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Students benefit from learning multiple procedures for solving the same or related prob-
lems. However, past research on comparison instruction has focused on comparing multiple 
formal procedures. This study investigated whether the benefits of comparing procedures 
extend to comparisons that involve informal and formal procedures. We also examined 
how learner characteristics, including prior knowledge and attitudes toward mathematics,  
affect learning from comparing procedures. We addressed these issues in college students’ 
learning procedures for solving systems of equations problems in algebra. Learners who liked 
mathematics learned equally well whether they received comparison or sequential instruc-
tion. However, among learners who did not like mathematics, instruction that included sup-
port for comparisons between the formal and informal procedures led to greater gains in 
conceptual knowledge than did sequential instruction of the procedures.
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Learning to solve problems is an integral part of learning 
mathematics. In many lessons, students are taught a single 
procedure for solving a particular type of problem, and this 
approach often leads to good learning of the taught proce-
dure. However, research across a variety of mathematical 
domains suggests that students may also benefit from learn-
ing multiple procedures that can apply to the same or related 
problems (Rittle-Johnson & Star, 2007; Silver, Ghousseini, 
Gosen, Charalambous, & Strawhun, 2005; Star & Rittle-
Johnson, 2009; Star & Seifert, 2006). 

Some researchers have argued that the benefits of learn-
ing multiple procedures are especially great when students 
compare those procedures. Comparing procedures could be 
beneficial in a range of ways. Comparison may foster deeper  
processing of the learned procedures, which could enable more 
successful application of those procedures on later problems. 
Comparison may also highlight differences among procedures 
(e.g., Gentner & Markman, 1994), which may provide people 
a basis for selecting the best procedure to use in a given cir-
cumstance. At the same time, comparison may also highlight 
similarities among procedures, and may help people to identify 
and evaluate those similarities. A thoughtful consideration of 
similarities may allow people to differentiate important simi-
larities between procedures from alluring but more superficial 
ones (Cummins, 1992; Hattikudur & Alibali, 2010; Schwartz 
& Bransford, 1998). Comparison may also help people more 

accurately represent key features of the problems themselves. 
Related problem solving procedures may operate on similar or 
different sets of problem features (Alibali, Phillips, & Fischer, 
2009), and comparison could highlight specific features that 
are involved in both of the compared procedures, or features 
that are involved in only one of them. 

By comparing procedures that realize common goals with 
different sets of steps, people may also be able to extract the 
common relational structure that underlies those procedures 
(Schwartz, Chase, Oppezzo, & Chin, 2011). For example, an 
individual might recognize that different procedures for solv-
ing systems of equations problems all involve isolating one 
of the variables. In this way, comparing multiple correct pro-
cedures may provide a basis for appreciating the conceptual 
underpinnings of those procedures. In this way, comparing 
multiple procedures also fosters conceptual knowledge of the 
principles that underlie those procedures. This deep knowl-
edge of the purpose of steps within a procedure may also sup-
port adapting or transferring the procedure to different types 
of problems (Schneider, Rittle-Johnson, & Star, 2011). 

However, despite these possibilities, empirical findings 
regarding the benefits of comparison are somewhat mixed. 
Although many studies have documented substantial ben-
efits for comparing procedures, others have found that  
benefits are limited to certain subgroups of participants. 
Some studies have revealed negative effects of instruction in 
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multiple strategies, relative to instruction in a single approach 
(e.g., Jitendra et al., 2007). These mixed findings raise several 
questions. What sorts of comparisons are helpful, for what 
sorts of outcomes? And are comparisons equally beneficial 
for all individuals? We consider each of these issues in turn.

What comparisons are helpful?

Past studies of comparing solution procedures have focused on 
problem domains in which there are multiple formal proce-
dures that can be used to obtain a correct solution. For example, 
Rittle-Johnson and Star (2007) studied the effects of comparing 
procedures among 7th grade students learning to solve linear 
equations. Participants compared the conventional procedure to 
a “short-cut” procedure that involved treating expressions such 
as (x + 1) as composite variables. Relative to participants who 
learned the procedures sequentially, participants who compared 
correct procedures made greater gains in procedural knowledge, 
which can be defined as knowledge of action sequences needed 
to solve problems (Hiebert & LeFevre, 1986; Rittle-Johnson, 
Siegler, & Alibali, 2001), and greater gains in procedural flexibil-
ity, which can be defined as knowledge of multiple ways to solve 
problems and when to use them (Star, 2005). Participants in both 
groups made comparable gains in conceptual knowledge, which 
can be defined as knowledge of general principles and of prin-
ciples that underlie procedures (Crooks & Alibali, 2014). 

