15-0063

Performance Ranking of Arterial Corridors

Using Travel Time and Travel Time Reliability Metrics

 1: Purdue University; 2: Indiana Department of Transportation

ABSTRACT

Performance measures are important for managing transportation systems and demonstrating accountability. Probe vehicle data has emerged as a means of gathering vast amounts of information about highway networks. This paper presents a scalable tendency of the travel time and its reliability. A pilot analysis is carried out for 28 arterials with a total of 341 signalized intersections across the state of Indiana. Starting from ndividual minute-by-minute speed records, the data are converted into travel times and aggregated into time series cohorts that correspond to typical traffic signal time-of-day periods, reflecting different time-of-day behavior characteristics of traffic control in arterials. The data is normalized with respect to the ideal travel time (based on the speed limits on each route) to account for individual route lengths and speeds. Data is compiled The data shows that a greater density of traffic signals on a route loosely corresponds to higher average travel times and less reliability. A composite index incorporating both the average values and reliability characteristics of travel time is developed, and used to rank the arterials according to their performance.

SURVEY OF ARTERIALS

Arterial Routes Selected for Study

DATA QUALITY

Freeway versus Arterial Data Coverage

PERFORMANCE MEASURE

Data must be normalized because routes are of different length. Travel Rate method expresses travel time as amount of time per mile Normalization To Ideal Travel Time expresses travel time as percentage of the ideal travel time
This analysis uses speed limit travel time as surrogate for ideal travel time. Thiltiplysis uses normalization to speed limit travel time in order to compare multiple roadways with different travel speed expectations.

RANKING METHODOLOGY

2. Computer measures of central
tendency and variability for each
time series

$x_{T}=\frac{1}{N_{T}} \sum_{j \in T} t_{j}$
$s_{T}=\frac{1}{N_{T}} \sum_{j \in T}\left(t_{j}-x_{T}\right)^{2}$

Normalization of Central Tendency
Normalization of Variability (Reliability)

Before

After

15-0063

Performance Ranking of Arterial Corridors

Using Travel Time and Travel Time Reliability Metrics

Christopher M. Day¹, Stephen M. Remias ${ }^{1}$, Howell Li', Michelle M. Mekker1, Margaret L. McNamara1, Edward D. Cox², and Darcy M. Bullock ${ }^{1}$

ARTERIAL RANKING BY TIME OF DAY

Midday (Top 10)

\[

\]

AM Peak (0600-0900)

Midday

PM Peak (Top 10)

PM Peak (1500-1900)

OVERALL RANKING

Composite Index

Composite index developed based on Euclidean distance from ideal conditions

Overall corridor ranking based on:

- The worst performance of the two directions

Averaged across three time-of-day periods

Index $_{\mathrm{T}}=\max \left\{\right.$ Index $_{\text {D }}$ \qquad , Index $_{[\text {Direction2] }}$
Index $_{\text {Corridor }^{\prime}}=\frac{1}{N} \sum_{T}$ Index $_{T}$

