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Automated Assessment of Disease Progression in
Acute Myeloid Leukemia by Probabilistic Analysis

of Flow Cytometry Data
Bartek Rajwa, Paul K. Wallace, Elizabeth A. Griffiths, and Murat Dundar, Member, IEEE

Abstract—Objective: Flow cytometry (FC) is a widely ac-
knowledged technology in diagnosis of acute myeloid leukemia
(AML) and has been indispensable in determining progression
of the disease. Although FC plays a key role as a post-therapy
prognosticator and evaluator of therapeutic efficacy, the manual
analysis of cytometry data is a barrier to optimization of
reproducibility and objectivity. This study investigates the utility
of our recently introduced non-parametric Bayesian framework
in accurately predicting the direction of change in disease
progression in AML patients using FC data. Methods: The
highly flexible non-parametric Bayesian model based on the
infinite mixture of infinite Gaussian mixtures is used for jointly
modeling data from multiple FC samples to automatically identify
functionally distinct cell populations and their local realizations.
Phenotype vectors are obtained by characterizing each sample
by the proportions of recovered cell populations, which are
in turn used to predict the direction of change in disease
progression for each patient. Results: We used 200 diseased and
non-diseased immunophenotypic panels for training and tested
the system with 36 additional AML cases collected at multiple
time points. The proposed framework identified the change in
direction of disease progression with accuracies of 90% (9 out
of 10) for relapsing cases and 100% (26 out of 26) for the
remaining cases. Conclusions: We believe that these promising
results are an important first step towards the development of
automated predictive systems for disease monitoring and contin-
uous response evaluation. Significance: Automated measurement
and monitoring of therapeutic response is critical not only for
objective evaluation of disease status prognosis but also for timely
assessment of treatment strategies.

Index Terms—minimal residual disease, flow cytometry, acute
myeloid leukemia, AML, nonparametric Bayesian, Dirichlet pro-
cess.

I. INTRODUCTION

ACUTE myeloid leukemia (AML) is a malignant disease
affecting both children and adults, with an age-adjusted

incidence of 3.51 per 100,000 men and women per year
in the United States (from 1975 to 2011). Although the 5-
year relative survival rate has significantly improved since the
1970s, only 26% of patients diagnosed with AML will survive
5 years after diagnosis. For elderly patients (65+) the 5-year
survival rate remains less than 6% [1].
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Flow cytometry (FC) is a leading technology for cell analy-
sis, allowing rapid evaluation of heterogeneous cellular popu-
lations in a single-cell setting; i.e., FC separately interrogates
every individual cell. The analysis process uses fluorescently
labeled antibodies to tag cellular epitopes known from their
association with a specific cell lineage, function, or state. In
combination with various probes for cell viability, structure,
and function this methodology can provide information-rich
data sets describing the phenotypic effects of various natural
physiological phenomena or the impact of external perturbants
on characteristics of cell populations [2].

Following the endorsement of the Bethesda International
Consensus Group, as well as the guidance for classification
of hematolymphoid neoplasms introduced by the 4th edi-
tion of the The World Health Organization’s Classification
of Tumours of Haematopoietic and Lymphoid Tissues, FC
immunophenotyping became a standard tool for AML diag-
nosis and disease monitoring [3], [4], [5]. FC is universally
recognized as the method of choice for determining the blast
lineage as well as for detecting aberrant antigenic pheno-
typic profiles [6], [7]. Although molecular classification has
become an important adjunct to disease evaluation in AML,
FC immunophenotypic characterization remains crucial for
early staging of the disease, monitoring response to therapy,
detecting minimal residual disease (MRD), and tracking re-
lapse or progression [4], [8]. FC evaluation of AML has been
demonstrated to be highly correlated with event-free survival
(time to induction failure, relapse, secondary malignancy, or
death), in contrast to the only very limited prognostic value
offered by morphologic studies or PCR results [9], [10].

Evaluation of response to chemotherapy and assessment of
disease progression are essential tasks in the management of
patients with AML. With the advent of personalized medicine
and the increasing use of targeted therapies whose activity
depends upon the sustained expression of surface markers
identified by FC, the use of clinical-decision support systems
implemented as software support in co-developed companion
diagnostic devices will be absolutely necessary [11], [12].

Although FC has been demonstrated by a number of reports
to be more predictive and consistent than the alternatives,
practitioners acknowledge that the reported results of FC-
based diagnostics depend strongly on correct interpretation
of the highly complex raw FC results. Indeed, the current
approach to FC data analysis involves a painstaking interactive
process of manually building long chains of gates by drawing
them on the screen of a computer terminal with the help
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of a pointing device. The quality of the process depends
immensely on the judgment and experience of the operator.
Additionally, the process is hard to generalize, standardize, and
transfer between laboratories or even between FC instruments
designed by different manufacturers. Although the biological
reasoning behind gating strategies is well established, the
praxis of manual analysis remains difficult, time consuming,
highly operator-dependent, costly, and hard to implement in
new environments.

