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Visualizing Non-Equilibrium Flow Smulationsusing 3-D
Velocity Distribution Functions

A. Venkattraman and A.A. Alexeenko
School of Aeronautics & Astronautics, Purdue Universitgst\Lafayette IN 47907

Abstract. Scientific visualization techniques have been used to paoldeunderstand better the physics of non-equilibrium
flows. A visualization methodology for non-equilibrium flosimulations using 3-D velocity distribution functions(¥B)

is illustrated in application to various non-equilibriunovl problems. A one-dimensional normal shock wave problem is
considered for two different upstream Mach numbers coomding to weak and strong non-equilibrium flow conditions.
The iso-surfaces of 3-D VDFs inside the shock wave obtairgdguvarious solution techniques including the ES-BGK
method, DSMC technique, Mott-Smith solution, and the Na@®kes(NS) distribution functions using Chapman-Egsko
theory are compared and contrasted. The visualizatiomigeé is extended to two-dimensional hypersonic flowlat 10
past a flat plate with sharp leading edge by comparing theiifaes of 3-D NS VDFs obtained at three different locations
in the flowfield. The visualization of 3-D VDFs is shown to pide valuable information about the degree and direction of
non-equilibrium for both 1-D and 2-D flows.

Keywords: direct simulation Monte Carlo; velocity distribution fufans; rarefied flows; non-equilibrium flows; visualization

1. INTRODUCTION

Visualization plays a very important role in the analysid amterpretation of numerical solutions. The development
of flow visualization techniques and tools for renderingl@cavector and tensor fields obtained by Computational
Fluid Dynamics (CFD) techniques has significantly acceééerghe adaptation of CFD in many areas of science and
engineering[1]. Visualizing higher-dimensional (> 3D}a&as been an active research area[2, 3] in order to design
methods that overcome the difficulties involved in repréisgnsuch data on a two-dimensional computer screen.
Higher-dimensional data occur in a wide range of applicetimcluding medical imaging, uncertainty visualization
and fluid flows. Non-Equilibrium flows that are encountered imumber of flows including supersonic flight at high
altitudes, flows expanding into vacuum and flows in micrasdalvices are governed by the Boltzmann equation[4]

J J o AT 2/ 6% £%
E(nf)+c-&(nf):/i /0 n2(£f; — ff1)crodQde; (1)

where f is the velocity distribution function(VDF) that depends @rindependent variables - time, 3 physical
coordinates, and 3 velocity coordinates - and for a gendér@etdimensional flow problem. Unlike continuum
equations, like the Navier-Stokes equations, which arerim$ of macroscopic parameters including density, vslocit
temperature and pressure, the Boltzmann equation is irstefithe velocity distribution function. In spite of the VDF
being the fundamental quantity of interest, visualizatechniques applied to non-equilibrium flow problems solved
using the Boltzmann equation and its approximations haga bestricted to macroscopic parameters mainly due to the
high dimensional nature of the VDF. The macroscopic pararagivhich are moments of the VDF, do not completely
describe the features of non-equilibrium flows. The mainl gdahis paper is to study the distinguishing features
of non-equilibrium flows by probing the VDF using visualiiat techniques for 3-D scalar fields. In particular, the
structure of a normal shock wave is considered and VDFseénsidmal shock waves obtained using various solution
techniques are visualized. Later, the VDFs at various looatof two-dimensional hypersonic flow past a flat plate at
M = 10 are presented. The remainder of the paper is organizedlasd. Section 2 briefly provides the necessary
theory & background including the numerical and visual@atechniques used; Section 3 presents the results and
discusses the same with Section 4 reserved for conclusions.
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2. THEORY & BACKGROUND

The Boltzmann equation in its original form is often veryfidifilt to solve due to its non-linear integro differential
collision term. Non-equilibrium flows that are governed bg Boltzmann equation are typically solved using approx-
imations to the original Boltzmann equation or by resortingtatistical techniques like the direct simulation Monte
Carlo (DSMC) technique. Most of the approximate methodsevaakassumption for the form of the distribution func-
tion. Some of the popular forms for the non-equilibrium dizition function are briefly described below.

