-18 5.51 -2.45 1000 
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Chapter 6 Pavement Performance Predictions 
Equation C hapter 6 Section 1  

NDOR paved two different overlays (i.e., SLX and SPH) from I-80 Exit 279 near 

Kearney, Nebraska in 2014, as seen in Figure 6.1 and Figure 6.2. Layer configurations for both 

overlays are presented in Figure 6.3. Based on that information, this chapter compares the 

structural behaviors of the two overlays using SLX and SPH through the Mechanistic-Empirical 

Pavement Design Guide (MEPDG), life cycle cost analysis (LCCA), and finite element 

modeling. 

 

 

Figure 6.1 Project location: I-80 Exit 279 near Kearney, Nebraska 

 

  

I-80 Exit 279 
Kearney, NE 

2-inch SPH 

1-inch SLX 

Transition from 2-inch 
SLX to 1-inch SLX 
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(a) old asphalt layer milled 

 

 
(b) new overlay paved 

 

Figure 6.2 Pavement construction 
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(a) SLX pavement structure 

 

(b) SPH pavement structure 

Figure 6.3 Layer configuration of two pavement structures 
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28-Day PCC Mr= 4.6 MPa 

28-Day Elastic Modulus of Slab=26.6 GPa 

    Subgrade Layer 
Mr = 100 MPa 
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6.1 MEPDG Simulation 

MEPDG was used to evaluate the structural performance of the pavements overlaid with 

SLX or SPH. Table 6.1 summarizes the design input parameters for the simulations and presents 

simulation results. A 15-year design period with a vehicle operation speed of 60 mph was 

selected for simulations with a 90% design reliability level. Default values were used for most 

inputs related to traffic, except for an average annual daily truck traffic (AADTT) of 8,891 that 

was provided by NDOR. For climate inputs, the location of project site was assumed to be 

Lincoln, Nebraska. As shown, most of the inputs for MEPDG simulations were similar for both 

pavement structures, while the type of overlay, the thickness of the overlay, and the old asphalt 

layer were different. The results of the dynamic modulus test of each mixture were used for the 

SLX and SPH overlays, while the material properties of other layers (i.e., viscoelastic properties 

of the old asphalt layer, mean elastic modulus of concrete layer, and resilient modulus of 

subgrade) were obtained from a previous study (Im et al. 2010).  

Table 6.1 presents MEPDG predictions of two distresses (cracking and rutting). As 

shown, cracking was not a serious issue for both pavement structures during the 15-year design 

period. However, the SLX pavement was more susceptible to longitudinal cracking, which did 

not agree with the laboratory SCB test results presented in Figure 4.5 and Table 5.3. This was 

because the results of the dynamic modulus test are major inputs in the predictive cracking 

model in the MEPDG. MEPDG simulation results of cracking require further investigation due 

to limited predicting power of crack-associated damage behavior. With respect to rutting, the 

simulation results indicated that the pavement with SLX did not satisfy the rutting criterion, 

while serious distresses did not occur in the SPH pavement during the design period. However, 

the rutting in the SLX pavement structure may not be critical because the predicted permanent 
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deformation passed over the rutting design limit in about 13 years after its construction. It is 

noted that the expected service life of thin asphalt overlays is typically 5-15 years (Walubita and 

Scullion 2008). 

 
Table 6.1 Summary of key inputs of MEPDG simulations and results 

Design Period (year) 15 

Operation Speed (mph) 60 

Design Reliability (%) 90 

Initial two-way AADTT 8,891 

Project Location Lincoln, NE 

Performance Criteria 

• Initial IRI (in/mile): 63 
• Terminal IRI (in/mile): 172 
• AC surface down cracking (ft/mile): 1,000 
• AC bottom up cracking (%): 25 
• AC thermal cracking (ft/mile): 1,000 
• AC Permanent deformation (in): 0.25 
• Total permanent deformation (in): 0.75 

MEPDG simulation results 

 SLX structure  SPH Structure 

Performance Criteria Distress Predicted Reliability Predicted Distress Predicted Reliability Predicted 

Long. Cracking  (ft/mile) 7 92.03 (Pass) 0 99.99 (Pass) 

Bottom Up Cracking (%) 0 99.99 (Pass) 0 99.99 (Pass) 

Rutting (AC Only) (in): 0.27 40.01 (Fail) 0.11 99.99 (Pass) 

 

6.2 Life Cycle Cost Analysis (LCCA) and Results 

The life cycle cost analysis (LCCA) of each pavement structure was conducted to 

investigate the economic benefits of the thin-lift overlay practice compared to the two-inch 

rehabilitation. An LCCA tool developed by the Federal Highway Administration (FHWA), 

called RealCost 2.5 (FHWA  2010), was used in this study.  