Ever since automated data analysis, machine learning, and
bioinformatics began to establish themselves in the field of
cytometry [13], [14], [15], the FC community has been trying
to address these issues by proposing a number of diverse semi-
automated algorithms that first pre-process the data by spectral
unmixing (compensation) and then mimic the gating process
with the help of a number of clustering techniques [15], [16],
[17], [18], [19]. Although an increasing number of published
computer-science methods leave no doubt that significant
progress has been made in incorporating these techniques into
analytical research pipelines, computational cytometry so far
has had little or no impact on the clinical field. We hypothesize
two principal reasons for that. First, even though the proposed
algorithms automate the feature-extraction process, translating
the raw cytometry data into vectors of cell-type proportions,
the logic of these processes (the algorithm design) is ultimately
driven by the experience of the operators (domain knowledge)
and by their expectations regarding the data, rather than by the
data alone. Therefore, the use of automated FC analysis often
simply shifts the point of operator input within the analysis
pipeline, rather than utilizing purely data-driven approaches.
Second, the implemented machine-learning (ML) techniques
typically frame the problem as a binary classification in which
the patients are considered either “healthy” or “sick.” In fact,
that was the framework of the FlowCAP competition, in which
members of the computational cytometry community tested
their solutions for automated AML classification [15]. How-
ever, as we argued before, such a setting is far from realistic.
AML comprises a heterogeneous group of clonal neoplasms
that differ substantially in cause, age of onset, clinical features,
and prognosis. The changes during the progression of the
disease, the presence of MRD, or the appearance of previously
unobserved leukemia-associated phenotypes (LAPs) make FC
classification of AML a more complex machine-learning prob-
lem.

Therefore, because of the tremendous diversity in the
disease-associated phenotypes in AML, the computer-assisted
approaches that perform well with one data set may not
demonstrate such success in a clinical setting owing to the
bias of the classifiers. We have already shown that a novel
solution using a one-class classifier paired with non-parametric
Bayesian models incorporating random effects can surpass
traditional ML techniques when exposed to more challenging
scenarios [20].

Herein, we report a solution to a complementary prob-
lem in automated classification - limited access to “normal”
phenotypes. The traditional supervised methodology for 2-
class classification operates under an assumption that both
classes are well defined and that there is a certain level of

homogeneity of the features within a class. As mentioned
before, the diversity of AML renders this assumption invalid in
relation to the characteristics of the diseased class. We argued
before that this problem can be addressed using a framework
in which the diseased state is defined as a departure from
normality [20].

Computational biologists often face an opposite dilemma.
Although over a long period of time the researchers may
successfully acquire a sufficiently diverse data set of abnormal
cases representing well the complex landscape of a studied
disease, access to “normal” samples may remain limited owing
to prohibitive costs of sample collection, inconvenience, or
ethical boundaries of research on healthy subjects. Often this
problem is solved in an ad hoc manner by reusing samples
representing unrelated diseases as approximately “normal.”
In certain areas the problem of a small number of training
samples can also be addressed in silico by using tools such as
data augmentation.

In this report we also employ these strategies of using
related biological data sets to define a “non-diseased” phe-
notype, in order to predict the direction of change and patient
prognosis. The first classifier uses peripheral blood samples,
which are labeled using a panel identical to that used for AML
bone-marrow samples. The second classifier uses bone mar-
row data from patients diagnosed with lymphoma. Although
the multidimensional point cloud defined by these samples
does not represent a “normal” phenotype of bone marrow, it
provides a direct contrast to an abnormal AML phenotype.
Therefore, these cohorts of samples can be designated as “non-
diseased” or “non-AML” for the purpose of classification.

The pooled diverse-diseased and non-diseased data are
processed jointly using our previously demonstrated Bayesian
modeling algorithm, ASPIRE [20]. The overall philosophy of
this technique fundamentally differs from that of the method-
ology used in both traditional manual and most automated
FC algorithms. First, ASPIRE does not employ any domain
knowledge-based assumptions regarding the presence or fre-
quency of particular leukemia-associated phenotypes (LAPs).
We are aware that the diversity of the disease and the inherent
noise in data covering a period of several years can make
any approaches based on a carefully drafted set of steps
in a decision tree-like arrangement impractical and highly
dependent on the available training data. Instead, ASPIRE
deduces the multidimensional arrangement of the data point
cloud forming clusters and meta-clusters in the feature space.
This is achieved by employing a non-parametric Bayesian
(NPB) model as a core method in ASPIRE. The main building
block of the algorithm is the highly flexible infinite mixture of
infinite Gaussian mixtures (I2GMM) [21]. Unlike traditional
mixture modeling, which requires information about the possi-
ble number of clusters (relevant biological populations, in this
case) in advance, ASPIRE predicts the most probable number
of relevant cell populations in a heterogeneous sample while
simultaneously performing model inference and assessing the
proportion of cells in each of these populations. Once the
distributions of cell populations are estimated on the training
data set by ASPIRE, individual cell data on both training and
testing cases are classified using the recovered distributions to



