
Purdue University
Purdue e-Pubs
Lyles School of Civil Engineering Faculty
Publications Lyles School of Civil Engineering

2011

Analysis of Peer Intersection Data for Arterial
Traffic Signal Coordination Decisions
Christopher M. Day
Purdue University, cmday@purdue.edu

Thomas M. Brennan Jr
Purdue University

Hiromal Premachandra
Purdue University

James R. Sturdevant
INDOT, jsturdevant@indot.in.gov

Darcy M. Bullock
Purdue University, darcy@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/civeng

Part of the Civil Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Day, Christopher M.; Brennan, Thomas M. Jr; Premachandra, Hiromal; Sturdevant, James R.; and Bullock, Darcy M., "Analysis of Peer
Intersection Data for Arterial Traffic Signal Coordination Decisions" (2011). Lyles School of Civil Engineering Faculty Publications. Paper
9.
http://docs.lib.purdue.edu/civeng/9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77947042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fciveng%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/civeng?utm_source=docs.lib.purdue.edu%2Fciveng%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/civeng?utm_source=docs.lib.purdue.edu%2Fciveng%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/civl?utm_source=docs.lib.purdue.edu%2Fciveng%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/civeng?utm_source=docs.lib.purdue.edu%2Fciveng%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=docs.lib.purdue.edu%2Fciveng%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages


  Paper No. 10-0037 

9/12/2011 Page 1 of 31 10:12:43 AM 

Analysis of Peer Intersection Data for 

Arterial Traffic Signal Coordination 

Decisions 
 

by 

 

Christopher M. Day 

Purdue University 

 

Thomas M. Brennan, Jr. 

Purdue University 

 

Hiromal Premachandra 

Purdue University 

 

James R. Sturdevant 

Indiana Department of Transportation 

  

Darcy M. Bullock 

Purdue University 

 

 

September 12, 2011 

 

TRB Paper No. 11-0037 

 

Word Count: 4142 words + 12 * 250 words/table = 4238 +3000 = 7142 words 

 

 

 

 

 



  Paper No. 10-0037 

9/12/2011 Page 2 of 31 10:12:43 AM 

ABSTRACT 

Decisions on whether to coordinate adjacent intersections are currently made by rules of thumb, 

coupling indices based on ratios of volume to distance, and modeled traffic flows. As high 

resolution event data from signalized intersections becomes more readily available, it becomes 

possible to analyze actual link vehicle flows to better characterize whether (and when) signal 

coordination is desirable. This paper proposes and demonstrates a methodology to assess 

opportunities to improve arterial progression if a non-coordinated system is coordinated, using 

peer data obtained from adjacent intersections. The beginning of green from the upstream 

intersection is combined with vehicle arrival times from a downstream intersection to 

characterize whether vehicles are likely to arrive in consistent platoons at the downstream signal. 

The peer data based methodology is used to investigate the benefits of extending a coordination 

plan to system running without coordination during a late night time period. A case study of a 

fully-actuated late evening timing plan on an arterial identified opportunities for potential 

benefits from coordination; the implementation of a timing plan for an adjacent time period 

reduced travel times by approximately 1 minute in both directions on the arterial. 
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INTRODUCTION 

Whether two adjacent signals should be coordinated (and at what times of day the plans should 

operate) depends on the amount of benefit that can be obtained. Most traffic engineers have an 

opinion based on experience about when to coordinate signals; rules of thumb that are sometimes 

applied include there being no benefit to coordinating links longer than one mile, or perhaps after 

9 PM. Several numerical heuristic techniques have been proposed over the years for determining 

when to develop a coordination plan. Some of these have been relatively simple, such as using 

the ratios of the link volume (V) to the distance (D) to determine a “coupling index” (CI) (1): 

 

D

V
CI  , Equation 1 

 

A variant of this idea is the so-called “gravity” model, which considers the weight of the distance 

squared (2): 

 

2D

V
CI  . Equation 2 

 

Besides numerical indices of coordination opportunity, a more sophisticated approach is to 

model platoon formation and dispersion on links through a network.  Empirical observations of 

platoon dispersion were first reported by Pacey (3), and expanded by others (4,5,6,7). Hillier and 

Rothery (8) later combined the concept of a cyclic platoon profile with a delay model.  

