

Steven Lavrenz, Darcy Bullock Purdue University

Purdue Road School March 10<sup>th</sup>, 2015





### Building a better "base" knowledge



VS







### Case Study Project Site Visit Details & Equipment Information

Activity Identification and Estimation Learning how to parse the data

Educational Module Development Maximizing impact and conveying a message

Conclusions Lessons learned and looking forward

## South Split corridor in Indianapolis, with camera locations and traffic volumes





# The South Split project included a number of high-profile elements

- Rapid response to bridge strikes
- Continuously reinforced concrete pavement
- Accelerated construction schedule



Example Bridge Strike on NB I-65/I-70 "South Split" Corridor

Inexpensive technology and creative field engineering can return outstanding results!

- Mounting challenges
- Power supply issues
- Security issues







# Proper site selection and equipment calibration is an iterative process



- Scoping of mounting sites
- Dialogue with contractors
- Camera adjustments
- Additional opportunities for education & hands-on learning

# Effective camera management was crucial to successful project documentation

- Lack of visible activity
- Dead batteries
- Malfunctioning equipment
- File management









### Case Study Project Site visit details & equipment information

Activity Identification and Estimation Learning how to parse the data

### Educational Module Development

Maximizing impact and conveying a message

Conclusions Lessons learned and looking forward

# Camera images were grouped by major activities to begin building video sequences

|    | Activity                   | Real Time Duration | Video Segment Duration | Time in Video |
|----|----------------------------|--------------------|------------------------|---------------|
| a. | Excavation                 | 5:21:00            | 0:00:20                | 0:01:25       |
| b. | Drainage Installation      | 7:50:00            | 0:00:18                | 0:01:47       |
| c. | Subgrade Treatment         | 3:13:00            | 0:00:14                | 0:02:10       |
| đ. | Geotextile Fabric Install  | 8:00:00            | 0:00:26                | 0:02:34       |
| e. | Asphalt Base Paving        | 6:00:00            | 0:00:22                | 0:03:07       |
| f. | Rebar Installation         | 12:00:00           | 0:01:13                | 0:03:30       |
| g. | Concrete Paving            | 7:30:00            | 0:00:26                | 0:04:44       |
| h. | NB Girder Replacement      | 23:00:00           | 0:00:49                | 0:05:21       |
| i. | SB Girder Replacement      | 23:00:00           | 0:00:51                | 0:06:21       |
| j. | Cantilever Sign Foundation | 16:15:00           | 0:01:13                | 0:06:45       |
| k. | Guardrail Installation     | 2:00:00            | 0:00:16                | 0:07:42       |
| 1. | NB Bridge Girder Painting  | 11:30:00           | 0:00:50                | 0:07:59       |
| m. | Box Truss Overhead Sign    | 2:00:00            | 0:00:24                | 0:08:27       |
| n. | Lane Striping              | 17:30:00           | 0:00:12                | 0:08:51       |
| о. | Clearance Sign Removal     | 0:30:00            | 0:00:14                | 0:09:06       |
| p. | Interstate Reopening       | 3:00:00            | 0:00:31                | 0:09:20       |
|    |                            |                    |                        |               |

PURDUE 30 SECONDS PURDUE SEP.30,13 12:50 PM

# Rendering a composite informational module for each activity from field data



Working Web Link: <a href="https://www.bitly.com/SouthSplit">bitly.com/SouthSplit</a>

## Various estimation techniques were employed to determine activity quantities & costs

|    | Activity                       | Units            | Total<br>Project<br>Quantity | Quantity<br>Shown in<br>Video | % Total<br>Project<br>Quantity | Total<br>Project Bid<br>Amount | Approximate<br>Cost Shown<br>in Video |
|----|--------------------------------|------------------|------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------------|
| a. | Excavation                     | yds <sup>3</sup> | 92,204                       | 1,280                         | 1.4                            | \$1,117,335                    | \$16,511                              |
| b. | Drainage Installation          | ft               | 144                          |                               |                                | \$7,096                        |                                       |
| c. | Subgrade Treatment             | yds <sup>2</sup> | 75,541                       | 2,435                         | 3.2                            | \$472,367                      | \$15,116                              |
| đ  | Geotextile Fabric Installation | yds <sup>2</sup> | 80,340                       | 2,950                         | 3.7                            | \$126,134                      | \$4,667                               |
| e. | Asphalt Base Paving            | tons             | 10,609                       | 540                           | 5.1                            | \$572,886                      | \$29,217                              |
| f. | Rebar Installation             | 1bs              | 2,171,500                    | 54,721                        | 2.5                            |                                |                                       |
| g. | Concrete Paving                | yds <sup>2</sup> | 64,056                       | 1,628                         | 2.5                            | \$4,547,976                    | \$113,699                             |
| h  | NB Bridge Girder Replacement   | lump             | 1                            | 1                             | 100.0                          | \$250,000                      | \$250,000                             |
| i. | SB Bridge Girder Replacement   | lump             | 1                            | 1                             | 100.0                          | \$250,000                      | \$250,000                             |
| j. | Cantilever Sign Foundation     | ea               | 2                            | 1                             | 50.0                           | \$13,690                       | \$6,845                               |
| k. | Guardrail Installation         | ft               | 6,413                        | 138                           | 2.1                            | \$109,021                      | \$2,289                               |
| 1. | NB Bridge Girder Painting      | lump             |                              |                               |                                |                                |                                       |
| m. | Box Truss Overhead Sign        | ea               | 3                            | 1                             | 33.0                           | \$262,563                      | \$87,521                              |
| n  | Lane Striping                  | ft               | 42,611                       | 2,280                         | 5.4                            | \$23,184                       | \$1,292                               |
| 0. | Bridge Clearance Sign Removal  | lump             |                              |                               |                                |                                |                                       |
| p. | Interstate Reopening           |                  |                              |                               |                                |                                |                                       |