3

obtain phenotype vectors characterizing data for each patient
at each time point. Then, training phenotype vectors are used
for training a logistic regression classifier which is validated
on the test set by analyzing the change in probability values
corresponding to phenotype vectors of the same patient ob-
tained at different time points. Data collection and methods
are presented in Section II. Results are discussed in Section
III.

II. MATERIALS AND METHODS

A. Data Collection

The study was approved by the Institutional Review Board
of the Roswell Park Cancer Institute (IRB# BDR0517). The
initial training set of healthy-donor blood samples (n=100)
and patient bone-marrow samples (n=100) obtained at time
of diagnosis were collected in sodium heparin and processed
by the flow cytometry laboratory within 24 hours. The second
set of model-validation samples were obtained from patients at
time of diagnosis, post-induction 1 (mean day 48.5; range 26-
84) and post-induction 2 (approximately 1 year post induction,
mean day 293.6; range 76-731). The post-induction 2 time
point is available only for the relapse cases.

Blood and bone marrow were stained, acquired, and pre-
pared for flow cytometric analysis as previously described
[22]. Briefly, bone-marrow samples were first passed through
a 35-micron sieve to exclude spicules; then both blood and
bone marrow were washed once with PBS containing heparin
(10 units/mL) and then twice with FCM buffer (0.5% BSA,
0.004% Na2EDTA and 0.1% sodium azide prepared in PBS,
pH 7.2). Cells were resuspended to their original volume in
FCM buffer and incubated with normal mouse IgG (10µg/test)
for 10 min to block FC receptors. Next, washed cells were
aliquoted into tubes and stained with saturating amounts of
the 4-color monoclonal antibody (mAb) cocktails described
in Table 1. The cells were incubated in the dark at ambient
temperature for 20 minutes. After this incubation, red blood
cells were lysed with BD FACSLyse (BD Bioscience, San
Jose, CA) washed once with FCM buffer, and then fixed in
0.5% methanol-free formaldehyde (Polysciences, Warrington,
PA). Samples were stored in the dark at 4 ◦C no longer than 24
hours until analysis. Cytofluorometric analysis was performed
using an unmodified FACSCalibur (BD BioSciences) flow
cytometer and conventional data analysis was performed using
WinList (Verity Software House, Topsham, ME).

B. FC Measurement Data Structure

Each patient sample or panel obtained at a given time point
was subdivided into 7 tubes and analyzed with different mAb
combinations using 4 mAbs per tube. Marker combinations
for each tube are shown in Table I. In addition to four
fluorescence-intensity values, the measurement also provides
small-angle and large-angle light-scatter characteristics. There-
fore, FC data obtained for each tube contained information for
20,000 - 50,000 cells, each represented by six parameters. Data
obtained from each subject at a given time point contained
seven data matrices of similar sizes, one for each tube, to be
analyzed for phenotypic characterization.

C. Phenotypic Characterization for Training Cases

For identifying functionally distinct cell types across all
FC data matrices in the training cohort (diseased and non-
diseased samples) ASPIRE algorithm is used [20]. ASPIRE
assumes each FC data matrix is generated by a global latent
mixture model with potentially infinitely many components.
The data in each FC matrix are generated from a specific
subset of components in this mixture model. A component
can also be understood as a global cluster each representing
potentially functionally distinct cell types; local clusters are
their realizations in individual FC measurements. In other
words, a metacluster represents a generalization of a specific
cellular phenotype, whereas a cluster is a group of cells in a
particular sample belonging to this immunophenotype.

The Dirichlet-process mixture model (DPM) is the building
block of our data model. A DPM is a mixture model with a
Dirichlet-process (DP) prior defined over mixture components
[23]. DPM belongs to a group of non-parametric Bayesian
models. It is non-parametric because the number of clusters
can arbitrarily grow to better accommodate data as needed.
One of the two parameters of a DP prior, also known as
the concentration parameter, controls the prior probability of
producing a new component and thus indirectly controls the
total number of components produced. The second parameter
– the base distribution – defines the Bayesian aspect of DPM.
In the case of Gaussian components one can utilize the base
distribution to encode the existing knowledge of the domain
by defining prior distributions over the mean vectors and
covariance matrices of components.