Equilibrium Maxwellian Distribution Function

The VDF in equilibrium flow conditions is the Maxwellian ooigopic Gaussian given by

BS

fM:W
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whereu, v, andw are the mean velocities in they, andz directions respectively3 = (2RT) /2 with T being the
local temperature and the specific gas constant.

Relaxation to Anisotropic Gaussian Distribution : ES-BGK

A popular technique used to solve the Boltzmann equatidmeisise of model kinetic equations in which the complex
collision term in the right hand side of the Boltzmann equais replaced with a relaxation-type term and given by

0 7}
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For the ellipsoidal statistical Bhatnagar-Gross-KrooB{BGK) equation[5], the VDF relaxes towards an anisotropic
Gaussian([6] given by.
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wherep is the densityR is the specific gas constaug,is the mean velocity vector.

Navier-Stokes Distribution Function : Chapman-Enskog Theory

An approximation to the Boltzmann equation for very smaftpoations from equilibrium conditions was developed
using a first order approximation to the VDF based on the ClaapEnskog theory[7] and is given by
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fce = fum <1 (6)
where fy is the equilibrium Maxwellian distribution function at thecal flow conditionsp is the densitygy is the
mean velocity vectoi is the thermal conductivity witk’ being the thermal velocity vector.

Bi-M odal Distribution Function : Mott-Smith Theory

Mott-Smith solution[4, 8] for the structure of a normal skazave expresses the VDF at any location within the shock
wave as a bi-modal distribution given by

ny npexp{a(x/A1)}
Trexpla(/A)} M Trexpla(/an} ™2

where fjy1 and fy2 are Maxwellian distributions corresponding to the upstreand downstream conditions of the
shock wave. The density profile is then given by,

(6)

I"I(X) fMS =

P _ L+expla(x/A)}pa/pr (7
o0 1+exp{a(x/A1)}

Numerical & Visualization Methods
A finite volume scheme with third order accurate WENO scheanespatial fluxes[9] is used to solve the ES-BGK
model kinetic equations. The DSMC solutions were obtairgdguBird’s fortran cod®SMCL1S.fthat is specialized
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FIGURE 1. (Left) Isosurface of the maxwellian velocity distributifumction corresponding to an isovalue b= 1E -3 using
a 40x 26 x 26 velocity mesh, (middle) a 1-D maxwellian showing the iséace level and (right) isosurface using ax100 x 10
velocity mesh.

to solve the problem of a one-dimensional stationary shaokewWhile the VDF is directly solved for in the ES-BGK
method, the DSMC simulation requires the sampling of mdéscto construct the 3-D VDF. The VDF obtained at a
particular physical location is a 3-D scalar field that is adiion of the velocity space coordinates. This 3-D scalar
field is visualized using the classical technique of isdaing. The shape of these iso-surfaces serves as an imdicat
of the degree and direction of non-equilibrium at that pbglliocation.

3. RESULTSAND DISCUSSION

In this section, the classical non-equilibrium problemlod structure of stationary normal shock waves in Argon is
considered for two upstream Mach numbévy (corresponding to both wealME1.4) and strong non-equilibrium
flow problems 1=2.5). Before proceeding further to probe the non-equiliborflows, we present some iso-surfaces
of the equilibrium Maxwellian distribution function that non-dimensional form, is given by

fun = s X {(G~ TP+ (&~ TP+ (&~ W) ®

All velocity components are non-dimensionalized by thealo@lue of3 and f is non-dimensionalized bg3. The
equation for the isosurfaces of the non-dimensional dayiilin Maxwellian distribution functioriy is given by

(& — U)% + (¢ — V)? + (¢ — W)? = constant (9)

with T being the local temperature. The maximum valuef@foccurs whercy = u, ¢, = v, andc, = w and the
maximum value is given byiy = 1/7%/2 Figure 1 shows isosurfaces of the equilibrium Maxwelliastribution
function corresponding to non-zero mean velocity in theéreation for f = 1E — 3 and also the isovalue level on a
1-D maxwellian. Clearly, the iso-surfacesfaf are spheres whose centre corresponds to the mean velothity tdw

at that physical location and whose radius depends on theais@ chosen.