Major inputs, the activities of each alternative, and assumptions made for the LCCA are 

summarized in Table 6.2.  In order to achieve more realistic analysis, we used real input values 
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(such as the construction cost, typical maintenance cost/frequency, and work hours/duration) 

provided by NDOR. Four alternatives were evaluated in this study: LCCA of pavement 

structures with the thin lift SLX (one-inch milling-overlay) and SPH (two-inch milling-overlay) 

at low and high volume traffic conditions for a total 30-year analysis period. With the given 

traffic conditions, the service life of each alternative was estimated by the agency based on the 

past practice experience (for SPH) and expected performance life (for SLX), as presented in 

Table 6.2. Since each project is differentiated by only the rehabilitation practice (SLX vs. SPH) 

and its expected service life, for the sake of simplicity, the history (or activities) of the existing 

pavement structure was not considered in the LCCA estimation. 
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Table 6.2 Summary of cost inputs for each alternative and detail traffic inputs 

Alternative 1: SPH overlay at high volume traffic (10 year service life) 

Activity No. of activities Construction Cost  
($/1-mi length) 

Maintenance  
Frequency (yrs) 

Maintenance cost  
($/1-mi length) 

Work duration 
(days) 

2" Mill & 2" 
SPH Overlay 3a 190,000* 5* 15,000* 0.3* 

Alternative 2: SLX overlay at high volume traffic (6 year service life) 

1" Mill & 1" 
SLX Overlay 5a 95,000* 5* 15,000* 0.15* 

Alternative 3: SPH overlay at low volume traffic (15 year service life) 

2" Mill & 2" 
SPH Overlay 2a 190,000* 7.5* 15,000* 0.3* 

Alternative 4: SLX overlay at Low volume traffic (10 year service life) 

1" Mill & 1" 
SLX Overlay 3a 95,000* 5* 15,000* 0.15* 

Traffic inputs 

Parameters High volume traffic Low volume traffic 

AADT Construction Year (total for both directions) 18,098* 2,884* 

Total Trucks as Percentage of AADT (%) 39* 14* 

Annual Growth Rate of Traffic (%) 2.0* 2.0* 

Speed Limit Under Normal Operating Conditions (mph) 75* 60* 

    Work Zone Speed Limit (mph) 55* 45* 

Discount Rate (%) 2.0a 

Value of Time for Passenger Cars ($/hour) 13.96d 

Value of Time for Single Unit Trucks ($/hour) 22.34d 

Value of Time for Combination Trucks ($/hour) 26.89d 
aTypical, dDefault inputs, and *Inputs provided by NDOR  

 

Table 6.3 presents the LCCA results. Both the agency costs and user costs of each 

alternative are summarized in terms of net present value and equivalent uniform annual cost 

(EUAC). As shown in the table, the SLX-overlay pavement resulted in lower agency and user 

costs at both high and low traffic conditions than the SPH-overlay practices. The analysis results 

clearly support the benefits of the thin-lift asphalt overlay practice, e.g., 1) reduced initial costs, 

2) minimized traffic delays, and 3) the ability to handle heavy traffic, and 4) improving IRI more 
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frequently in shorter intervals through the service life of the overlays.  Public perception and the 

impact to the road user are greatly improved when production of thin lift overlays is expedited, at 

an average of paving 3 lane miles per day. For example, a typical 8 to 10 mile – roadway 

segment only requires approximately one week to construct. Through shorter project 

construction windows, the agency can deliver new/smooth surfacing extremely fast, and can 

easily be constructed during night and weekend paving to accommodate traffic issues for heavy 

volume corridors.  The thin lift SLX mix design is also very cost effective by utilizing RAP 

contents of 30-35% and taking full advantage of roadway millings that are processed through 

either crushing or screening to insure the RAP is sized to accommodate the 1 inch lift thickness.  

Not only can it be used in standard overlays and thin lift overlays for pavement preservation, it 

can also be used in conjunction with full depth repair projects to aid in maintaining a roadways 

service life until a roadway or urban section can be replaced. 
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Table 6.3  Summary of the LCCA analysis results 

Total Cost 

Alternative 1:  
SPH overlay high  

traffic volume 

Alternative 2:  
SLX overlay high  

traffic volume 

Alternative 3:  
SPH overlay low  

traffic volume 

Alternative 4:  
SLX overlay low  

traffic volume 
Agency 

Cost 
($1000) 

User Cost 
($1000) 

Agency 
Cost 

($1000) 

User Cost 
($1000) 

Agency 
Cost 

($1000) 

User Cost 
($1000) 

Agency 
Cost 

($1000) 

User Cost 
($1000) 