In ASPIRE each FC data matrix is modeled by the in-
finite mixture of Dirichlet-process Gaussian-mixture models
[21]. Model learning, which is performed in a single unified
process, involves three main tasks: recovering local DPMs,
finding global cluster associations of DPMs, and identifying
the total number of clusters and their proportions in each
FC measurement. The infinite mixture of DPMs, also known
as the infinite mixture of infinitely many Gaussian mixture
models (I2GMM), which is considered as a two-layer Gaussian
mixture with an arbitrarily large number of components in
each layer, offers extreme flexibility in modeling data sets
with skewed and multi-mode cluster distributions. The lower
layer estimates the density of the overall data set by clustering
individual data points to components, while the upper layer as-
sociates components with clusters to allow for cluster recovery.
As local distributions of a cell type in each FC measurement
are noisy realizations of the true class distribution, i.e., a global
meta-cluster, we introduce a sharing mechanism to create
dependencies across DPMs associated with the same cell type.
This is achieved by centering the base distributions of DPMs
associated with the same cell type across FC measurements on
a unique global parameter, which itself is distributed according
to a higher-level DPM. This global DPM not only associates
local distributions of a global cluster with one another but
also models the number and proportions of clusters in each
FC data matrix. We use a collapsed Gibbs sampler to perform
inference [20].

This two-layer non-parametric model of Gaussian mixtures
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Marker combinations (mAb, source: clone)
Tube ID FITC PE PcP/PECy5 APC

1 CD3 BD:SK7 CD14 BD:M�P9 HLADR PcP BD:L243 CD45 BC:J33
2 CD11b BC:Bear1 CD13 BD:L138 CD33 PECy5 BD:D3HL60.251 CD34 Dako: BIRMA-K3
3 CD15 BC:80H5 CD56 BC:NKH-1 CD7 PECy5 BC:8H8.1 CD34 Dako: BIRMA-K3
4 CD16 TF:3G8 CD32 TF:IV.3 CD45 PcP BD:2D1 CD64 BD:10.1
5 CD38 BC:T16 CD10 BC:ALB1 CD19 PECy5 BC:J3.119 CD34 Dako: BIRMA-K3
6 CD41 TF:VIPL3 CD71 eBio:OKT9 CD45 PcP BD:2D1 CD34 Dako: BIRMA-K3
7 CD57 BC:NC1 CD56 BC:NKH-1 CD33 PECy5 BC:D3HL60.251 CD3 TF:S4.1

TABLE I
TUBE IDS AND CORRESPONDING MARKER AND LABEL COMBINATIONS. ABBREVIATIONS: BD, BD BIOSCIENCE (SAN JOSE, CA); BC, BECKMAN

COULTER (MIAMI, FL); TF, CALTAG THERMO/FISHER (GRAND ISLAND, NY); DAKO (CARPINTERIA, CA)

is ideally suited for identifying cell types in a FC data
cohort for the following reasons. As a non-parametric model
it addresses sample variability resulting in multi-mode and
skewed cluster distributions by employing mixture models
with arbitrarily large number of components. As a hierarchical
model it allows for information sharing within as well as
between samples, facilitating the discovery of rare populations.
As a Bayesian approach, through use of prior distributions over
cluster parameters, it makes possible the direct incorporation
of domain knowledge about certain cell types into the model.

The generative model that encompasses these intricacies is
described next.

xjki ∼ p (·|θjki)
θjki ∼ Gjk
Gjk ∼ DP (Fφk

, α)
φk ∼ G0

G0 ∼ DP (H, γ)

(1)

We denote each data point i of cluster k in FC data matrix
j by xjki ∈ <d, where i = {1, . . . , njk}, k = {1, . . . ,K},
and j = {1, . . . , J}, njk is the number of points from cluster
k in data matrix j, K is the total number of global clusters
identified, and J is the total number of data matrices. We
use φk and θjki to define parameters of global clusters and
their local realizations in each data matrix, respectively. The
parameters α and γ adjust the prior probability of creating a
local and global clusters, respectively.

Both G0 and Gjk are random probability measures dis-
tributed independently and identically according to a Dirichlet
process. They can be considered as a mixture distribution
with infinitely many components with their parameters drawn
from the base distribution of the Dirichlet process and their
weights from a stick-breaking distribution [24]. The stick-
breaking distribution considers a unit-length stick that is
broken according to a sample drawn from a Beta distribution.
Unlike continuous distributions, the probability of drawing the
sample twice from G0 and Gjk is not zero and is proportional
to the weight of the corresponding component. Thus, both
G0 and Gjk are considered discrete distributions and offer
clustering properties.