Robertson (9,10) integrated the delay minimization concept with a formalized platoon dispersion 

model, forming the basis of TRANSYT.  Numerous researchers have subsequently investigated 

platoon dispersion (11,12,13,14,15,16,17,18,19,21,21,22,23,24), investing a considerable amount 

of effort in calibrating or refining the Robertson model (15,16,17,20,22). In general, as traffic 

flow becomes more dispersed and random, coordination becomes less beneficial (25). Beyond 

determining when and where to coordinate, a closely related problem is determining how to 

partition signal systems into subsystems (1,25,26,27). 
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Conventionally, arterial coordination plans are developed for the times of day when volumes are 

known to be high. At other times of day a common strategy is to drop coordination and run 

signals in fully-actuated mode with recall to the mainline. It is not often known whether this an 

effective strategy. Analyzing arterial performance under non-coordinated operations is 

particularly challenging because cyclic flow profile-based techniques cannot be used when the 

signals do not operate with a regular cycle length.  

 

This paper proposes a framework for evaluating operations on links between pairs of fully-

actuated signalized intersection. This concept is based upon relating vehicle arrivals at the 

downstream intersection to the beginning of green at the upstream intersection, incorporating 

data from the two “peer” intersections. The results are dramatically different from measuring 

vehicle arrivals relative to downstream signal phase events. We demonstrate that the 

methodology can identify when benefits are likely to be obtained from signal coordination. 

 

METHODOLOGY 

Analyzing Link Flows 

Figure 1 shows the hypothetical trajectory of a vehicle traveling on a link between two non-

coordinated intersections, with an advance detector situated ahead of the downstream signal that 

measures arrivals for the purpose of operating the downstream signal.  In most currently 

deployed systems, such vehicle detectors only provide information to the downstream signal.  In 

Figure 1, the following quantities are defined: 

 

 dD, Distance from the detector from the upstream intersection; 

 dU, Distance from the detector to the downstream intersection; 

 DETt , time of the detection; 

 
U

BOGt , time of the upstream beginning of green; 

 
D

EOGt , time of the downstream end of green; 

 
D

AT , vehicle arrival time relative to downstream intersection; 
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 
U

AT , vehicle arrival time relative to upstream intersection; and 

 S, the assumed speed on the link. 

 

Under fully-actuated, non-coordinated operation, the signal phases at each intersection are 

determined by phase actuation, minimum and maximum timing intervals, and the volume-

density controller settings (e.g., vehicle extension).  Without implementing a coordination plan, 

or otherwise fundamentally altering the fully-actuated signal logic, there is no inherent provision 

for influencing the local signal states to provide a progressive pattern. Because the permissive 

periods for the minor phases are active essentially all of the time, coordination of green phases 

for arterial movements happens only by chance.  Links with distances and volumes that do not 

return satisfactory results to formulas such as Equation 1 and Equation 2 are assumed to have no 

need for coordination. In particular, under low-volume conditions (e.g., late-night plans) it is 

often assumed that minor street phases will be served infrequently enough that the arterial 

through movements will be green most of the time, provided the signals rest in green on those 

phases.  However, these assumptions are rarely evaluated or confirmed with actual data. 

 

It is difficult to analyze incoming arrivals based on downstream signal events, but this is 

typically the only data available to a local controller.  Under coordinated operations, it is possible 

to construct an arrival flow profile based on the time in cycle when vehicles arrive (8). The time 

after the downstream end of green (Figure 1) occurs periodically under coordination, and 

platoons generally arrive at the same time in cycle, with variations due to minor phase actuation 

(e.g. early return). The arrival time of a vehicle with respect to the downstream signal (
D

AT ) is 

given by 

 

D

EOGDET

D

A ttT  . Equation 3 

 

The downstream end of green is selected as the reference point because it is a periodically 

recurring event in actuated-coordinated operation. It is used, for example, as the reference point 

for constructing arrival profiles in ACS-Lite (28,29). 
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If the upstream signal is not coordinated, flow profiles constructed relative to the downstream 

green will appear random. Figure 2 shows a distribution of vehicle arrival times obtained by 

applying Equation 3 to raw data from a fully-actuated intersection.  The average “cycle length” 

(time between successive ends of green) was 98 seconds.  The arrival pattern is random, with 

minor perturbations around 98 seconds that reflect fluctuations in the cycle length. While it is 

highly desirable to use advance detector data in conjunction with the downstream detector phase 

state to calculate a percentage on green (POG) or arrival type (AT) to evaluate the quality of 

progression (30, 31), this perspective is inadequate for determining whether arrivals occurring 

during non-coordinated operations would benefit from coordination.  While more sophisticated 

systems could incorporate data from multiple intersections, this type of data is unavailable at the 

intersection level within currently available commercial systems. 