Likewise, Star and Rittle-Johnson (2009) studied the effects 
of comparing procedures among 5th and 6th grade students 
learning to estimate products of one-, two- and three-digit inte-
gers. Participants compared worked examples that implemented 
three different formal procedures: (1) round both numbers  
to the nearest ten and then multiply, (2) round one number to the 
nearest ten and then multiply, and (3) truncate each multiplicand 
(ignoring the ones digits), multiply the remaining numbers, and 
add two zeros to the final answer. Participants in this study who 
compared procedures made greater gains in procedural flexibil-
ity than participants who learned the procedures sequentially. 

Of course, formal procedures such as these are not the only 
procedures people use to solve mathematics problems. Some 
past research has focused on the informal procedures that peo-
ple invent, based on their world knowledge and general problem 
solving skills (Baroody & Ginsburg, 1986; Carraher, Carraher, & 
Schliemann, 1985; Koedinger & Nathan, 2004). Informal proce-
dures for solving mathematics problems can be defined as pro-
cedures that do not rely on mathematical formalisms (such as 
symbolic equations) and that are not typically acquired through 
classroom instruction (Koedinger & Nathan, 2004). 

Connecting informal procedures and more formal proce-
dures may be especially beneficial for building mathematical 
knowledge. As Baroody and Ginsburg (1986) argued, “Informal 
mathematics is a foundation for learning formal mathemat-
ics. It is important for children to learn formal mathematics, 
because it is in many ways a more powerful tool than informal 

mathematics. . . . However, if formal instruction fails to build on 
or connect to informal mathematics, children may have to rely 
on rote memorization and mechanical use of the new material” 
(p. 101). Despite the importance of connecting formal and infor-
mal knowledge in mathematics, no studies of comparing pro-
cedures have investigated the effects of comparing informal and 
formal procedures on problem solving and conceptual under-
standing. This study sought to address this gap in the literature.

Who benefits from comparison,  
and on What outcome  measures?

Past research has also painted a varied picture of the types 
of outcomes that can improve via comparison (see Rittle-
Johnson & Star, 2011, for a review). As noted above, there 
is reason to expect that comparing procedures would yield 
benefits for procedural knowledge, and some studies have 
documented such benefits (e.g., Rittle-Johnson & Star, 2007). 
Likewise, there is reason to expect that comparing procedure 
should yield gains in procedural flexibility, and a few stud-
ies have documented such gains (e.g., Star & Rittle-Johnson, 
2009; Rittle-Johnson, Star & Durkin, 2011).

Because comparison may enable people to extract the com-
mon relational structure underlying related procedures, there 
is also reason to expect that comparison may yield benefits for 
conceptual knowledge. Indeed, a few studies have shown that 
comparison can foster gains in conceptual knowledge (e.g., 
Sidney, Hattikudur, & Alibali, 2015). However, conceptual 
gains are often small and limited to a subset of participants.

Across these varying outcome measures, many studies have 
shown that the benefits of comparison depend on individu-
als’ levels of prior knowledge, including their knowledge of 
the relevant procedures. For example, in the study by Star and 
Rittle-Johnson (2009), in which elementary students learned 
multiple procedures for computational estimation, comparing 
procedures promoted more lasting gains in conceptual knowl-
edge than encountering the procedures sequentially—but only 
for participants who were already familiar with one of the pro-
cedures. Along similar lines, in a study of students’ learning of 
linear equations, Rittle-Johnson, Star, and Durkin (2009) found 
that comparison instruction led to the best learning outcomes for 
students who had some prior knowledge of algebraic methods. 
For students who did not attempt algebraic methods at pretest, 
sequential instruction about the procedures was more beneficial. 

These findings raise the question of whether individual char-
acteristics other than prior knowledge might also moderate 
the effects of comparison instruction. In addition to cognitive 
factors (such as amount of prior knowledge), affective factors 
also influence how people engage with the learning environ-
ment (e.g., Harackiewicz, Durik, Barron, Linnenbrink-Garcia, 
& Tauer, 2008; Hidi & Renninger, 2006). Thus, it seems likely 
that affective factors, such as attitudes toward mathematics, 
might also affect how people learn from comparison.
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In past research, a positive attitude toward mathematics, 
and in particular, greater interest in mathematics, has been 
broadly linked to achievement, with correlations stronger in 
the later grades (Schiefele, Krapp, & Winteler, 1992). How-
ever, the paths by which attitudes affect performance remain 
unclear. One study of learning from text found that the effect 
of attitudes on learning was mediated by persistence (Ainley, 
Hidi, & Berndorff, 2002); participants with greater interest 
persisted longer during the learning task, and thus had more 
opportunities to learn. In a similar vein, in the present study, 
we consider the possibility that students’ attitudes toward 
mathematics influence the ways they respond to instruction 
about procedures for solving mathematics problems.

