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Scaling law for direct current field emission-driven microscale gas
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A. Venkattraman and A. A. Alexeenkoa)

School of Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana 47907, USA
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The effects of field emission on direct current breakdown in microscale gaps filled with an ambient

neutral gas are studied numerically and analytically. Fundamental numerical experiments using the

particle-in-cell/Monte Carlo collisions method are used to systematically quantify microscale

ionization and space-charge enhancement of field emission. The numerical experiments are then

used to validate a scaling law for the modified Paschen curve that bridges field emission-driven

breakdown with the macroscale Paschen law. Analytical expressions are derived for the increase in

cathode electric field, total steady state current density, and the ion-enhancement coefficient

including a new breakdown criterion. It also includes the effect of all key parameters such as

pressure, operating gas, and field-enhancement factor providing a better predictive capability than

existing microscale breakdown models. The field-enhancement factor is shown to be the most

sensitive parameter with its increase leading to a significant drop in the threshold breakdown

electric field and also to a gradual merging with the Paschen law. The proposed scaling law is also

shown to agree well with two independent sets of experimental data for microscale breakdown in

air. The ability to accurately describe not just the breakdown voltage but the entire pre-breakdown

process for given operating conditions makes the proposed model a suitable candidate for the

design and analysis of electrostatic microscale devices. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4773399]

I. INTRODUCTION

Field emission1 refers to the emission of electrons from

the cathode due to the application of intense electric fields

typically greater than 100 V/lm. The emission of electrons

lead to different effects depending on whether the emission

is in vacuum or in the presence of an ambient neutral gas.

The various aspects of electron emission in vacuum have

been analyzed in detail in the past.2–4 The negative space

charge that accumulates due to the emitted electrons sup-

presses the electric field and hence the current density of

electrons eventually leading to a space charge limited current

density.3 However, when field emission occurs in the pres-

ence of an ambient neutral gas, a fraction of the emitted elec-

trons gain sufficient energy in the electric field leading to the

ionization of neutral atoms, thereby generating ions and

resulting in the formation of a Townsend dark discharge.

Depending on operating conditions, this could eventually

lead to gas breakdown through an electron avalanche.5

The scaling law for traditional macroscale gas break-

down is given by the Paschen curve.6 The Paschen curve pre-

dicts a minimum breakdown voltage of about 300 V for air

(for a typical secondary electron emission coefficient of

0.01) at atmospheric pressure occurring for a gap size of

about 10 lm. For micron-sized gaps that are, for example,

frequently encountered in microscale devices in the electron-

ics industry, the Paschen law predicts a breakdown voltage

of a few kV. As a result, gas breakdown was not considered

to be a possible breakdown mechanism in microgaps that

typically have a few 100 V applied across them. However,

experiments in the past7–10—summarized in detail by Go

and Pohlman11 and not repeated here—have observed glows,

sparks, and other charging phenomena in microgaps of vari-

ous gases at few tens of volts, which is much lower than the

minimum predicted by the Paschen curve.

This deviation has been attributed to the field emission

of electrons, thereby leading to the formation of a self-

sustained field emission-driven microdischarge. In order to

describe gas breakdown for all gap sizes, a modification to

the Paschen curve has been proposed by including the effects

of field emission in microgaps and is commonly referred to

as the modified Paschen curve.12 The modified Paschen

curve bridges the purely field emission-induced breakdown

at very small gaps to the traditional Paschen curve-predicted

breakdown. Obtaining analytical models that describe this

transition accurately has been an active area of research in

the recent past due to, for example, their importance in

predicting the reliability of electrostatically actuated micro-

electromechanical systems (MEMS) including sensors and

actuators.

Radmilovic-Radjenovic et al. have published a series of

papers13–15 considering numerical simulations to predict the

breakdown voltage in small gaps including the effects of

field emission. Data from experiments16 performed using

structures with a gap size of about 3 lm were explained17

using the particle-in-cell/Monte Carlo collisions (PIC/MCC)

simulations to extract parameters that describe the break-

down process as opposed to just the breakdown voltage.