 

Figure 1 illustrates a method for relating vehicle arrivals at a downstream detector to the 

upstream signal state.  The travel time between the upstream intersection and the detector is 

calculated from an assumed travel speed S, which projects the upstream phase events to the 

detector position. The downstream arrival time of each vehicle at the advance detectors relative 

to the upstream signal (
U

AT ) is given by 

 











S

d
ttT UU

BOGDET

U

A . Equation 4 

 

Note that by measuring downstream arrivals instead of upstream departures, the need for 

modeling platoon dispersion along the link is avoided.  The location of the detector in the 

example data is 405 ft upstream of the stop bar, as discussed in more detail later. 

 

Figure 3 shows a distribution of vehicle arrival times calculated from the upstream beginning of 

green (Equation 4). This plot represents the same data shown in Figure 2 (Equation 3), excluding 

the travel time from the intersection to the detector. It is obvious from this graph that most 

vehicles arrive at the detector approximately 15 seconds after the beginning of green at the 

upstream intersection. The peak in the distribution results from frequent cycling of the upstream 

signal, leading to the downstream detection of the released vehicles at around the same time 
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relative to the beginning of upstream green.  If the upstream signal rested in green most of the 

time, the tail of the distribution would extend well beyond the range of the plot because the time 

after upstream green will be an increasingly large number, and the peak would be diminished. 

The prominence of the peak (72% of vehicles arrived between 0 and 25 seconds) suggests that a 

substantial proportion of arriving vehicles could potentially be captured by a coordinated green 

band.  

 

The outcome of  Figure 3 is unsurprising, because vehicles travel on the link at approximately 

the same speed, and consequently arrive at the detector at approximately the same time after they 

depart the upstream intersection.  To demonstrate how the peak attenuates as minor phase 

activity decreases at the upstream signal, we repeat the procedure for several separate analysis 

periods at the example location during the overnight period. The results are illustrated in Figure 

4, with vehicle arrival distributions representing the two-hour intervals 2200-2400 (the time 

period of the example in Figures 2 and 3), 2400-0200, 0200-0400, and 0400-0600 respectively 

shown by Figure 4(a), Figure 4(b), Figure 4(c), and Figure 4(d).  In Figure 3 and Figure 4(a), we 

observe 72% of vehicles arriving in the peak from 2200-2400. From 2400-0200, this decreases to 

53% [Figure 4(b)], and from 0200-0400 it is reduced even further, to 38%.  The 0200-0400 is an 

example of a time period where there is not enough evidence of platoon formation to recommend 

coordination. The increasing granularity of the distributions corresponds to decreasing vehicle 

volume. Finally, in the early morning hours 0400-0600, activity starts to increase again and the 

proportion of vehicles in the peak increases to 62%. 

 

Deciding Whether to Coordinate Adjacent Intersections 

The methodology described in the previous section offers a potential framework for inferring 

whether arterial stops could be reduced by coordinating signals during a particular time period. 

Further work is needed to solidify these concepts into a practitioner-ready methodology.  Two 

specific topics are identified for refinement: 

 

 A performance measure is needed for assessing if coordination is warranted. The 

presence of prominent peaks in vehicle arrival distributions is expected to correspond to a 

strong potential benefit from coordination.  The percentage of vehicles occurring within a 



  Paper No. 10-0037 

9/12/2011 Page 8 of 31 10:12:43 AM 

certain time range of the distribution (e.g., 73% in Figure 3) is a candidate metric for this 

purpose.  Because successful realization of the benefit is contingent upon selection of 

appropriate control parameters, this metric would likely represent a “best case” scenario. 