Very little prior research has directly investigated the role of 
attitudes toward mathematics in learning from problem solv-
ing instruction, and much of this work has been exploratory. 
In one such study, Belenky and Nokes (2009) found that the 
effects of metacognitive questioning during problem solv-
ing instruction depended on participants’ reported level of 
engagement. Among participants who were more engaged in 
the instruction, those who received prompts focused on the 
procedure learned more than those who received metacogni-
tive prompts to promote conceptual understanding. Among 
those who were less engaged in the instruction, the opposite 
pattern was found. Belenky and Nokes argued that, for less 
engaged participants, the metacognitive prompts provoked 
deeper processing of the material, and consequently sup-
ported learning better than prompts directed at procedures. 
In contrast, more engaged participants processed the material 
deeply, even when they did not receive metacognitive prompts.

Thus, Belenky and Nokes (2009) argued that metacog-
nitive questioning supported deeper processing for less 
engaged participants. Along similar lines, we might expect 
comparison to support deeper processing for participants 
who have less positive attitudes toward mathematics. In this 
research, we consider both prior knowledge and attitudes 
toward mathematics as potential moderators of the effects of 
comparison on problem solving and conceptual knowledge.

the current study

In this research, we address two primary research questions. 
First, does instruction that involves comparing an informal 
and a formal procedure lead to greater gains in procedural and 
conceptual knowledge than instruction that involves learning 
those same procedures separately and sequentially? That is, do 
the benefits of comparing procedures extend to comparisons 
that involve bridging informal and formal procedures? Based 
on past research about the effects of comparison more gener-
ally (e.g., Gentner & Markman, 1994), we expect that they will.

Second, how do learner characteristics, including prior 
knowledge and attitudes toward mathematics, affect learn-
ing from comparing multiple procedures? Based on Belenky 

and Nokes’ (2009) prior work, we expect that individuals 
with more negative attitudes toward mathematics may reap 
greater benefits from comparing procedures than individuals 
who have more positive attitudes toward mathematics.

We address these issues in algebra, and specifically in 
systems of equations problems. Solving such problems is a  
fundamental skill in algebra, and it is recognized in the Com-
mon Core State Standards (NGACBP & CCSSO, 2010). In 
this study, we targeted a convenience sample of college stu-
dents, but the general issues we focus on—linking of infor-
mal and formal procedures, and learner characteristics and 
learning from comparison—are applicable, both to other age 
groups and to other content domains within mathematics.

method

participants

Participants were 112 undergraduate students (73 female, 39 
male) enrolled in Introductory Psychology at a large public uni-
versity in the Midwestern United States. Participants received 
extra credit toward their course grade in exchange for their par-
ticipation. The sample, reflecting the university’s student body, 
was 64% Caucasian, 26% Asian, 2% African-American, 4% 
of Hispanic ethnicity, and 3% some other category or did not 
report. One participant was excluded from analysis due to exper-
imenter error, resulting in a final sample of 111. Participants were 
randomly assigned the two lesson groups, resulting in 58 partici-
pants in the comparison group and 53 in the sequential group.

procedure

Each participant took part in an individual experimental ses-
sion that lasted approximately 30 minutes. All sessions were 
conducted in a laboratory room on campus, and all sessions 
were videotaped with the participants’ consent. 

The experimental session consisted of a pretest, a lesson, 
and a posttest, described in detail in the following sections. 
Participants did not receive feedback on their performance 
at pretest or posttest.

pretest

The pretest consisted of one systems of equations problem, in 
which participants were asked to solve for two unknown quan-
tities (see Figure 1 in Appendix A). Solutions were coded for 
correctness (1 point for the correct price of a light bulb and 
1 point for the correct price of a clock), yielding a total of 2 
possible points for the pretest. Participants’ responses were also 
coded for the procedure used to solve the problem. These pro-
cedures included substitution, combining equations, guess and 
check, and various incorrect procedures. Some participants left 
the problem blank or wrote “don’t know,” and some did not 
complete a procedure that they started, yielding no final solu-
tion; these approaches were also considered incorrect.
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lesson

Participants were randomly assigned to one of two lesson 
conditions: sequential or comparison. Participants in both 
conditions received instruction on two solution procedures 
for solving systems of equations problems: first an informal 
procedure (trading) and then a formal procedure (matrix), 
described in more detail below. The same problem was used 
to explain both procedures (see Appendix B and C). All 
participants received a lesson on the informal procedure, 
reviewed the informal procedure on their own, and then 
solved a problem using the informal procedure. Participants 
then received a lesson on the formal procedure, reviewed 
the formal procedure, and then solved a problem using the 
formal procedure. If participants solved the problem incor-
rectly, they were guided to review the procedure again. 

As part of the lesson, participants in each condition 
answered four questions about the informal and formal pro-
cedures; however, the timing and content of the questions  
differed between the conditions. Participants in the sequential 
condition answered two questions about the informal proce-
dure after receiving instruction on the informal procedure, 
and answered two questions about the formal procedure 
after receiving instruction on the formal procedure. In this 
way, these participants were taught both procedures with-
out encouraging comparisons between them. To help sepa-
rate the procedures and any potential comparison between 
them, participants in the sequential condition completed a 
filler task between instruction on the informal and formal 
procedures. In contrast, participants in the comparison con-
dition answered four questions after receiving instruction 
about both the informal and formal procedures. These ques-
tions invited participants to actively compare across the two 
procedures. The specific questions used in each condition 
are presented in Table 1 (see Appendix A). Participants then 
completed the filler task after instruction in both procedures.