The base distribution H of the global Dirichlet process (DP)
prior is defined as follows.

p (µ,Σ) = N

(
µ|µ0,

Σ

κ0

)
×W−1 (Σ|Σ0,m) (2)

where µ0 is the expected center of the global clusters and κ0

is a scaling constant that controls their dispersion with respect
to this center. The parameter Σ0 is a positive definite matrix
that encodes our prior belief about the shape of the clusters.
The parameter m is a scalar that is negatively correlated with
the degrees of freedom. In other words, the larger the m, the
less Σ will deviate from the expected shape, and vice versa.

Individual DPMs associated with the same global cluster
share the same φk across data matrices. The notation Fφk

indicates a distribution F centered at φk and defines global
cluster–specific base distributions of individual DPMs. Al-
though Fφk

is same for all DPMs associated with the same
global cluster, local clusters in data matrices are generated i.i.d.
given φk of corresponding DPMs. Thus, each local realization
of a global cluster is modeled by a different DPM, allowing us
to account for measurement variations in a systematic manner.

For the sake of simplicity and to preserve conjugacy we
assume that the covariance matrices of all local clusters
associated with the global cluster are identical and limit the
susceptibility of local clusters to noise with their mean vectors.
More specifically, µjki ∼ Gjk, Σjki = Σk, and Fφk

is defined
as

Fφk={µk,Σk} = N

(
µk,

Σk
κ1

)
. (3)

Note that the covariance matrix of the base distribution Fφk
is

a function of Σk; hence conjugacy of the model is preserved.
Conjugacy of the model is important since it enables us to im-
plement a collapsed version of the Gibbs sampler. The scaling
constant κ1 adjusts the degree of dispersion of local means
from the corresponding global mean. Posterior inference for
the proposed model in (1) is performed by iteratively sampling
local-cluster indicator variables for individual data points and
global-cluster indicator variables for local clusters as described
in detail in [20].

FC data matrices obtained from all available subjects in
the training cohort (diseased and non-diseased samples) for a
given tube were pooled together and the ASPIRE algorithm
was run to identify local and global clusters (metaclusters) in
the multi-dimensional point cloud defined by these data. Once
global clusters and their local realizations were identified, the
subject data for a given tube were characterized by the propor-
tions of cells belonging to global clusters in the corresponding
FC measurement, thus producing a vector of proportion values,
i.e., a phenotype vector, for each tube. Since ASPIRE is a
stochastic algorithm, the results obtained may differ slightly
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between runs. To account for this expected variability we run
ASPIRE five times and report results averaged over these five
runs.

D. Phenotypic Characterization for Test Samples

For the data and noise models discussed in Section II-C
the posterior predictive distribution of a global cluster can be
obtained in the form a multivariate student-t distribution with
three parameters. In the following discussion a sample refers
to a single FC mesaurement, i.e., a data matrix with rows
representing cells and columns representing FC parameters, a
global cluster refers to a cell type, and a data point refers to
a cell.

p(xjki|D.k.) = stu− t(µ̂, Σ̂, v) (4)

The location vector (µ̂), the scale matrix (Σ̂), and the
degrees of freedom (v) are redefined for a global cluster as
follows. Location vector:

µ̂ =

∑
jkt:cjkt=k

njktκ1

(njkt+κ1) x̄jkt + κ0µ0∑
jkt:cjkt=k

njktκ1

(njkt+κ1) + κ0
(5)

Scale matrix:
Σ̂ =

Σ0 +Ak
κ̄ v
κ̄+1

(6)

Degrees of freedom:

v = m+
∑

jkt:cjkt=k

(njkt − 1)− d+ 2 (7)

where κ̄ is defined as in (8)

κ̄ =
(
∑
jkt:cjkt=k

njktκ1

(njkt+κ1) + κ0)κ1∑
jkt:cjkt=k

njktκ1

(njkt+κ1) + κ0 + κ1
(8)

D.k. denotes the subset of cells sharing global cluster k across
all samples, and x̄jkt and Ajkt are the sample mean and the
scatter matrix for the local cluster t of global cluster k in
sample j, respectively, njkt is the number of data points in
the local cluster t of global cluster k in sample j, and Ak is
the scatter matrix for the global cluster k. These statistics are
defined as in (9).

x̄jkt = n−1
jkt

∑
jki:tjki=t

xjki

Ajkt =
∑
jki:tjki=t

(xjki − x̄jkt) (xjki − x̄jkt)T

Ak =
∑
jkt:cjkt=k

Ajkt
(9)

After the distributions of global clusters are estimated
during training, FC data matrices describing the test cases
can be evaluated row-by-row using the posterior predictive
distributions corresponding to global clusters. This results
in a vector of posterior probability values with each value
indicating the probability of a cell’s belonging to one of the
recovered global clusters (distinct cell immunophenotypes).
The phenotypic characterization of a test case for a given tube
at a given time point is achieved by averaging these probability
vectors over all cells to get a phenotype vector for each FC
measurement.