 The tradeoff in implementing a coordination plan is the increase in delay experienced by 

non-coordinated phases.  Coordination patterns enforce a schedule for coordinated 

greens, which limits the available time for minor phase permissive periods and tend to 

increase cycle length.  Vehicles arriving on a minor phase consequently have to wait 

longer before being served. 

 

Subsequent sections of this paper present a case study where the methodology was applied to an 

8-intersection arterial.  Operations from fully-actuated and coordinated modes are compared, and 

the above mentioned issues are explored further. 

 

Data Schemes in Currently Deployed Systems 

Closed-loop signal systems communicate with other cabinet devices to operate the signal, 

receive dial-up connections to synchronize clocks and occasionally receive new timing plans, 

and talk to a master controller to ensure that they are operating the appropriate cycle length and 

offsets in coordination. However, with the exception of a few isolated research efforts, signal 

controllers do not presently communicate with each other to share information. The existing 

model is a client-server system in which the controller receives or sends information in a well 

defined vertical hierarchy. Alternative paths for information that have not been utilized in closed-

loop signal systems are horizontal channels of communication between peer devices. These 

concepts are employed in adaptive systems (32,33,34), which vary in complexity from the use of 

detectors information from upstream intersections to model downstream arrivals (32) to 

monitoring of platoons and conflicts between platoons in a network (34). The methodology 

described in this paper demonstrates a potential application for information shared between 

adjacent controllers in closed-loop systems. 

 

The subsequent sections of this paper report the application of this methodology to examine 

fully-actuated operations during the 2200-2400 time period on an eight-intersection arterial, use 

that data to make a decision regarding extending the coordination time, and compare the quality 
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of arterial progression before and after the implementation of a coordinated plan during that time 

period. 

 

INSTRUMENTED ARTERIAL 

Figure 5 shows a map of SR 37 in Noblesville, Indiana. SR 37 is a 5.2-mi (8.3 km) corridor 

consisting of eight intersections. The posted speed limit on the corridor is 55 mph (88 km/h). 

Each intersection runs a common cycle length every day from 0600-2200, then operate fully-

actuated from 2200-0600. Signal controllers capable of logging high resolution event data were 

deployed at each intersection to collect event phase and detector event data (35). Probe vehicle 

travel time measurements were collected with Bluetooth (BT) device MAC address matching 

(36, 37). Sensor cases were stationed at the entry points to the arterial, and at a midpoint 

location. This configuration was used to measure travel time for the entire arterial (Case A to 

Case C) and for two subsystems marked in Figure 5 as System 1 (Case A to Case B) and System 

2 (Case B to Case C).  Data was collected during fully-actuated operations on Wednesday, June 

30, 2010, 2200-2400, and during coordinated operations on Wednesday, July 14, 2010, 2200-

2400. To implement coordination, the existing coordination plan operating from 1900-2200 was 

extended to run an additional two hours on Wednesday, July 14, 2010 from 2200-2400. 

 

For reference, Figure 6 shows the typical layout of an intersection on the test arterial. Each minor 

phase lane group is actuated by use of stop bar loop detection zones.  The arterial through 

movements, coordinated throughout most of the day, are operated using advance detectors 

located 405 ft upstream from the stop bar.  Dedicated left and right turn lanes exist on the arterial 

at each intersection; at all intersections, the turning lanes extend back further than 405 ft, 

meaning that most traffic passing over the advance detectors consists of through vehicles. 

 

Figure 7 shows the average effective cycle lengths that operated with the controllers in fully-

actuated mode on June 30, 2010. The error bars are based on the standard deviation. This paper 

defines the effective cycle length as the time between successive ends of green for the 

northbound through phase. Most effective cycle lengths ranged between 50–70 seconds. These 

rather low average values suggest that from 2200-2400, the arterial through movements did not 
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rest in green for long periods of time as expected based on the assumption of low minor phase 

activity. At Int. 5, an effective cycle length of 98 seconds was maintained throughout the 2200-

2400 interval. This was caused by a minor phase detector in recall. Although unintentional, this 

phenomenon helped facilitate the comparisons in the previous section between upstream and 

downstream phase events as alternative perspectives. It seems more likely that the quality of 

progression on the arterial was more substantially affected by the lack of coordination between 

adjacent signals on the seven arterial links than by a side street phase being in recall at Int. 5. 