Undiscounted Sum $425.00 $56.60 $360.00 $43.10 $315.00 $0.13 $235.00 $0.09 

Present Value $402.71 $54.79 $329.27 $41.47 $301.23 $0.12 $218.29 $0.08 

EUAC $17.98 $2.45 $14.70 $1.85 $13.45 $0.01 $9.75 $0.00 

 
(a) Alternative 1 vs. Alternative 2  

 
(b) Alternative 3 vs. Alternative 4 

 
 
6.3 Finite Element Modeling 

Two-dimensional finite element modeling was conducted to investigate mechanical 

behaviors of the two different pavement structures. The developed viscoelastic, viscoplastic, and 

viscodamage constitutive law was implemented in a commercial package, Abaqus Version 6.10 

(Abaqus 2010) via user material subroutine, UMAT. Permanent deformation (i.e., rutting) was 

predicted at a high temperature (i.e., 40 °C) by considering asphalt overlays as a viscoelastic-

viscoplastic material, while the viscoelastic-viscodamage response of asphalt overlays was 

considered in fatigue cracking simulations at an intermediate temperature (i.e., 21 °C).  

6.3.1 Pavement model geometry and boundary conditions 

Pavement structures with the two different asphalt overlays (SLX vs. SPH) were modeled 

for performance predictions, as shown in Figure 6.4. An SLX overlay with 25.4 mm thickness, 
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old asphalt layer with 76.2 mm thickness, concrete layer with 254.0 mm thickness, and subgrade 

layers with 406.4mm thickness were included in the SLX pavement model, while different 

thicknesses for SPH overlay (50.8 mm) and the old asphalt layer (50.8 mm) were used for the 

SPH pavement. The left side of the model had a symmetric boundary condition and the bottom 

of the model was fixed. As illustrated in Figure 6.4, infinite elements were employed to 

minimize the effect from surrounding media on simulation results. Additionally, transitional 

meshing techniques were adopted to reduce computational time. Half of a single tire in a dual 

tire, as shown in Figure 6.5 (a), was considered. Based on a study by Yoo et al. (2006), three 

different vertical pressures at each tire rib were applied to the left-top of the pavement models, as 

shown in Figure 6.5 (b). The width of the tire ribs and the corresponding vertical pressures are 

summarized in Table 6.4. 

 

 

 

 

    

(a) SLX pavement structure 

 

Subgrade Layer

8-10 inch Concrete Layer

Infinite 
elements

10 inch Concrete Layer 
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(b) SPH pavement structure 
 

Figure 6.4 Geometry and boundary condition for two pavement structures 

  

(a) (b) 

Figure 6.5 (a) Dual tire foot print (Yoo et al. 2006) and (b) three vertical pressures applied on 

the pavement structures 

 

Table 6.4 Dual tire configuration for each rib (Yoo et al. 2006) 

 Width (mm) Vertical pressure (kPa) 

R1, R5 34.0 640=P1 

R2, R4 30.0 860=P2 

R3 32.5 990=P3 

8-10 inch Concrete Layer

Subgrade Layer

Infinite 
elements

R1
R2

R3
R4

R5 P3P2P1

10 inch Concrete Layer 
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Based on the Class 9 truck (see Figure 6.6 (a)) used in this study, the loading configuration was 

calculated by: 

 
Loading time

Resting time

T

W

L
v

L
v

=

=
 (6-1) 

where LT is the width between each tire at one axle, LW is the length between each axle, and v is 

the vehicle speed. In this study, a 60 mile/h (96.6 km/h) vehicle speed was used. The calculated 

loading configuration is shown in Figure 6.6 (b), where loading and resting times are 0.05 s and 

0.6 s, respectively. It is noted that one cycle for a tandem-axle truck was composed of two 

loading times and one resting time. In this study, it was assumed that there was no resting time 

between passing trucks.  

 

 
(a) 

LW=12,800 mm
LT=1,300 mm
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(b) 

 
Figure 6.6 (a) Class 9 truck configuration (Soares et al. 2008) and (b) loading configuration 

for a vehicle speed of 60 mile/h 

 

 

6.3.2 Layer properties 

Material properties of the individual layers for the simulation are summarized in Table 

6.5. Viscoelastic, viscoplastic, and viscodamage parameters for asphalt overlays and the old 

asphalt layer were converted for a reference temperature of 21 °C, while viscoplastic parameters 

were obtained from the static creep-recovery tests with various stress levels at 30 °C. The asphalt 

overlays were considered as a viscoelastic-viscoplastic material for rutting simulations and a 

viscoelastic-viscodamage material for the fatigue cracking simulation. For the old asphalt layer, 

only viscoelastic material properties of SP5 obtained from the MEPDG simulation were used. 