Informal procedure. The informal procedure, the trading proce-
dure, had been invented and explained to the researchers in a 
previous (unpublished) study by a 6th grade student who had 
not yet learned algebra. This procedure, though not integral to 
the previous study, was an ideal example of an invented infor-
mal procedure. It involved trading in an item from one of the 
sets for an item in the other set plus some amount of money. 
Using this trading procedure, participants could create a set 
that involved only one type of item. See Appendix B for the 
script used in presenting this informal procedure. Note that 
at no time during the informal lesson did the experimenter 
mention the concept of isolating a single variable. 

After the “trading” lesson, each student was given a full min-
ute to look over a review sheet describing the informal method. 
The experimenter then provided participants a practice 

problem to verify their understanding of the method. In the 
rare case that students solved this problem incorrectly, students 
were given time to review the procedure again before retrying 
the practice problem. 

Formal procedure. After instruction in the informal procedure, 
all participants also received instruction in a formal pro-
cedure for solving systems of equations problems. Because 
many undergraduate students were familiar with substitu-
tion and combining equations as formal methods for solv-
ing systems of equations problems, we devised a formal  
procedure that involved creating and manipulating matri-
ces to solve for the unknown variables, so that participants 
would be unfamiliar with the procedure. See Appendix C for 
the script used in presenting this formal procedure.

The same problem as used in the informal procedure les-
son was used again to instruct students in the formal pro-
cedure. Students were taught the procedure, given a minute 
to review the procedure, and then asked to solve a problem 
using the formal procedure to verify their ability to use the 
procedure correctly. Again, if students were unable to use  
the procedure, they were given additional time to review the 
formal procedure before retrying the practice problem.

Filler task. Participants in both lesson conditions also com-
pleted a spatial ability task as a filler task (Ekstrom, French, 
Harman, & Dermen, 1976). For participants in the sequen-
tial condition, this task was presented in between instruction 
in the informal procedure and the formal procedure, so as to 
minimize comparison between the procedures. For students 
in the comparison condition, this task was presented after 
instruction in both the informal and formal procedures.

posttest

After completing the lesson, students completed a posttest 
consisting of three items designed to tap procedural knowl-
edge and three items designed to tap conceptual knowledge.

Procedural items. In the first posttest procedural item, partici-
pants were asked to solve a systems of equations problem 
similar to the one on the pretest. Students were instructed to 
use one of the procedures they had just learned to solve the 
problem. The problem could be readily solved using either 
the informal or formal procedure. 

The second and third posttest items were more challeng-
ing items that required minor adaptations of the taught 
procedures in order to solve them correctly. For example,  
using the formal procedure necessitated additional proce-
dural steps (i.e., multiplying both lines of the matrix in order 
to cancel). Students were instructed to use any procedure of 
their choosing to solve these problems. 
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As for the pretest item, participants were awarded one 
point for a correct x value and one point for a correct y value 
for each of the posttest procedural items. Scores on the three 
posttest procedural items were summed to create a posttest 
procedural score, which could range from 0–6 points. 

Participants’ responses to the posttest procedural items 
were also coded for the procedures used to solve the prob-
lem. These included the taught procedures (trading and 
matrix), as well as substitution, combining equations, guess 
and check, and various incorrect procedures, including leav-
ing the problem blank, writing “don’t know,” not completing 
a procedure that they started, or leaving no final solution.

Conceptual items. The posttest also included three conceptual 
items. In the first of these, participants were asked to deter-
mine whether the steps in a worked example of a systems 
of equations problem were correct. The worked example 
involved an incorrect application of a substitution proce-
dure, and noticing that the procedure is incorrect required 
recognizing that the steps did not result in an equation with 
only one variable—a process that occurred in both the trad-
ing and matrix procedures that participants learned during 
the lesson. Responses that simply recognized that the pro-
cedure was incorrect received one point, and responses that 
explained why it was wrong received two points. 

In the second conceptual item, participants were shown 
a problem that had been solved using the trading procedure 
and asked to explain the purpose of the step in which a single 
variable is isolated. Responses that recognized that this step 
yielded an equation with only one variable received one point, 
for recognizing the isolation of a single variable. Responses 
that not only recognized the isolation of a single variable but 
also explained the purpose or goal of isolating a variable (e.g., 
using expressions such as “to isolate,” “to eliminate,” or “to get 
the apples by themselves”) received two points.

In the third conceptual item, participants were shown a 
similar problem that had been solved using the formal proce-
dure, and they were asked to explain the purpose of the step 
in which a single variable was isolated. Again, responses that 
merely recognized the isolation of a single variable received 
one point, and those responses that explained the purpose or 
goal of isolating a single variable received two points.