 

APPLICATION OF THE METHODOLOGY 

Figure 8 shows plots of vehicle profiles related to the downstream end of green (Equation 3) for 

the fourteen coordinated links on the test arterial. The profiles are labeled with the intersection 

number and direction of the arrival approach. The average cycle length at the downstream 

intersection is indicated by a vertical line on each graph. The shape of the vehicle arrival 

distributions is influenced by the variations in effective cycle length at the downstream 

intersection. There is little evidence of platoon formation in these arrival profiles. 

 

Using the same arrival data, but using the upstream beginning of green as the reference point 

(Equation 4), a set of arrival flow profiles using the proposed analysis methodology are shown in 

Figure 9. Next to each distribution is the percentage of vehicles arriving within the first 25 

seconds of the profile. This percentage is greater than 50% for each link. The flow profiles all 

exhibit prominent and clear peaks, indicating considerable upstream phase cycling (as opposed 

to extended periods of resting in green). Another interesting artifact is the existence of minor 

peaks at 4/NB and 6/SB, which may be attributed to vehicles making turns from side street 

phases at Int. 5. The crossing street, 146
th

 St. is a busy east-west road and the intersection 

features protected double left turn lanes for both eastbound and westbound traffic (i.e., there are 

no permitted left turns). Entries from the side streets do not seem to create arterial platoons on 

other links, perhaps because of lower volumes or more randomly dispersed inflows of traffic. 

 

Figure 9 qualitatively demonstrates that a potential benefit from coordination was available 

during the 2200-2400 time period. The percentage of vehicles belonging to the peak, as 
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estimated by the percentages of vehicles arriving in the first 25 seconds as indicated in Figure 9, 

is an optimistic estimate for the percentage of vehicles that could be captured by coordinated 

green bands. In reality, the choice of cycle length and offsets largely determines the performance 

of the coordination plan, and it may not be possible to provide two-way coordination throughout 

the entire system. However, if platoons are consistently formed on the links and are observed 

arriving at the downstream intersections, it seems likely that a signal coordination will provide 

less delay for arterial movements than a series of independently cycling fully-actuated 

controllers. 

 

 

RESULTS 

Impact on Progression Quality (Percent Arrivals on Green) 

Coordination was implemented for the 2200-2400 time period by simply extending the latest 

coordination plan of the day (1900-2200) two hours later. This was an expedient way of creating 

a late evening coordinated scenario that could be compared with fully-actuated operations to 

verify whether any benefits are obtained from coordination. Likely, better results would be 

obtained by designing a timing plan specifically for traffic in the 2200-2400 time period, perhaps 

with a shorter cycle length. 

 

Figure 10 shows the percentage of vehicles arriving on green, the “percent on green” (POG), by 

approach, under fully-actuated and coordinated operations. With the exception of two 

approaches, the percent on green increased substantially. This could be attributed in part to 

increased green times for the northbound and southbound phases related to the fact that the 114 

second cycle length is longer than any of the average effective cycle lengths under fully-actuated 

operations. For example, the two entry points to the arterial (Northbound at Int. 8, Southbound at 

Int. 1) both experienced considerable increases in POG. The decrease in POG for the northbound 

at Int. 2 is attributed to a poor offset at that intersection, a possibility that was mentioned earlier. 
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Impact on Arterial Travel Times 

While POG gives a sense of the independent performance of each signal, a better independent 

verification of arterial progression can be obtained by looking at the travel time along the 

arterial. Figure 11 shows six cumulative frequency diagrams (CFDs) of travel time under fully-

actuated and coordinated operation on the following sections of SR 37: 

 

 Figure 11(a) and Figure 11(b) respectively show CFDs of southbound and northbound 

travel times along the entire length of the arterial (Figure 5, between Case A and Case C). 

 Figure 11(c) and Figure 11(d) respectively show CFDs of southbound and northbound 

travel times for System 1 (Figure 5, between Case A and Case B). 

 Figure 11(c) and Figure 11(d) respectively show CFDs of southbound and northbound 

travel times for System 2 (Figure 5, between Case B and Case C). 