E. Classifier Training and Testing

The phenotype vectors corresponding non-diseased and
AML cases in the training cohort were used to train a
binary logistic regression classifier. Subsequently the classifier
was applied to the test cases (diseased cases pre- and post-
induction) in the test cohorts, and the probability of each
test case’s representing a phenotype similar to non-diseased
was evaluated and recorded for all available time points.
Additionally, leave-one-out probabilities for two hundred cases
in the training cohort were also computed and recorded for use
in relative evaluation of test-case probabilities with respect to
those of training cases. The LIBLINEAR package was used
to train a L2-regularized logistic regression classifier [25].

III. RESULTS

ASPIRE was previously evaluated for a one-class classifica-
tion problem identifying AML cases as deviations from normal
ones on the FlowCap II data set and extensive analysis com-
paring ASPIRE with several benchmark clustering techniques
from the literature was reported with favorable results in [20].

In this study we target a more challenging clinical problem
and further confirm the utility of ASPIRE in the clinical
management of patients with AML by presenting results of
a proof-of-concept study in predicting the direction of change
in disease progression. Two separate cohorts of AML cases
were used. The first contained data from 26 patients measured
at two time points: pre- (t0) and post-induction (t1). The second
contained data from 10 patients who relapsed after treatment.
Three time points are accessible for this group: pre-induction,
post-induction t1, and post-induction t2. The consensus diagno-
sis reached by manual flow cytometry analysis, cytogenetics,
and histopatology evaluation was considered to be the ground
truth for the purpose of our system validation.

A. Use of peripheral blood samples as a contrasting non-AML
population

The ASPIRE-generated phenotype vectors corresponding to
100 non-AML and 100 AML cases were used to train a
logistic regression classifier. Leave-one-out probabilities for
these two hundred cases were also computed and represented
for visualization. For the test cohorts, the probability of a
patient’s moving toward a non-AML phenotype at a given time
point was evaluated by a logistic regression classifier using
all available FC data for that patient (results from the seven-
tube panel) processed by ASPIRE. A two-stage probabilistic
evaluation was executed. In the first stage, evaluation was
performed independently for each tube. In the second stage,
phenotype vectors from all tubes were concatenated to form
a higher-dimensional phenotype vector and evaluation was
performed using these newly formed vectors.

For all cases in the first sub-cohort, when all tubes were
considered, the increase in probability values from t0 (pre-
induction time point) to t1 (post-induction time point) suggests
that the proposed technique correctly identified the direction
of disease progression for all twenty-six patients (Figure 1).
When the same analysis was performed for individual tubes,
results indicate that tubes 1, 2, 4, and 5 would be sufficient to
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correctly identify favorable disease progression for all patients
tested (See Figures S1-S4 in the Supplement). Tubes 1 and 7
(Figure S5) yielded the largest change in the probability values
from t0 to t1 (mean=0.44). This is still lower than the mean
change of 0.55 obtained by using all tubes, which suggests
that using all markers jointly may offer additional insight that
would not be available when tubes are assessed independently.
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Fig. 1. Probabilities obtained by the peripheral blood-based logistic regression
classifier using phenotype vectors extracted by the ASPIRE algorithm from
all the assay tubes available for the first cohort. The semi-transparent red
points indicate non-diseased training samples, the semi-transparent green
points denote AML training samples. The measures of individual test patients
are shown as solid grey and green points. The arrows indicate the direction
of change (disease progression) in the space defined by the training data.
The results indicate that all the patients demonstrated positive change after
therapy induction. The results match the known ground truth, as this patient
sub-cohort responded well to therapy and subsequently recovered.

For the second sub-cohort (10 patients who suffered relapse)
with all tubes considered, the increase in probability values
from t0 to t1 indicates that the proposed technique again
correctly identified the favorable initial response for all ten
patients (Figure 2). This result matches the conclusion of
the manual analysis of FC data performed by the trained
flow cytometrist, as well as the results of cytogenetic and
histopathology evaluations. However, when the probability
values from t1 to t2 are considered, the decrease in probability
values for nine out of ten cases indicates occurrence of
relapse. This was a correct determination - confirmed by expert
analysis - for all but one case. The mean increase in probability
values from t0 to t1 is 0.53, whereas the mean decrease in
probability values from t1 to t2 is 0.30.