The underlying layers such as concrete and subgrade layers were modeled as an isotropic linear 

elastic material, as presented in the table. 
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Table 6.5 Material properties of each layer 

Asphalt overlay 
SPH SLX 

Viscoelastic material properties (Tref = 21ºC) 
n λn(s-1) Dn(MPa-1) n λn(s-1) Dn(MPa-1) 
0 - 6.69×10-5 0 - 7.24×10-5 
1 1.41×104 2.85×10-5 1 1.04×104 3.08×10-5 
2 1.84×103 3.24×10-5 2 1.37×103 3.34×10-5 
3 2.40×102 6.31×10-5 3 1.80×102 7.04×10-5 
4 3.13×101 1.30×10-4 4 2.37×101 1.46×10-4 
5 4.08×100 2.52×10-4 5 3.12×100 2.95×10-4 
6 5.32×10-1 5.21×10-4 6 4.10×10-1 6.20×10-4 
7 6.94×10-2 1.76×10-3 7 5.39×10-2 2.11×10-3 
8 9.05×10-3 3.30×10-3 8 7.09×10-3 3.90×10-3 
9 1.18×10-3 8.11×10-3 9 9.33×10-4 9.17×10-3 

Viscoplastic material properties (Tref = 21ºC) 
Γ0

vp 

(1/s) N k0 
(kPa) 

k1 
(kPa) k2 Γ0

vp 

(1/s) N k0 
(kPa) 

k1 
(kPa) k2 

4.15×10-5 1.23 90.71 1945.15 142.54 5.80×10-5 1.40 98.84 1903.85 126.52 
Viscodamage material properties (Tref = 21ºC) 

Γ0
vd(1/s) q k Y0(kPa) Γ0

vd 

(1/s) q k Y0(kPa) 

8.55×10-17 4.85 -2.40 1000 2.86×10-18 5.51 -2.45 1000 
Old asphalt layer (SP5) (Tref = 21ºC) 

n λn(s-1) Dn(MPa-1) 
0 - 4.23×10-5 
1 2.00×103 1.76×10-5 
2 2.00×102 2.11×10-5 
3 2.00×101 3.98×10-5 
4 2.00×100 8.02×10-5 
5 2.00×101 1.59×10-4 
6 2.00×10-2 3.66×10-4 
7 2.00×10-3 5.36×10-4 
8 2.00×10-4 2.23×10-3 
9 4.00×10-5 8.06×10-4 

Concrete layer 
E(MPa) ν 
2.66×104 0.20 

Subgrade layer 
E(MPa) ν 
1.00×102 0.35 
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6.3.3 Simulation results 

In this subsection, simulation results are presented to compare the structural performance 

of the two pavements with SLX and SPH in terms of permanent deformation and fatigue 

cracking. Permanent deformation (rutting) simulations were conducted at 40 ºC until 3,000 

cycles, where asphalt overlays (i.e., SLX and SPH) were considered as a viscoelastic-viscoplastic 

material. The material parameters for a reference temperature (21°C) in Table 6.5 were 

converted for simulation temperature (i.e., 40 ºC) by using the time-temperature shift factors. 

Rutting was measured from a node at left-top of the pavement models, as shown in Figure 6.7. 

Since there was no information on the current status of the SP5 old asphalt layer, the viscoelastic 

property obtained from a previous study (Im et al. 2010) was varied with 50%, 100%, and 150% 

of its virgin state. This enabled investigation of the effect of old asphalt layer, which could be 

stiffer due to aging or deteriorated due to damage, on the pavement permanent deformation. 

Figure 6.8 presents the comparison of rutting between SLX and SPH pavement structures 

for each case, indicating that about 15% more rutting occurred in the SPH pavement structure 

compared to rutting developed in the SLX pavement structure. However, overall rutting from the 

two structures after 3,000 truck cycles was not significant (less than 0.40 mm) comparing to the 

typical failure limit (9 mm in Nebraska (NDOR 2013)). It was also observed that more rutting 

was accumulated when 50% stiffness of SP5 layer from its virgin state was used as the property 

of the old asphalt layer due to more rutting potential from the deteriorated old layer. Figure 6.9 

through Figure 6.11 show contour plots of vertical displacement distributions in the asphalt 

overlay and old asphalt layer for different loading cycles obtained from the two pavement 

structures. Although contour maps of the two pavement structures seem different, variation in the 

vertical displacements between the two structures is small because the gap between the vertical 
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displacements for each contour color is 0.025 mm. This implies that the SLX pavement rutting 

will be similar to or slightly less than the SPH pavement structure, which needs further validation 

with field performance monitoring.  