However, with the simulations performed for a fixed set of

parameters, they lack the predictive capability that is likelya)Electronic mail: alexeenk@purdue.edu.

1070-664X/2012/19(12)/123515/11/$30.00 VC 2012 American Institute of Physics19, 123515-1
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to be important to the analysis of electrostatic microscale

devices. While the lack of predictive capability has been

addressed partially by the mathematical models presented by

Go and Pohlman11 and Tirumala and Go,18 they still have

their limitations. With approaches completely based on

theory,18 parameters such as ionization coefficient extrapo-

lated from macroscale behavior coupled with other assump-

tions related to location of formation of ion make these

approximate models. On the other hand, the model described

by Go and Pohlman11 involves an arbitrary fitting parameter,

K, obtained from experiments which decreases the predictive

capability. The disadvantage due to the arbitrary fitting pa-

rameter has been partially addressed recently by Rumbach

and Go31 where they formulate a model for K by considering

the non-dimensional Poisson’s equation and deriving an ap-

proximate ion number density that leads to avalanche break-

down. However, while their fluid model solved numerically

describes the pre-breakdown current densities accurately,

their approximate analysis to predict pre-breakdown charac-

teristics starts deviating from the fluid model at about 20 V

below the breakdown voltage, which is crucial considering

that the current densities at lower voltages are anyway

negligible.

Therefore, there is still a need for a compact model that

can accurately predict the breakdown voltage as well as pre-

breakdown current-voltage characteristics of microgaps

without the use of uncertain fitting parameters, theories

extended based on behavior at macroscales, or detailed nu-

merical simulations. The main goal of this work is to address

this issue by formulating, and validating using fundamental

PIC/MCC numerical experiments, a scaling law that can not

only predict the breakdown voltage but also describe the

entire breakdown process in microgaps using parameters rel-

evant to microscale. The advantages of such a model would

be its potential application in the design and analysis of elec-

trostatic microscale devices without having to repeat a large

number of PIC/MCC simulations to determine the break-

down voltage for a given microscale device. The remainder

of the paper is organized as follows; Sec. II provides the nec-

essary theory and background; Sec. III presents the model

formulation, results and discussion with Sec. IV reserved for

the conclusions.

II. THEORY AND BACKGROUND

The generation of ions in microgaps has been a widely

studied problem for a variety of applications including gas

sensors, electronic cooling pump,19 and electrostatic micro-

motors.10 Traditionally, as described in Sec. I, the break-

down of gases by production of charged particles is

described by the Paschen curve,6 which relates the break-

down voltage to the pressure and gap size between the anode

and cathode. The breakdown voltage is derived using the

Townsend avalanche criterion

cseðead � 1Þ ¼ 1; (1)

where cse is the secondary electron emission coefficient,

which represents the probability of electron emission when

an ion strikes the cathode. In Eq. (1), a is the ionization coef-

ficient defined as the number of ions generated per electron

per unit length. Traditionally a is described by the semi-

empirical relation6

a ¼ App exp �Bpp

E

� �
; (2)

where p is the pressure, E is the electric field, Ap and Bp are

gas-dependent parameters that are usually obtained using ex-

perimental data for a performed on macroscale gaps around

1 mm. Using Eq. (2) in Eq. (1) gives an expression for mac-

roscale breakdown voltage (Vb), which is referred to as the

Paschen law and is given by

Vb ¼
Bppd

logðAppdÞ � logðlogð1þ 1=cseÞÞ
: (3)

It has now been well established that field emission plays a

major role in gas breakdown at microscales. The process of

field emission is quantitatively described by the Fowler-

Nordheim (F-N) theory,20 which relates the current density

of field emitted electrons to the electric field using the equa-

tion given by

jFN ¼
AFNb2E2

/t2ðyÞ exp �BFN/3=2vðyÞ
bE

 !
; (4)

where / is the work function of the cathode material, b is

the field enhancement factor, and AFN and BFN are constants.

v(y) and t2ðyÞ were not part of the original F-N equation and

were corrections included later.21 The correction terms are

given by

vðyÞ � 0:95� y2;

t2ðyÞ � 1:1;

where y � 3:79� 10�4
ffiffiffiffiffiffiffiffiffiffi
ðbEÞ

p
=/ is a function of the electric

field, work function of the cathode, and the field enhance-

ment factor. The field enhancement factor b is a strong func-

tion of the surface properties including roughness. The

dependence on roughness makes it hard to predict the value

of b whose values have been found to vary between 1.5 and

115 in various experiments in the past.22 Previous work19

dealing with numerical simulations of ion generation in

micron gaps of air used a value of around 50.