When the same analysis was performed for individual tubes,
it was noted that tube 1 alone again correctly identified the
direction of change in disease progression for all ten cases

from t0 to t1 as well from as t1 to t2 (Figure S6). For tube 1
the mean increase in probability values from t0 to t1 was 0.50,
whereas the mean decrease from t1 to t2 was 0.29. These values
are very similar to those obtained with all tubes combined, as
well as higher than all other tubes analyzed individually.

Investigating further the single case for which the change in
the direction of disease progression did not match the expert
analysis performed by a hemopathologist when data from all
tubes are used, we determined that the case indeed was a
difficult case from a diagnostic perspective: manual cytometry
data analysis and cytogenetics identified the case as a relapse,
whereas the histopathological analysis diagnosed this case as
“in remission.”

B. Use of stage I lymphoma bone-marrow samples as a
contrasting non-AML population

The ASPIRE-generated phenotype vectors corresponding to
49 stage I lymphoma cases and 100 AML cases were used to
train a logistic regression classifier. As before, leave-one-out
probabilities for these 149 cases were computed and repre-
sented for visualization. For the test cohorts, the probability of
a patient’s moving toward a non-diseased phenotype at a given
time point was evaluated by a logistic regression classifier
using all available FC data for that patient (results from the
seven-tube panel) processed by ASPIRE. A two-stage proba-
bilistic evaluation was executed. In the first stage, evaluation
was performed independently for each tube. In the second
stage, phenotype vectors from all tubes were concatenated to
form a higher-dimensional phenotype vector and evaluation
was performed using these newly formed vectors.

For all cases in the first sub-cohort, when all tubes were
considered, the increase in probability values from t0 (pre-
induction time point) to t1 (post-induction time point) suggests
that the proposed technique correctly identified the direction
of disease progression for all twenty-six patients (Figure 3).
When the same analysis was performed for individual tubes,
results indicate that tubes 2, 4, 5, 6, and 7 would be sufficient
to correctly identify favorable disease progression for all
patients tested (See the Suplemental Figures S7-S11). Tube
7 yielded the largest change in the probability values from
t0 to t1 (mean=0.70). This is significantly higher than the
mean change of 0.56 obtained by using all tubes as well as
corresponding mean changes for the remaining six tubes for
which the changes in the probability values from t0 to t1 are
between 0.30 and 0.53.

For the second sub-cohort (10 patients who suffered relapse)
with all tubes considered, the increase in probability values
from t0 to t1 indicates that the proposed technique correctly
identified the favorable initial response for all ten patients
(Figure 4). This result matches the conclusion of the manual
analysis of FC data performed by the trained flow cytometrist,
as well as the results of cytogenetic and histopathology
evaluations. When the probability values from t1 to t2 are
considered, the decrease in probability values for nine out
ten cases indicates occurrence of relapse. This was a correct
determination - confirmed by expert analysis - for all but one
case. The mean increase in probability values from t0 to t1 is
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Pre-induction
Post-induction, t1
Post-induction, t2

Fig. 2. Probabilities obtained by the peripheral blood-based logistic regression classifier using phenotype vectors extracted by the ASPIRE algorithm from all
the assay tubes for the second cohort. The measures of individual patients are shown as solid grey (pre-induction, t0), green (post induction, t1), and magenta
points (post induction, t2). The arrows indicating the direction of change in disease progression indicate that all but one patient demonstrated signs of relapse
after initial positive response to the therapy (data point circled with a blue dotted line).

0.53, whereas the mean decrease in probability values from t1
to t2 is 0.23.

When the same analysis was performed for individual tubes,
it was noted that tube 5 alone correctly identified the direction
of change in disease progression for all ten cases from t0 to
t1 as well from as t1 to t2 (Figure S12). For tube 1 the mean
increase in probability values from t0 to t1 was 0.36, whereas
the mean decrease from t1 to t2 was 0.21. The mean increase in
probability values from t0 to t1 is significantly lower than that
obtained with all tubes combined (0.36 vs. 0.53). However, the
mean decrease in probability values from t1 to t2 is comparable
to that obtained with all tubes combined (0.21 vs. 0.23).

It is also interesting to note that the largest mean increase
in probability values from t0 to t1 (0.61) as well as the largest
mean decrease in probability values from t1 to t2 (0.25) is
achieved for tube 7 (Figure S13). However, tube 7 predicts a
decrease in probability values from t0 to t1 for one of the ten
cases and an increase in probability values from t1 to t2 for
two of the cases.

Upon further investigation we found that the single case
for which ASPIRE failed to predict a decrease in probability
from t1 to t2 when stage I lymphoma samples are used as
normal cases is not the same case ASPIRE failed to predict
a decrease in probability from t1 to t2 when blood samples
were used as normal cases. However, for that specific case
we have identified that the measurement at time t2 has an

artifact as it contains between only 500 to 1000 events across
all seven tubes while all other measurements contain around
25,000 events.