Scores on these three conceptual items were then summed 
to create a posttest conceptual score, which could range from 
0–6 points.

mathematics attitude measure

As part of a demographic survey that participants completed 
at the beginning of the study, students rated how much they 
liked mathematics on a four-point scale (1 – hate math, 2 – 
dislike math, 3 – like math, 4 – love math) (adapted from 
Eccles & Wigfield, 1995).

results

preliminary analyses

Pretest performance. Participants’ pretest scores ranged from 0–2 
(the maximum possible score), M = .75, SD = .95. Pretest 
scores did not differ by experimental condition, t(109) = .73, 
p = .47.

Gender and attitudes. The gender composition in each condi-
tion was comparable: 67% of participants were women in the 
comparison condition and 62% in the sequential condition. 
In light of past research documenting gender differences in 
students’ mathematics attitudes (e.g., Hyde, Fennema, Ryan, 
Frost, & Hopp, 1990) we examined whether such gender dif-
ferences were present in our data. Mathematics liking scores 
did not differ by gender, t(109) = .61, p = .55, M = 2.65, SD  
= .75, and M = 2.74, SD = .75 for women and men, respectively. 
Gender was not included as a factor in the main analyses.

posttest performance

Participants’ posttest scores ranged from 0–6 on both the 
procedural items, M = 4.66, SD = 1.73, and the conceptual 
items, M = 3.10, SD = 1.69. We analyzed students’ perfor-
mance at posttest using a linear mixed effects model with one 
within-subject factor, item type (procedural vs. conceptual), 
and three between-subjects factors: condition (sequential vs. 
comparison), mathematics liking (which we dichotomized 
for analysis purposes, into hate/dislike vs. like/love), and 
pretest score (treated as continuous). All predictors were 
centered and all interactions were included in the model. 
Parameter estimates and t-values for the full model are pre-
sented in Table 2 (see Appendix A). Note that the findings 
are unchanged if mathematics liking is treated as a continu-
ous variable, rather than a dichotomous variable.

We expected that students who liked mathematics would 
perform better overall than students who did not like mathe-
matics, and this was indeed the case, t(103) = 3.58, p < .001. In 
addition, because the lessons focused on procedures for solving 
systems of equations problems, we expected that students would 
perform better on the procedural items than on the conceptual 
items, and this was the case as well, t(103) = 5.51, p < .001.

These main effects of mathematics liking and item type 
were qualified by a significant three-way interaction of math-
ematics liking, item type, and condition, t(103) = 2.34,  
p = .02. Among participants who liked mathematics, par-
ticipants in the sequential and comparison conditions per-
formed similarly well, both on procedural items, M = 4.85 and  
M = 4.87 points, respectively, and on conceptual items,  
M = 3.73 and M = 3.41 points, respectively; see Figure 2 in 
Appendix A. Among participants who did not like mathematics, 
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however, there was a significant interaction between condition 
and item type, t(103) = -2.46, p = .02. Participants in the compar-
ison condition performed slightly worse than participants in the 
sequential condition on procedural items, M = 3.90 and M = 4.40 
points, respectively, though a test of this simple effect revealed that 
this difference was not significant, t(103) = -.86, p = .39. Partici-
pants in the comparison condition performed substantially bet-
ter than participants in the sequential condition on conceptual 
items, and a test of this simple effect was significant, M = 2.83 and  
M = 1.49, t(103) = 2.5, p = .01. 

Not surprisingly, better performance on the pretest item was 
also associated with higher scores on posttest, t(103) = 3.21,  
p = .002. On the basis of findings from Rittle-Johnson, Star and 
Durkin (2009), we also expected an interaction between pretest 
and condition, such that this association would be stronger in 
the comparison condition. Although the pattern of data was 
as predicted, the interaction was not significant with an alpha 
level of .05, t(103) = 1.82, p = .07. As expected, pretest scores 
were positively associated with posttest scores in the compari-
son condition, b = .72, p < .001; however, this was not the case 
for the sequential condition, b = .20, p < .37. Thus, among par-
ticipants who compared procedures, those who had greater 
success on the pretest item displayed greater gains.

procedure use on the posttest procedural items

We also examined the procedures that participants used to 
solve the posttest problems. The data are presented in Figure 3 
(see Appendix A). With few exceptions, participants who liked 
mathematics used the matrix procedure and implemented it 
correctly, regardless of condition. In contrast, procedure use was 
more variable among participants who did not like mathematics. 
Although a majority of participants who did not like mathemat-
ics in both conditions used the matrix procedure and imple-
mented it correctly on all three posttest problems, a substantial 
subset of participants applied the matrix procedure incorrectly 
or used the trading procedure. In the comparison condition, 
even participants who did not like mathematics nearly always 
attempted the matrix procedure, though they sometimes failed 
to implement it correctly. In the sequential condition, however, 
a subset of participants who did not like mathematics utilized 
the trading procedure, suggesting that in the absence of direc-
tions to compare procedures, they preferred the more meaning-
ful, informal procedure. Of all four groups, those who did not 
like mathematics and who received sequential instruction were 
the least likely to correctly use the matrix procedure.

discussion

This study examined effects of comparing informal and for-
mal procedures on participants’ solving of systems of equa-
tions problems. We predicted that instruction that involved 
comparing procedures would lead to more successful problem 

solving than instruction that involved presenting the proce-
dures separately and sequentially, and we expected that these 
effects might be moderated by individual characteristics, such 
as prior knowledge or attitudes toward mathematics. 