 

The center horizontal gridline in these charts intersects the median values of the two CFDs. For 

the entire arterial, and for each subsystem, coordination was found to lower the amount of travel 

time through the system. A reduction of approximately 1.1 minutes in the southbound travel time 

[Figure 11(a)] and 1.0 minutes in northbound travel time [Figure 11(b)] were measured from 

travelers moving along the entire arterial. In System 1, both northbound and southbound travel 

times were reduced by about 0.3 minutes [Figure 11(c), Figure 11(d)], while in System 2, the 

reductions were 0.8 and 0.9 minutes for northbound [Figure 11(e)] and southbound [Figure 

11(f)] travel times respectively. 

 

Impact on Minor (Non-Coordinated) Phase Delay 

Different agencies have different performance objectives for intersection operations.  The two 

most common objectives are minimizing overall intersection delay, or minimizing the number of 

stops along an arterial.  In general, short cycles are most effective at minimizing system delay, 

and longer cycles make it easier to create large green bands for minimizing stops.  This paper has 

focused on identifying opportunities to minimize stops by imposing a coordinated plan, but it is 

important to remember that changes in cycle length can significantly influence delay.  There are 
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necessary tradeoffs to be made between delay for non-coordinated movements, and the 

performance of progressive arterial movements. 

 

For example, let us consider Int. 6, which has an average cycle length of 57 s under fully-

actuated control (Figure 7), and upon which a 114 s cycle is imposed by the coordination plan.  

Doubling the cycle length is certainly expected to increase delay for non-coordinated 

movements.  If one applies the Highway Capacity Manual (HCM) (38) signalized intersection 

methodology and analyzes the two-hour period (2200-2400) using observed volumes and green 

times and approximated minor movement arrival patterns, Figure 12 illustrates how the delay 

distribution by movement shifts with this new cycle.  Figure 12a shows the average delay, while 

Figure 12b shows the total delay by movement.  In this example, activating the coordination plan 

increased the estimated overall intersection delay by approximately 30%, while the proportion of 

vehicles arriving on green at the coordinated movements increased from 52% to 87% (Figure 10) 

and arterial travel times improved as discussed in the previous section. 

 

Potential ways to mitigate side street delay would be to develop a plan using a shorter cycle 

length, if feasible, or consider using controller features such as alternative permissive periods or 

phase reservice (39). The use of fully actuated-coordinated phases, which allow the coordinated 

phases to terminate early after the flow of through vehicles drops off, could also help mitigate 

the increase in minor phase delay due to coordination (40). 
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CONCLUSIONS 

A method was proposed for analyzing the quality of progression between adjacent traffic signals 

based on information shared between devices at the same status in the control hierarchy, 

otherwise known as peer data. Peer data is envisioned as a basis for link-based performance 

measurement of signal systems independent of local intersection cycle/offset/split paradigms. An 

example application that used peer data to analyze non-coordinated adjacent signal operations 

was presented. By examining the arrivals of vehicles at a downstream detector relative to 

upstream phase events, it was possible to determine whether vehicles form platoons and hence 

whether a benefit from coordination is likely. This methodology better integrates arterial 

progression concepts normally associated with coordinated operations into the analysis of fully-

actuated operations. 

 

A case study was presented consisting of fully-actuated arterial operations in the late evening, a 

time period where operations had not previously been substantiated by field study. In the case 

study, platoons were clearly identified using peer data during a time period when coordination 

was not in use and was presumed to be unnecessary. The implementation of an existing 

coordination plan in the late evening time period was found to improve arterial travel times by 

one minute over a 5.2-mi segment, a modest improvement that would possibly be improved 

further by optimizing the timing plan for late evening traffic volumes.  For the case study, it is 

recommended that coordination be implemented for the 2200 to 2400 time period. Future 

research should focus on developing a decision framework to guide agencies in deciding what 

time periods to coordinate that considers both stops and delays. 
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Figure 1: Vehicle movement on a link between two non-coordinated intersections. 
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Figure 2: Vehicle detection times measured relative to signal events at a downstream 

intersection (
D

AT ) on a non-coordinated link (based on same raw data as Figure 3). 
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Figure 3: Vehicle detection times measured relative to signal events at an upstream 

intersection (
U

AT ) on a non-coordinated link (based on same data as Figure 2). 
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(a) 2200-2400. 

 

 
(b) 2400-0200. 

 

 
(c) 0200-0400. 

 

 
(d) 0400-0600. 