The mathematical model for the modified Paschen curve

is an attempt to derive an expression for breakdown voltage

including the effects of field emission. Therefore, the Town-

send avalanche criterion in Eq. (5) used to obtain the

Paschen curve is modified as11

ðcse þ c0Þðead � 1Þ ¼ 1; (5)

where c0 is the ion-enhancement coefficient used to capture

the influence of field emission and its enhancement due to

positive space charge. This work makes an attempt to formu-

late a unified scaling law based on a theoretical analysis that

considers a steady-state one-dimensional microdischarge and
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derives an expression for the pre-breakdown current density

as well as a new breakdown criterion that describes gas

breakdown in both microscale and macroscale gaps. The nu-

merical experiments used to validate the proposed scaling

law are performed using the PIC/MCC method, which is

explained in detail by various researchers in the past.23–25 In

this work, the open source one-dimensional PIC/MCC code

XPDP1
26 developed at the University of California, Berkeley,

has been used after including the effects of field emission.

The number of electrons emitted from the cathode was deter-

mined using the F-N equation using the local value of the

electric field and a fixed value of b.

III. RESULTS AND DISCUSSION

This section presents details of the formulation of mod-

els used in the current work. Initially, the microscale ioniza-

tion coefficient, a, is considered followed by an analysis of

the effects of positive space charge enhancement of field

emission.

A. Microscale ionization coefficient

The method used to obtain a using PIC/MCC numerical

experiments is described below. A constant current source is

introduced at the cathode and the total current density in the

gap and the ion and electron current densities at the cathode

at steady state are obtained. The steady state total current

density in the gap is related to the current density of the cath-

ode source by the relation6

j ¼ j0 expðadÞ; (6)

where j is the steady state current density in the gap and j0 is

the current density of the cathode source. The value of a can

be obtained from the known values of j, j0, and d. However,

the above expression does not account for the small decrease

in electron current density at the cathode due to backscatter-

ing particularly for low applied voltages. Therefore, a more

accurate method to estimate a would be to use the ratio of

ion to electron current density at the cathode as

ji
je

¼ expðadÞ � 1: (7)

Here, the value of je is slightly less than j0. It should be men-

tioned that in these simulations, the value of cse was set as 0.

For a non-zero value of cse, the steady state current density is

related to the current density of the cathode source as6

j ¼ j0 expðadÞ
1� cseðexpðadÞ � 1Þ : (8)

Before determining the values of a for microscale gaps, it is

important to verify that the behavior of a is indeed different

in microscale gaps when compared to macroscale gaps. If

microscale ionization coefficient follows the empirical law

in Eq. (2), it is clear that, for a given pressure, a is a function

only of the electric field and not of voltage and gap inde-

pendently. Therefore, the value of a should be the same for

0.5, 1, and 2 lm as long as the applied electric field and pres-

sure were the same. This was tested using PIC/MCC simula-

tions performed for gap sizes of 0.5, 1, and 2 lm filled with

argon at applied voltages of 25, 50, and 100 V, respectively,

all of which correspond to an electric field of 50 V/lm. The

simulations were performed for a cathode source current

density of 616:49 A=m2, which corresponds to the F-N cur-

rent density at an electric field of 50 V/lm. It should be men-

tioned that, for these simulations, any small current density

value could have been used.

Figure 1 shows the variation of number density of ions

and electrons across the gap for gap sizes of 0.5 and 2 lm.