Weak Non-Equilibrium: M =14

The weak non-equilibrium flow problem that has been considlés that of the structure of a normal shock wave
in Argon at an upstream Mach number of 1.4. For both the ES-B@#hod and the DSMC method, the number
of cells in the physical space was fixed at 400. For the ES-B&thod, the number of grid points in the velocity
space was 26 16 x 16. Figure 2 shows the normalized density and temperatafédgs obtained using the model
kinetic equations, DSMC technique, and Mott-Smith thedhe macroscopic parameters obtained using the ES-BGK
method agrees extremely well with that obtained using th¥1D$echnique while the Mott-Smith solution predicts

a thicker shocker wave. The VDFs were constructed usingwarsolutions including the direct simulation Monte
Carlo (DSMC), model kinetic equations (ES-BGK), Navieoigts (NS) VDF from Chapman-Enskog theory, and the
Mott-Smith theory. The NS distribution function was consted using the shear stress and heat flux values obtained
using the ES-BGK method. The number of molecules used to Igattng 3-D distribution function from the DSMC
simulation was about 65 million. Iso-surfaces of the nometisionalized velocity distribution function are visaelil
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in Figure 3 forf = 1E — 3 at the physical location correspondingdt = —2.0. The distribution functions obtained
using different methods look almost identical and deviatey Vittle from the spherical isosurfaces of the equililoniu
Maxwellian distribution.

Strong Non-Equilibrium : M =25

In this section, we present results for a stronger shock wavegon with an upstream Mach number g = 2.5.

The number of cells in the physical space was fixed at 400 fir ES-BGK and DSMC methods. The number of
grid points in the velocity space was fixed at»X4@6 x 26. Figure 4 shows the normalized density and temperature
profiles obtained using the ES-BGK method, DSMC method and-Bimith theory. The macroscopic parameter
profiles obtained using the ES-BGK and DSMC methods agrekexe¢pt in a small region upstream of the shock
wave in the normalized temperature profile. The Mott-Smitlution once again predicts a thicker shock wave.
Figure 5 shows the iso-surfaces of non-dimensional VDFesponding to an isovalue df = 1E — 3 within the
normal shock wave at the locatioiA = —2.0. The number of molecules used to sample the 3-D VDF from the
DSMC simulation was about 70 million. Clearly, the VDFs dgeifrom the spherical Maxwellian distribution with
an elongation along the x-direction indicating significanh-equilibrium along the x-direction. While the ES-BGK
and Mott-Smith solutions predict strong and weak bimodalFgDespectively, the DSMC method predicts a high
eccentricity ellipsoidal isosurface for the VDF. The NStdisition function resembles the Mott-Smith distribution
function but significantly underpredicts the fraction oflerules with a negative x-velocity. One of the reasons fer th
ES-BGK and DSMC methods predicting different VDFs upstredtie shock wave, in spite of excellent agreement
in the macroscopic parameter profilesxgh = —2.0, is due to the fact that the ES-BGK method uses a collision
frequency that is independent of the molecular velocitiégure 6 compares the iso-surfaces for various values of
the non-dimensional VDF obtained using the ES-BGK methda firesence of holes in the iso-surface at values of
f <=1E — 6 is related to the extent of the velocity domain used in theBEXK method. Decreasing the extent of the
velocity domain would lead to the presence of holes for lavgéues off.