These hypotheses were partially supported. There was no 
main effect of comparison instruction; instead, the effects of 
comparison instruction varied for participants who had more 
positive versus more negative attitudes toward mathematics. Par-
ticipants who liked mathematics performed equally well whether 
they received comparison or sequential instruction. However, 
among participants who did not like mathematics, instruction 
that included support for comparisons between the formal and 
informal procedures led to greater gains in conceptual knowl-
edge than did sequential instruction about the procedures.

Participants who did not like mathematics and who 
received sequential instruction were also more likely than 
participants in other groups to use the informal procedure 
to solve the posttest problems. In contrast, virtually all of the 
participants who liked mathematics, as well as those who did 
not like mathematics but who received comparison instruc-
tion, consistently used the formal procedure. Thus, compari-
son instruction encouraged participants who did not like 
mathematics to at least attempt the formal procedure. These 
findings suggest that, in settings where learning a formal 
procedure is the target of instruction, comparison may be an 
appropriate and valuable instructional approach.

Taken together, these findings suggest that problem solving 
instruction that guides people to compare formal and informal 
procedures may be especially useful for those individuals who 
have more negative attitudes toward mathematics. It may be the 
case that individuals who do like mathematics tend to engage 
in comparison processes spontaneously—and as a consequence, 
the comparison intervention did not “add value” over what 
those students spontaneously did when learning the procedures 
sequentially. This interpretation mirrors that of Belenky and 
Nokes (2009), who found that students who were highly engaged 
in the material did not benefit from additional support for focus-
ing attention on underlying concepts. In contrast, people who 
do not like mathematics may not engage in spontaneous com-
parison; for these individuals, the guided comparisons between 
the informal and formal procedure prompted in the lesson led 
to greater gains in learning, especially for conceptual outcomes.

The present findings highlight the complexity of the factors 
that influence learning from problem solving instruction. In 
addition to the interaction of comparison condition, mathemat-
ics liking, and item type (conceptual vs. procedural), we also 
observed an overall effect of prior knowledge level, with those 
who had more prior knowledge showing greater gains. This trend 
was stronger (although not significantly so) in the comparison 
condition than in the sequential condition. These data highlight 
that both cognitive and affective factors (i.e., prior knowledge 
and attitudes) influence what people learn from instruction. 



docs.lib.purdue.edu/jps  2016 | Volume 9

S. Hattikudur, P. G. Sidney, & M. W. Alibali Comparing Informal and Formal Procedures

19

It may be that participants’ general level of familiarity with 
formal procedures for solving systems of equations problems 
enabled them to derive conceptual gains from comparing 
the formal and informal procedures. Although we did not 
measure whether participants were familiar with the matrix 
procedure, participants often attempted formal procedures 
such as combining equations and substitution to solve the 
problems at pretest, and a couple of participants even com-
mented during the formal lesson that the matrix procedure 
reminded them of the combining equations procedure.

Participants used the formal procedure far more often than 
the informal procedure on the posttest problems, on which they 
were encouraged to use one of the taught procedures. At first 
glance, this finding is puzzling, as one might expect participants 
who do not like mathematics to avoid the formal procedure in 
favor of the informal one. However, there are several possible 
reasons why participants may have preferred the formal proce-
dure. First, the matrix procedure was similar to the combining-
equations procedure that many students attempted at pretest. 
Participants may have noted this similarity and felt more com-
fortable with the matrix procedure than with the trading pro-
cedure. Second, the formal procedure was taught last during 
the lesson, so it was fresh in participants’ memories and eas-
ily accessible. Third, the questions asked during the lesson in 
the comparison condition may have promoted an appreciation  
of the formal procedure’s versatile application to any systems of 
equations problem. Indeed, participants in the comparison con-
dition sometimes remarked, in response to the questions posed 
during the lesson, that the formal procedure is more efficient 
in situations where the numbers are larger. Finally, participants 
may have come into the study with the expectation that math-
ematics problem solving involves formal procedures.