 

Figure 6.7 Node where rutting was measured in the pavement model 
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(b) 100% of SP5 

 

(c) 150% of SP5 

Figure 6.8 Comparison of rutting between SLX and SPH pavement structures with different 

old asphalt layer properties 
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(e) at 2000 cycles (f) at 2000 cycles 

Figure 6.9 Vertical displacement distribution contours of SLX and SPH pavement structures 

when 50% of SP5 viscoelastic property was used for old asphalt layer 
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Figure 6.10 Vertical displacement distribution contours of SLX and SPH pavement structures 

when 100% of SP5 viscoelastic property was used for old asphalt layer 
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Figure 6.11 Vertical displacement distribution contours of SLX and SPH pavement structures 

when 150% of SP5 viscoelastic property was used for old asphalt layer 

 

To conduct fatigue cracking simulation, the two different asphalt overlays were 

considered viscoelastic-viscodamage materials subjected to 3,000 truck loading cycles at 21 ºC. 

For the old asphalt layer property, 150% viscoelastic stiffness of SP5 from its virgin state was 

used because cracking is more critical on a stiffer layer. Figure 6.12 shows damage density 

contours of the two pavement structures. Contour maps show that the SLX pavement structure is 

Vertical displacement 
(m)
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less fatigue damage susceptible than the SPH pavement structure, although the damage density 

values are extremely small. Damage density (φ ) has a range from 0 to 1, where φ  = 0 means that 

the material is intact, while φ  = 1 means that the material is fully damaged. It clearly implies that 

the SLX pavement cracking will not at least be more than the SPH pavement structure, which 

also needs further validation with field performance monitoring.  
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Figure 6.12 Damage density distribution contours of SLX and SPH pavement structures when 

150% of SP5 viscoelastic property was used for old asphalt layer 
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Chapter 7 Summary and Conclusions 

Thin asphalt overlays have been widely used because of many benefits, such as long 

service life, low life cycle cost, improved ride quality, etc., but the thin lift overlay application is 

a relatively new preservation and treatment application. Although the experience with this 

technique has been demonstrated as positive, potential problems and unknowns still exist. In this 

study, thin lift overlay with a SLX mixture, newly implemented in Nebraska, and the current 

Nebraska overlay with a SPH mixture were evaluated. One-inch (25.4 mm) thick SLX mixture 

and two-inch (50.8 mm) thick SPH mixture were overlaid on top of milled old asphalt layers on 

I-80 Exit 279 near Kearney, Nebraska. A series of laboratory tests, such as the dynamic modulus, 

dynamic creep, static multiple stress creep-recovery, Hamburg wheel tracking, and semi-circular 

bending fracture tests were conducted to characterize the mechanical properties and performance 

characteristics of each mixture. These laboratory tests were then used to identify material 

properties in order to conduct pavement performance predictions with two different approaches: 

the MEPDG simulation and the finite element model simulation. In addition, an LCCA was 

performed to investigate the economic benefits of the thin-lift overlay compared to the 

conventional overlay practice. 

The following bullet points summarize the conclusions that can be drawn: 

• The viscoelastic stiffness properties of the SLX and SPH mixtures were 

characterized by dynamic modulus tests at various temperatures and loading 

frequencies. Test results presented similar stiffness characteristics between the 

two mixtures. 

• Dynamic creep tests were conducted to evaluate the rutting resistance, where 

there were no significant differences between the two mixtures. 
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• The semi-circular bending test results and their further incorporation into the 

cohesive zone fracture law indicated that the cracking resistance of the SLX 

mixture is similar to or slightly better than that of the SPH mixture. 

• The moisture susceptibility of the mixtures were measured by the Hamburg wheel 

tracking test. Although the test results showed that the SLX mixture was more 

susceptible to moisture-induced damage, it needs further investigation through 

field performance monitoring, since the Hamburg test is somewhat limited in 

representing actual field performance related to the moisture damage of mixtures. 

• MEPDG simulation predicted that both pavements will perform satisfactorily 

during the expected design life, while it is expected from the LCCA that the thin 

SLX preservation practice can reduce both the agency costs and the users costs 

compared to the conventional SPH rehabilitation practice.  

• Pavement performance simulation results from the finite element analysis showed 

that the thin-lift overlay practice with the SLX mixtures would not compromise 

pavement resistance to rutting and cracking compared to the conventional 

rehabilitation practices.  

• Both performance prediction results need to be compared to actual field 

performance data. To date, one-year field performance is available and field 

performance monitoring will be continued. 
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Appendix A 

The models used to characterize the material properties and identification process are 

described here. In the following sections, as equation (A-1) indicates, it was hypothesized that 

the total strain is decomposed into a (recoverable) viscoelastic strain and an (irrecoverable) 

viscoplastic strain based on a small strain theory. For each strain, Schapery’s nonlinear 

viscoelastic single-integral model (Schapery 1969) and Perzyna-type viscoplasticity (Perzyna 

1971) with a generalized Drucker-Prager yield surface (Masad et al. 2007) were used in this 

study.  

 ve vp
ij ij ijε ε ε= +  (A-1) 

where ijε , ve
ijε , and vp

ijε  are the total strain, viscoelastic strain, and viscoplastic strain, respectively. 