Two-Dimensional Hyper sonic Flow

The visualization technique described above can be extetmldwo-dimensional flows with regions of non-
equilibrium. We consider the two-dimensional hypersorowfbf cold nitrogen past a flat plate with a sharp leading
edge at a freestream Mach numbeiM#f= 10.0. The freestream temperature isK fvith the plate temperature fixed
at 300K. A Maxwell model was used for the gas-surface interactiotih an energy accomodation coefficient of
0.75. The DSMC solver SMILE[10] is used to obtain the macop$c parameters, the derivatives of which are used
to construct NS VDFs using the Chapman-Enskog theory ae thifferent locations in the flowfield. The density
and temperature contours along with the three VDF locatiortbe flowfield are shown in Figure 7. Location 1
corresponds to a distance »fA = 0.25 from the sharp leading edge of the plate and is within tigoreof the
flowfield where non-continuum effects are likely to play angiigant role. Location 2 and 3 are further downstream
at distancex/A = 17 andx/A = 57 respectively from the leading edge. Figure 8 comparesurfaces of the NS
VDFs corresponding to an isovalue 6f= 1E — 3 for the three locations. Clearly, the maximum deviaticonir
equilibrium is at location 1 where the VDFs show significaigtattion in bothx andy directions. The orientation

of the isosurfaces along a direction that is neither aloraxis-nor along y-axis clearly indicates the 2-D nature of
non-equilibrium. The degree of non-equilibrium decreagesve move further downstream with the distortion of
iso-surfaces decreasing as we move from location 1 to 3.

4. CONCLUSIONS

A visualization methodology has been proposed to visualiae-equilibrium flow simulations using 3-D VDFs.
Results were presented for both 1-D and 2-D flow problems.[Arlermal shock wave problem was considered for
two different upstream Mach numbévs= 1.4 andM = 2.5. The iso-surfaces of the VDF atA = —2.0 inside the
shock wave obtained using various solution methods inofyitie ES-BGK method, DSMC technique, Mott-Smith
solution, and the Chapman-Enskog theory were presentedsdburfaces of the distribution function obtained using
various methods for the weak non-equilibrium case were siiidentical whereas different methods gave significantly
differentisosurfaces for the strong non-equilibrium casee differences can be attributed to fundamental assonmgpti
associated with each of the methods including the form ofctiiésion frequency. The technique was also used to
visualize the Navier-Stokes velocity distibution functioat different locations in a 2-D hypersonic flow past a flat
plate. The isosurfaces clearly indicate the 2-D nature@htbn-equilibrium with distortions in bothandy directions
with the distortion being maximum closest to the leadingesddpere the rarefaction effects are most significant.
Hence, the visualization of VDF can provide valuable infatibn about the degree and direction of non-equilibrium.
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It can also be used to assess accuracy of the numericalsoWitih respect to grid resolution in the velocity space for
deterministic solution techniques.
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FIGURE 2. Comparison of normalized density and temperature profisioed using various methods fdr= 1.4
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FIGURE 3. Iso-surfaces of the non-dimensional velocity distribationction within a normal shock wave with upstream Mach
numberM = 1.4 corresponding to an iso-value bf= 1E — 3 obtained using various methods.
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FIGURE 5. Iso-surfaces of the non-dimensional velocity distribationction within a normal shock wave with upstream Mach
numberM = 2.5 corresponding to an iso-value bf= 1E — 3 obtained using various methods.
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FIGURE 6. Iso-surfaces of the non-dimensional velocity distribntionction within a normal shock wave fiM = 2.5 obtained
using the ES-BGK method and corresponding to various isuwesa
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FIGURE 7. Density and Temperature contours of two-dimensional flonitobgen past a flat plate & = 10 with the three VDF
locations indicated
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FIGURE 8. Comparison of isosurfaces of the velocity distributiondtion at (left) Location 1, (middle) Location 2, (right)
Location 3 corresponding to an isovaluefof 1E — 3
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