 

 

Figure 4: Vehicle flow profile referenced to upstream green, . 

  

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120

P
ro

p
o

rt
io

n
 o

f 
D

e
te

c
te

d
 V

e
h

ic
le

s

Time after Beginning of Upstream Green

73% of vehicles arrive 
downstream before 25 s

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120

P
ro

p
o

rt
io

n
 o

f 
D

e
te

c
te

d
 V

e
h

ic
le

s

Time after Beginning of Upstream Green

53% of vehicles arrive 
downstream before 25 s

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120

P
ro

p
o

rt
io

n
 o

f 
D

e
te

c
te

d
 V

e
h

ic
le

s

Time after Beginning of Upstream Green

38% of vehicles arrive 
downstream before 25 s

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120

P
ro

p
o

rt
io

n
 o

f 
D

e
te

c
te

d
 V

e
h

ic
le

s

Time after Beginning of Upstream Green

62% of vehicles arrive 
downstream before 25 s



  Paper No. 10-0037 

9/12/2011 Page 24 of 31 10:12:43 AM 

 

 
 

Figure 5: Map of the SR 37 Corridor. 
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Figure 6: Detector configuration of a typical intersection on SR 37. 
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Figure 7: Effective cycle lengths under fully-actuated operation, June 30, 2010, 2200-2400. 
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Figure 8: Arrival profiles based on downstream end of green for fully-actuated operation, June 

30, 2010, 2200-2400. Effective cycle lengths are shown. 
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Figure 9: Arrival profiles based on upstream beginning of green for fully-actuated operation, 

June 30, 2010, 2200-2400. 
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(a) Northbound. 

 

 
(b) Southbound. 

 

Figure 10: Percentage on green by intersection. 
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(a) Southbound, Case A to Case C. 

 
(b) Northbound, Case C to Case A. 

 

 
(c) Southbound, Case A to Case B. 

 
(d) Northbound, Case B to Case A. 

 

 
(e) Southbound, Case B to Case C. 

 
(f) Northbound, Case C to Case B. 

 

Figure 11: Cumulative frequency diagrams of probe vehicle travel time (minutes). 
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(a) Average Delay 

 

 
(b) Total Delay 

 

Figure 12: Estimated HCM delay by movement at Int. 6. 
 

2
7

.7

7
.9

2
4

.7

1
7

.4

2
6

.6

8
.0

2
7

.1

1
4

.9

4
8

.3

4
.8

4
8

.3

4
1

.9

5
1

.3

1
.7

4
9

.5

3
9

.7

0

10

20

30

40

50

60

70

1
 /
 N

B
L
T

2
 /
 S

B
 

(c
o

o
rd

in
a

te
d

)

3
 /
 W

B
L
T

4
 /
 E

B

5
 /
 S

B
L
T

6
 /
 N

B
 

(c
o

o
rd

in
a

te
d

)

7
 /
 E

B
L
T

8
 /
 W

B

E
s

ti
m

a
te

d
 A

v
e

ra
g

e
 D

e
la

y
 (
s

)

Fully-Actuated Coordinated

1
,8

8
1

5
,2

9
8

1
,7

5
1

3
,8

1
5

1
,8

0
7

6
,8

7
1

1
,1

6
7 1
,8

9
5

3
,1

9
1

3
,3

3
8 4
,0

0
5

8
,3

8
5

3
,0

7
9

1
,5

7
8

4
,0

5
9

4
,6

4
2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1
 /
 N

B
L
T

2
 /
 S

B
 

(c
o

o
rd

in
a

te
d

)

3
 /
 W

B
L
T

4
 /
 E

B

5
 /
 S

B
L
T

6
 /
 N

B
 

(c
o

o
rd

in
a

te
d

)

7
 /
 E

B
L
T

8
 /
 W

B

E
s

ti
m

a
te

d
 T

o
ta

l D
e

la
y
 (
s

)

Fully-Actuated Coordinated


	Purdue University
	Purdue e-Pubs
	2011

	Analysis of Peer Intersection Data for Arterial Traffic Signal Coordination Decisions
	Christopher M. Day
	Thomas M. Brennan Jr
	Hiromal Premachandra
	James R. Sturdevant
	Darcy M. Bullock

	tmp.1454610742.pdf.pEJBo