It is noted that the bar indicates the values in an effective (undamaged) configuration in the 

following sections. 

A.1 Viscoelastic Material Properties 

Three-dimensional representation of Schapery’s nonlinear viscoelastic single-integral 

constitutive model (Schapery 1969) can be expressed as (Lai and Bakker 1996): 
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where 0g , 1g , 2g  and aσ  are nonlinear viscoelastic parameters and equal to 1.0 in linear 

viscoelasticity. The variable 0g  is related to an instantaneous response, 1g  affects a transient 

response, and 2g  is the nonlinear parameter accounting for the loading rate effects on the creep 

response. The instantaneous shear and bulk compliance are represented by J0 and B0, 
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respectively. Transient shear compliance is represented by ΔJ(t), and ΔB(t) is transient bulk 

compliance. The deviatoric stress tensor and the Kronecker delta are ijs  and δij, respectively. 

For an applied uniaxial undamaged stress ( 0σ ), equation (A-2) can be written as: 

 ( ) ( )2 0
0 0 0 1 0

( ) g
ttve d g

t D g D d
d

ζψ ψ σ
ε σ ζ

ζ
−

= + ∆∫  (A-3) 

D0 and ΔD represent the uniaxial instantaneous and transient creep compliance at linear 

viscoelasticity, respectively. tψ  is the reduced time and written by: 

 
0

t
t

T

d
a
ζψ = ∫  (A-4) 

where Ta  is time-temperature shift factor. Based on frequency-temperature superposition 

concept, the time-temperature shift factors of each temperature for a reference temperature were 

obtained in Table 5.1 by constructing the dynamic modulus mater curve from dynamic modulus 

test results at different frequencies and temperatures. D∆  is the transient compliance and can be 

expressed by: 
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 ∆ = − − ∑  (A-5) 

where Di and λi are the ith Prony series coefficients, and I is the number of terms in Prony Series. 

Storage compliance (D') and loss compliance (D'') from the experimental data and Prony series 

equations are calculated as follows (Park and Schapery 1999): 
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where θ is phase angle, and ω is frequency. By minimizing the error between experimental data 

and Prony series equations, the coefficients Dn and λn are obtained and summarized in Table 5.1. 
 

A.2 Viscoplastic Material Properties 

The viscoplastic strain was extracted by subtracting the viscoelastic strain from the 

experimental total stain that was obtained from the static multiple stress creep-recovery test. The 

identified viscoelastic parameters as described above were used to calculate the viscoelastic 

strain. From equation (A-1), the rate of the total, ijε , is expressed as: 

 ve vp
ij ij ijε ε ε= +    (A-7) 

where ve
ijε  and vp

ijε  are the rates of the viscoelastic strain and viscoplastic strain, respectively. The 

following viscoplastic flow rule was proposed by (Perzyna 1971): 

 0

N

vp vp
ij

y ij

f gε
σ σ

∂
= Γ

∂
  (A-8) 

where f is a yield function, 0
yσ  is a yield stress quantity, g  is a viscoplastic potential function, 

N  is a viscoplastic rate sensitivity exponent, and  is the Macaulay bracket defined by:  

 
0,     <0
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x

x
x x


=  ≥

 (A-9) 

where vpΓ  is a viscoplastic viscosity parameter, so that 1/ vpΓ  characterizes the viscoplastic 

relaxation time. In this study, the modified Drucker-Prager yield surface presented in Masad et 

al. (2007) is used and given by: 

 ( )1 0
vp

efff I pτ α κ= − − ≤  (A-10) 
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where α is a material parameter related to the material’s internal friction, 1I  is the first stress 

invariant, effp  is an effective viscoplastic strain, vp
τ  is an undamaged deviatoric shear stress, and 

( )effpκ  is an isotropic hardening function and expressed as (Lemaitre and Chaboche 1990): 

 ( ) ( ){ }0 1 21 expeff effp pκ κ κ κ = + − −    (A-11) 

where 0κ , 1κ , and 2κ are material parameters, which define an initial yield stress, a saturated 

yield stress, and a strain hardening rate, respectively. Moreover, the viscoplastic potential 

function, g, can be written by: 

 1

vp
g Iτ β= −   (A-12) 

where β represents the dilation or contraction behavior of the material. It is noted that in this 

study a non-associated flow rule (i.e., g ≠ f) is used since the use of an associated flow (i.e., g = f) 

overestimates the dilation viscoplastic strain compared to experimental measurements for 

pressure-dependent materials (Masad et al. 2007; Masad et al. 2005). The effective viscoplastic 

strain, effp  in equations (A-10) and (A-11) can be expressed as: 