It is also worth noting that, in this study, participants’  
comparison of procedures was not directly guided.  
Instead, comparison was prompted with questions drawing 
participants’ attention to similarities and differences, and was 
also supported by juxtaposing the procedures in time (i.e., 
without an intervening “filler” task). Participants were free to 
compare the procedures along any dimensions they wished, 
and some participants failed to notice that both procedures 
involved steps with the goal of isolating a single variable. How-
ever, our intervention did include several aspects of cogni-
tive support thought to enhance directly guided comparison 
instruction (e.g., Richland, Zur, & Holyoak, 2007), including 
the use of visual representations and presenting the less cogni-
tively demanding, informal procedure first. Though the formal 
and informal procedures were not highly aligned in space or 
with language and gesture, we believe that students did make 
greater gains in conceptual knowledge in the comparison 
condition (though without a pretest measure of conceptual 

knowledge, we cannot be certain). With more explicit guid-
ance about what to compare, along with adequate support for 
the comparison, students might make even greater gains. 

A few additional limitations of this study also deserve 
mention. First, our measure of attitudes toward mathemat-
ics consisted of a single item, albeit one that has been widely 
used in past research. Future research could use a more dif-
ferentiated measure of attitudes toward mathematics—one 
that assesses not only liking for mathematics, but also the 
value that participants place on mathematics and the per-
ceived importance of mathematics in their lives. Second, 
most participants came to this study with some knowledge of 
how to solve systems of equations problems (although with-
out knowledge of the trading or matrix procedures). We can-
not be sure that our findings would generalize to participants 
who are encountering such problems for the first time, or 
to participants learning other sorts of mathematics content. 
Third, we focused on the effects of comparing an informal 
and a formal procedure; we did not include a condition that 
involved comparing multiple formal procedures. In future 
work, it would be of interest to directly compare instruc-
tional conditions that link formal and informal procedures 
with conditions that link multiple formal procedures, to 
determine what sorts of links are most beneficial. 

Our findings also have implications for educational prac-
tices. Many standards-based approaches to mathematics 
instruction recommend instructional practices that encour-
age students to reflect upon and compare multiple proce-
dures for solving problems. For example, in the Principles 
and Standards for School Mathematics, the National Council 
of Teachers of Mathematics emphasizes that students should 
be able to “recognize and use connections among mathemat-
ical ideas” (NCTM, 2000, p. 64), and specifically notes that 
students should develop “a deeper understanding of how 
more than one approach to the same problem can lead to 
equivalent results, even though the approaches might look 
quite different” (p. 354). Our findings suggest that learners 
who do not make such connections spontaneously may ben-
efit from guidance in making such connections.

In sum, this research demonstrates that the benefits of com-
paring procedures do extend to the case of comparing informal 
and formal procedures, at least for individuals who have nega-
tive attitudes toward mathematics, and who may therefore be 
inclined to prefer informal procedures over formal ones. Thus, 
this research highlights the value of comparison in promoting 
conceptual knowledge—something that is typically quite diffi-
cult to achieve—in individuals with negative attitudes toward 
mathematics. For such individuals, there appear to be sub-
stantial benefits to be gained from connecting formal, school-
based procedures to more informal, grounded ones.
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Sequential Contrasting
Do you think the trading method is a good way 
to solve this problem?

In what ways are these two methods alike?

When might you use this method? How are they different?
Do you think the matrix method is a good way 
to solve this problem?

Why might it be better to use the trading 
method?

When might you use this method? Why might it be better to use the matrix 
method?

Table 1. 
Study questions by condition.

Table 2. 
Parameter estimates from the linear mixed effect model of participants’ posttest scores.

Effect Estimate (b) t-value p-value
Condition -.25 -.83 .41
Math liking 1.10* 3.58 <.01
Item type 1.37* 5.51 <.01
Pretest .46* 3.21 <.01
Condition x liking -.03 -.04 .97
Condition x item type -.75 -1.50 .14
Condition x pretest .52 1.82 .07
Liking x item type -.60 -1.32 .19
Liking x pretest -.06 -.21 .84
Item type x pretest .36 1.59 .19
Condition x liking x item type 2.32* 2.34 .02
Condition x liking x pretest -.74 -1.29 .20
Condition x pretest x item type <.01 <.01 1.00
Liking x pretest x item type -.06 -.13 .90
Condition x liking x item type x pretest -.20 -.22 .83
Note. Degrees of freedom are df = 103 for all tests. All variables in this model are centered. 
Starred values are significant at α = .05.

appendix a
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Figure 1. Pretest systems of equations problem Figure 1. 
Pretest systems of equations problem.

Figure 2. 
Posttest scores (adjusted for pretest scores) for participants who do and do not like mathematics by condition and 
item type. Error bars represent the standard error of each estimated mean.
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Figure 2. Post-test scores (adjusted for pretest scores) for participants who do and do not like mathematics by condition and item type. Error bars 

represent the standard error of each estimated mean. 
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Figure 3. 
Procedure use on the posttest items.
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appendix b

informal procedure for solving 
systems of equations problems

Today we are going to talk about one way to figure out the 
price of items if you know the total cost of certain purchases. 