#### Tabulation of Bid Item Quantities and Relation to Video Footage



# Estimation techniques for pavement & soil excavation

- Truckloads of material removed
- $CY_{excavate} = 10 * T_{dump}$ 
  - $\circ CY_{excavate} = \text{cubic yds of} \\ \text{material excavated}$
  - $\circ T_{dump} = \text{number of} \\ \text{trucks in video}$
  - Assume ~10 yds<sup>3</sup>
    material per truck





(a) 9/5/2013 12:39:00

(b) 9/5/2013 13:43:00



(c) 9/5/2013 14:53:00



(d) 9/5/2013 15:51:00





(f) 9/5/2013 17:58:00

# Estimation techniques for hot-mix asphalt (HMA) paving

- Truckloads of material delivered
- $T_{hma} = 10 * T_{dump}$ 
  - $\circ T_{hma} = \text{Tons of HMA}$ delivered
  - $\circ T_{dump} = \text{number of} \\ \text{trucks in video}$
  - Assume ~10 tons material per truck



(a) 9/20/13 13:16:00

(b) 9/20/13 14:16:00



(c) 9/20/13 15:17:00



(d) 9/20/13 16:18:00



(c) 9/20/13 17:18:00

(d) 9/20/13 18:17:00

## Estimation techniques for rebar & continuously reinforced concrete



(a) 9/12/2013 12:22:00

(b) 9/17/2013 10:28:00



(c) 9/23/2013 10:58:00



(d) 9/24/2013 12:00:00



(f) 9/25/2013 12:17:00



(h) 10/17/2013 10:00:00

(e) 9/24/2013 15:27:00

(g) 9/25/2013 15:44:00



• 
$$CW_{rebar} = \frac{CY_{CRCP}}{PT_{CRCP}} = \frac{10*T_{dump}}{PT_{CRCP}}$$

- *CW<sub>rebar</sub>* = cumulative weight (lbs) of installed rebar
- $\circ$  *CY<sub>CRCP</sub>* = cubic yds of CRCP in video
- $PT_{CRCP}$  = cubic yds of CRCP on project

Documenting the central project task: bridge girder replacement

- Time lapse cameras solve a number of safety & logistical challenges
- Opportunities for QA/QC assessment
- Public relations/media involvement





(a) 9/30/2013 10:55:00

(b) 9/30/2013 13:34:00





(c) 10/01/2013 13:42:00

(d) 10/02/2013 07:19:00





(e) 10/02/2013 09:09:00



(g) 10/16/2013 13:49:00

(f) 10/02/2013 11:09:00



(h) 10/17/2013 14:10:00



Case Study Project Site visit details & equipment information

Activity Identification and Estimation Learning how to parse the data

Multimedia Module Development Maximizing impact and conveying a message

Conclusions Lessons learned and looking forward

# The time lapse camera module is scalable and adaptable to a variety of projects



Wang Hall Construction, Purdue University



Wheat Harvest, Craigmont, ID (images courtesy of Jeff Zenner)

- Vertical vs. Horizontal construction operations
- Non-engineering processes
- Flexible & customizable

## The modules can be used for a variety of tasks

- Complement existing on-site inspections
- Comprehensive off-site teaching tool Virtual labs, remote classrooms
- Public outreach & education
  Online streaming, local media, agency publicity



Local Media Coverage of South Split Closure



### Case Study Project Site Visit Details & Equipment Information

### Activity Identification and Estimation Purdue University

### Educational Module Development Maximizing impact and conveying a message

Maximizing impact and conveying a message

Conclusions Lessons learned and looking forward A number of important lessons were learned in the course of the module development

- Camera management
- Communication with agencies & contractors
- "On the fly" thinking and practical engineering judgment



The time lapse educational module is practice-ready and prime for field testing

• Easily implemented

with minimal equipment and prep

- Useful for documenting new construction techniques and procedures
- Digital distribution and storage

can maximize exposure serve as a practical means of archival