 1 vp vp
eff ij ijp A ε ε−=   (A-13) 

where  
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The viscoplastic dynamic yield surface is written as: 
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where vpγ  is a viscoplastic strain rate. Note that 0
yσ  was assumed to be 100 KPa because 0

yσ  was 

varied proportionally by the change of vpΓ . Rearranging equation (A-15) gives: 
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 (A-16) 

where vpγ∆ can be calculated by: 
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where σ1 and ε1 are principal stress and strain, respectively. β presents the dilation or contraction 

behavior of the material. In this study, α and β were assumed to be 0.25 and 0.20, respectively, 

which were based on previous investigations by others (Masad et al. 2007; Seibi et al. 2001). 

By selecting a specific level of vp tγ∆ ∆ , times for each stress were found, then the 

vicoplastic strain at the corresponding times were detemined. Rearranging equation (A-15) 

provides: 

 ( )1 1 2exp
vp

effI C pτ α κ κ− = − −  (A-18) 

where  

 
1/

0
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y vpC
t
γσ κ κ
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  (A-19) 

By minimizing the error between the experimental data and the prediction using equation (A-18), 

1κ  and 2κ  were obtained. Then, the remaining viscoplastic parameters such as vpΓ  and N were 

determined by minimizing the error between the experimental results of vp tγ∆ ∆  for different 

stress levels and the prediction using equation (A-16). For more detail on the identification 
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procedure of the viscoplastic properties used in this study, refer to You et al. (2014). The 

viscoplastic model parameters are summarized in Table 5.2.  

A.3 Fracture Properties 

The fracture process zone (FPZ) is a nonlinear zone characterized by progressive 

softening, for which the stress decreases at increasing deformation. The nonlinear softening zone 

is surrounded by a non-softening nonlinear zone, which represents material inelasticity. Bazant 

and Planas (1997) skillfully classified the fracture process behavior in certain materials into three 

types: brittle, ductile, and quasi-brittle. Each type represents different relative sizes of those two 

nonlinear zones (i.e., softening and non-softening nonlinear zones). Figure A.1 presents the third 

type of behavior, the so-called quasi-brittle fracture. It includes situations in which a major part 

of the nonlinear zone undergoes progressive damage with material softening due to 

microcracking, void formation, interface breakages, frictional slips, and others. The softening 

zone is then surrounded by the inelastic material yielding zone, which is much smaller than the 

softening zone. This behavior includes a relatively large FPZ, as shown in the figure. Asphaltic 

paving mixtures are usually classified as quasi-brittle materials (Bazant and Planas 1997; Duan 

et al. 2006; Kim et al. 2008).  

 

Figure A.1 Schematic illustration of FPZ of typical quasi-brittle materials 
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Cohesive zone models regard fracture as a gradual phenomenon in which separation (Δ) 

takes place across an extended crack tip (or cohesive zone) and where fracture is resisted by 

cohesive tractions (T). The cohesive zone effectively describes the material resistance when 

material elements are being displaced. Equations relating normal and tangential displacement 

jumps across the cohesive surfaces with the proper tractions define a cohesive zone model. 

Among numerous cohesive zone models developed for different specific purposes, this study 

used an intrinsic bilinear cohesive zone model (Espinosa and Zavattieri 2003; Geubelle and 

Baylor 1998; Song et al. 2006). As shown in Figure A.1, the model assumes that there is a 

recoverable linear elastic behavior until the traction (T) reaches a peak value, or cohesive 

strength (Tmax) at a corresponding separation in the traction-separation curve. At that point, a 

non-dimensional displacement (λ) can be identified and used to adjust the initial slope in the 

recoverable linear elastic part of the cohesive law. This capability of the bilinear model to adjust 

the initial slope is significant because it can alleviate the artificial compliance inherent to 

intrinsic cohesive zone models. The λ value has been determined through a convergence study 

designed to find a sufficiently small value to guarantee a level of initial stiffness that renders 

insignificant artificial compliance of the cohesive zone model. It was observed that a numerical 

convergence can be met when the effective displacement is smaller than 0.0005, which has been 

used for simulations in this study. Upon damage initiation, T varies from Tmax to 0 when a critical 

displacement (δc) is reached and the faces of the cohesive element are fully and irreversibly 

separated. The cohesive zone fracture energy (Γc), which is the locally estimated fracture 

toughness, can then be calculated by computing the area below the bilinear traction-separation 

curve with peak traction (Tmax) and critical displacement (δc) as follows: 
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 max
1
2c cTδΓ =   (A-20) 

Fracture properties were determined by integrating experimental tests with computational 

simulations of the SCB fracture tests. This was implemented to identify fracture characteristics 

along the fracture process zone (FPZ) where cracks initiate and propagate though the SCB 

specimens. Cohesive zone fracture was incorporated into finite element simulation to represent 

the fracture behavior of the materials. 