In this first example: for two apples and one watermelon, 
the total cost for these items is $6. For one apple and two 
watermelons, the total cost for these items is $9. [Either place 
or point to apples and watermelons and write or point to 
“The total cost of these items is $7”]

In order to find out how much one apple or one watermelon 
costs, one way to use the information you have is to compare the 
two purchases in terms of the differences in items and total cost.

So in this example, since both purchases include one apple 
[point to one apple in each total] and one watermelon [point 
to one watermelon in each total], that leaves us with one 
apple here and one watermelon there. [Draw an arrow from 
the apple to the watermelon.] Does that make sense?

Now let’s look at the difference in total cost. Between this total 
$6 and this total $9, this second purchase is $3 more. [Write +3 
next to the total cost side of things.] This makes sense, right?

So now since we have one apple here and one watermelon 
here, one way to understand this is to say, “For every time 
we trade in an apple for a watermelon, we pay $3 more.” 

Basically this tells us that every time you trade in an apple 
[point to apple in first purchase] for a watermelon [point to 
watermelon in second purchase] it costs $3 more. Or in other 
words, a watermelon costs $3 more than an apple. [Write +3 
next to the arrow from the apple to the watermelon.]

Now that we know this, we can try one more trade. So 
now let’s trade in this apple for a watermelon. [Place items for 
3rd purchase to make it salient.] Like we said just a moment 
before, every time we trade in an apple for a watermelon, we 
pay $3 more.” So now that we’ve traded in this apple for a 
watermelon [point to items as you mention them], the total 
cost of these items is going to be $9 plus $3 or $12 [write this 
equation]. So the price of 3 watermelons is $12. 

To get the price of one watermelon, all we have to do is 
divide the total cost by three. 12 divided by 3 is 4, so the price 
of one watermelon is $4 [write this down].

So now that we know the price of a watermelon, we can 
figure out the price of an apple. Let’s go back to the second 
purchase. One apple and two watermelons was $9. We know 
that each watermelon is $4 [write 4 under each watermelon], 
so for two it costs $8 [draw a line connecting the two fours and 
write 8]. Since the total was $9 [rewrite below parallel to the 
8], that leaves one dollar for the price of the apple. Make sense?

We can always check this using the first purchase. Two 
apples at $1 a piece adds to $2, and add $4 for the water-
melon to make $6. That’s right!
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(1) The total cost of these items is $6. 
                 

    +3

(2) The total cost of these items is $9. 

What is the price of one watermelon?
              

+3

 The total cost of these items is $____.  

3 watermelons cost $12. 

One watermelon is $4.  

What is the price of one apple? 

  The total cost of these items is $9. 

              
                  $4                    $4 
                   

$9 - $8 = $1 

One apple is $1.

appendix b, cont'd
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appendix c

formal procedure for solving 
systems of equations  problems

Now we are going to talk about another way to figure out the 
price of certain items using the information we are given. We 
can see that we have been given a number of apples [point to 
“a”], a number of watermelons [point to “w”], and the total cost 
of these items [point to “total”]. Now we can write a row to rep-
resent the first set of items: apples [point to “2”], watermelons 
[point to “1”], and the total cost [point to “6”]. We can also write 
a row for the second set of items [point to the second row]. 

So now that we know this information [gesture to the 
matrix you’ve just created], we can use this to find the price 
of an apple [point to first row of second matrix] and a water-
melon [point to second row of the matrix]. 

For our next step, we are going to rewrite the first row by 
multiplying through by 2. That gives us a 4, 2, and 12. Now 
when we subtract the second row from this first row to get a 3, 
a 0, and a 3, we can divide this row by 3 now to get a 1, a 0, and 
a 1. So the price of one apple [gesture from the 1 back to the 
“a” in the first matrix] is $1 [gesture from “total” back to 1.]

Now that we know the price of one apple, let’s find the 
price of a watermelon. This time we can multiply the sec-
ond row by 2 to get 2, 4, and 18. Again, if we subtract the  
two rows, then we get a 0, a -3, and a -12. Now all we have to 
do is divide this row by -3 to get 0, 1, and 4. So now we know 
the price of one watermelon [gesture back to the “w”] is $4. 

We can check this using the first purpose. Two apples at $1 a 
piece [write 1 over each apple] is $2, and add $4 for the water-
melon [write 4 over the watermelon] to make $6. That’s right!

   33

(1) The total cost of these items is $6. 

(2) The total cost of these items is $9. 

What is the price of one apple? What is the price of one watermelon? 

       a  w   total   a   w  total 
   2  1     6    1   0    ? 
     1  2     9     0   1    ?

Step 1:  4  2    12  
   1  2     9 

 Step 2:    3  0     3 
    

 Step 3:   1  0     1 

One apple is $1. 
          

   2  1     6 
   1  2     9 

 Step 4:  2  1     6 
       2  4    18 

Step 5:   0  -3   -12  
          

Step 6:  0   1    4 

One watermelon is $4. 
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