IV. DISCUSSION

Even though a number of previous reports demonstrated
ability to automatically distinguish between normal and AML
bone-marrow samples using computer-aided cytometry, the
literature does not provide examples of autonomous algorithms
in which different points in disease progression are associated
with a meaningful probabilistic output that can be interpreted
as reporting the direction of change (improvement or relapse).
Our research targets this important area, using an innovative
and original machine-learning methodology custom-developed
for analysis of hematological FC results. The previously pub-
lished binary statistical models did not generate a lot of excite-
ment among clinical cytometrists, as the task of distinguishing
pre-induction AML from normal samples is relatively easy,
especially if abundant, well-characterized training samples are
available. Automated classification becomes significantly more
difficult when the system must account for disease diversity
as well as for the inevitable presence of technical noise due to
small differences in sample preparation, instrument operation,
and data collection practices. The bar is additionally raised if
access to the training samples is limited. All these obstacles
were present in the processed data: the diseased training cohort
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represented samples spanning several years, accounting for
both biological diversity and technical noise, and the non-
diseased set did not represented actual healthy bone-marrow
samples, but a proxy sample of contrasting phenotype. The
ASPIRE algorithm specifically developed to handle samples
suffering from random effects performed well, extracting key
biological features from the training data set and arriving at
informative generalizations about the cell populations present.

In the cytometry sense, our system does not mimic a
trained operator using preconceived and a priori-known in-
formation about informative cell populations and LAPs, but
rather attempts to summarize the structure of the data point
cloud by capturing the essential characteristics of the observed
immunophenotypes. To accomplish this, in the first step the al-
gorithm uses all the available training FC data (diseased bone-
marrow samples and constrasting healthy peripheral-blood or
stage I lymphoma samples) without any labels. This essential
pre-processing part allows ASPIRE to generate a summary
of relevant biology in the presence of inevitable experimental
noise without using any labels and group information. In the
second step we frame the problem as either anomaly detection
or an “enhanced” detection of abnormality decrease.

The key limitation of using the ASPIRE system and sim-
ilar Bayesian approaches is the non-deterministic output and
computationally costly processing. Since ASPIRE relies on
Markov-chain Monte-Carlo sampling techniques there could
be slight variations between runs in terms of the number
and size of global clusters discovered. To account for this
variability, we run the algorithm multiple times and average
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Fig. 3. Probabilities obtained by the lymphoma-based logistic regression
classifier using phenotype vectors extracted by the ASPIRE algorithm from
all the assay tubes available for the first cohort.

results over multiple runs. This process raises the computa-
tional cost but fortunately is required only during the training
phase, which is performed offline. The testing phase which is
performed with cases blinded to the algorithm uses the global
clusters discovered during training and involves assigning each
cell in a FC sample to one of these global clusters. For a typical
FC sample containing around 50,000 cells this deterministic
classification can be performed with a run-time speed on
the order of seconds and produces the same output in each
repetition.

From the clinical FC perspective the important limitation
of the demonstrated data-processing pathway is its incom-
patibility with established biology-driven data interpretation,
in which the classification of a biological sample can be
directly related to the judgment regarding proportion of cells in
particular gates. The creation of these informative gates is not
purely data-driven but guided by the previous experiences of
an analyst interpreting the fluorescence-signal distribution in
the space of selected biological parameters. Although ASPIRE
formulates generalizations of biological subpopulations and
represents them as metaclusters, the current version does
not suggest which populations are “important” and cannot
predict whether these statistically relevant populations are
indeed biologically significant. From the practical perspective
the need for direct visual interpretation of the automatically
generated cytometry data analysis may be overestimated, as
the goal of these processes is not to alleviate the burden of
manual analysis in the first place. However, if such a need
indeed arises one can imagine the implementation of an inverse
step in which the covariates identified as important by the
classifier are a subject to an inverse transform and represented
at the end of the process as cluster boundaries overlaid onto
traditional cytometry biaxial dot plots.

The ASPIRE algorithm is publicly available and can be
tested by other FC researchers involved in studies of AML,
as well as by scientists working on other hematological
neoplasms.

V. CONCLUSIONS

This study provides the first example of a functional
prototype of an automated non-parametric Bayesian clini-
cal decision-support system that can not only recognize the
difference between normal and abnormal samples, but most
importantly also recognize the direction of change in disease
progression on the basis of the FC bone-marrow data alone,
without the need to supplement the data with morphology
and/or genetic analysis. We believe that these results are an
important first step for objective evaluation of disease status
as well as for timely assessment of treatment strategies in the
clinical management of AML patients.
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