Figure A.2 presents a three-dimensional finite element model, where six-node linear 

triangular prism elements (C3D6) were used for a bulk specimen. Eight-node, zero-thickness 

three-dimensional cohesive elements (COH3D8) were embedded along the center of the model 

to permit mode I cracking growth in the simulation of SCB testing. The bilinear cohesive zone 

model illustrated in Figure A.1 was used to simulate fracture in the middle of the SCB specimen 

as the opening displacements increased. It should be noted that there were several limitations 

involved in the simulations as a result of only considering homogenous and isotropic material 

and opening mode crack, which may not represent the true fracture process of specimens 

specially tested at the ambient temperatures where heterogeneity (i.e., microstructural 

characteristics) and other fracture modes (i.e., mixed-mode cracks) cannot be negligible. 
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(a) meshed model with boundary conditions (b) deformed model 
 

Figure A.2 A finite element modeling of the SCB testing 

 

Among the cohesive zone fracture properties in the bilinear model, Tmax and Γc for each 

case were determined through the calibration process until a good match between test results and 

numerical simulations was observed. The identified fracture properties for different loading rates 

are summarized in Table 5.3. 

A.4 Viscodamage Material Properties 

In continuum damage mechanics, the damage density,φ , has a range from 0 to 1, where φ  

= 0 means that the material is intact, while φ  = 1 means that the material is fully damaged, 

expressed as: 

 
( )( ) 1
( )
tt
t

σφ
σ

= −  (A-21) 

where ( )tσ is the nominal (damaged) stress that was measured from a cohesive element located 

in a crack-tip (see Figure A.2) during the SCB test simulation with the fracture properties 

obtained above. The effective (undamaged) stress,σ , was calculated from an element in the 

Cohesive Zone 
Elements

Crack Tip

75 
 



same location during the SCB test without considering fracture of the material. The thermo-

viscodamage evolution law is written as (Darabi et al. 2013): 

 ( ) ( ) ( ) ( )2 20 0 1

0 0

1 1
q qvd vd vdk kTot Tot

eff eff
T T

IY
a Y a Y

τ αφ φ ε φ ε
   Γ Γ −

= − = −   
   

  (A-22) 

where 0
vdΓ  is the viscodamage viscosity, Y  is the damage driving force in the effective 

configuration, 0Y  is the reference damage force, q is the stress dependency parameter, k is the 

strain dependency parameter, and Tot
effε , total effective strain, is written as ij ijε ε . Note that the 

total strain ( ijε ) is composed of the viscoelastic strain ( ve
ijε ) and viscoplastic strain ( vp

ijε ). Taking 

the natural logarithm of both sides of equation (A-22) yields: 

 ( ) ( )0 1

0

vd vd
Tot
eff

T

ILn Ln qLn kLn A
a Y

τ αφ ε
  Γ −

= + + +   
   

  (A-23) 

where A is constant. The first, third, and fourth terms ( 0
vd

Ta
Γ

, ( )Tot
effkLn ε , A) in the right-hand side 

of equation (A-23) at a fixed effective strain level ( Tot
effε ) are constant. To obtain q, the diagram of 

the damage density rate and 0Y Y  at different strain levels is plotted. As shown in Figure A.3 

(a), q can be obtained as the slope of the lines. Similarly, the first, second, and fourth terms ( 0
vd

Ta
Γ

,

1

0

vd IqLn
Y

τ α −
 
 

, A) in the right-hand side of equation (A-23) at a fixed 0Y Y  are constant. The 

diagram of the rate of damage density and the effective strain at different 0Y Y  values is plotted 

in Figure A.3 (b), where k can be obtained as the slope of the lines. The intersections between the 

lines and Y-axis are used to obtain 0
vd

Ta
Γ

, where the intersections in Figure A.3 (a) are the sum of 
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the first and third terms in the right-hand side of equation (A-23) and the intersections in Figure 

A.3 (b) are the sum of the first two terms in the right-hand side of equation (A-23). The rate of 

the damage density are zero on the Y-axis, while the damage density is calculated different strain 

levels in Figure A.3 (a) and at different 0Y Y  in Figure A.3 (b). The obtained viscodamage 

parameters are summarized in Table 5.4. For more detail on the identification procedure of the 

viscodamage properties used in this study, see You et al. (2014). 
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(b) 

Figure A.3 (a) Diagram of damage density rate and 0Y Y  at different strain levels and (b) 
diagram of damage density rate and the effective strain at different 0Y Y  values 
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