Since the results are based on particle methods, instantane-

ous values of macroscopic quantities are noisy, and all

results presented were based on about 500 000 sampling

timesteps after the system reached steady state. The ratio of

real to computational particles was chosen for each case

such that the total number of computational ion particles (the

species with higher number density) was around 0.1� 106 at

steady state. The timestep was chosen as 10�15 s, which

ensures that a computational particle does not cross several

cells in one timestep with the cell size being chosen as

FIG. 1. Comparison of ion and electron number density variation across the

gap for 0.5 and 2 lm argon microdischarge at an electric field of 50 V/lm.

j0 ¼ 616:49 A=m2 and cse ¼ 0:0; (a) is 0.5 and (b) is 2 micron.
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0.01 lm. The number densities shown in Figure 1 show that

the net charge in the gap is positive with the ion number den-

sity higher than the electron number density by at least one

order of magnitude depending on the gap size. The higher

ion number density is due to a lower free diffusion for ions

and the absence of a quasi-neutral region ensures that there

is no ambipolar diffusion.27

Figure 2 shows the variation of electron, ion, and total

current density across the gap for 0.5 and 2 lm gaps. It can

be observed that electrons carry almost all the current at the

anode whereas the current density is shared between elec-

trons and ions at the cathode. The ratio of electron to ion cur-

rent density at the cathode is about 15 for the 0.5 lm gap and

decreases to 0.43 for the 2 lm gap. The ratio of electron to

ion current density at the cathode is 1=ðexpðadÞ � 1Þ and for

small gaps, expðadÞ is just above 1 resulting in a large elec-

tron to ion current density. It should be mentioned that in the

case of very small gaps where no ionization occurs, there are

no ions generated and electrons carry all the current in the

entire gap. A similar scenario holds true even for larger gaps

when the conditions in the gap are close to vacuum implying

that there are no neutrals to be ionized.

The value of a, as described before, is obtained using the

ratio of ion to electron current density at the cathode. For the

0.5 lm gap, the value of a at an electric field of 50 V/lm was

obtained as 1290.18 1/cm. For the 2 lm gap at 100 V, a was

obtained as 6005.50 1/cm. It was also ensured that the electric

field variation across the gap is not significant for all the sim-

ulations. If the electric field variation is significant, the value

of a obtained from the PIC/MCC simulations will not corre-

spond to an electric field of 50 V/lm but will correspond to

an average value across the range of electric fields encoun-

tered in the gap. Figure 3 shows the potential and electric

field variation across the gap for both 0.5 and 2 lm gaps. It

can be clearly seen that the potential varies almost linearly

for both gaps with an almost constant electric field across the

gap. For the 0.5 lm gap, the electric field across the entire

gap is within 0.002% of the nominal value of 50 V/lm. The

PIC/MCC simulations presented above clearly show that the

value of a for microscale gaps depends on the actual gap size

apart from the electric field. Therefore, microscale gas break-

down models that use macroscale Paschen curve parameters

will predict breakdown voltages that are lower than the true

breakdown voltages due to their overprediction of a. As a

result, a model that describes the correct behavior of a at

microscales is formulated using a number of PIC/MCC simu-

lations (detailed tabulated results available in Ref. 28) for

various values of electric field and gap size for both argon

and nitrogen microdischarges with the results summarized in

Figure 4. It should be mentioned that the plot includes data

for gap sizes ranging from 0.5 lm to about 8 lm. The E/p val-

ues for all these simulations lie between 500 and 1000 V/cm/

Torr. The ratio of a=p obtained from PIC/MCC simulations

to the value of macroscale a=p obtained using the Paschen

parameters is plotted as a function of the voltage normalized

FIG. 2. Comparison of ion and electron current density variation across the

gap for 0.5 and 2 lm argon microdischarge at an electric field of 50 V/lm.

j0 ¼ 616:49 A=m2 and cse ¼ 0:0.

FIG. 3. Comparison of potential and electric field variation across the gap

for 0.5 and 2 lm argon microdischarge at an electric field of 50 V/lm. j0 ¼
616:49 A=m2 and cse ¼ 0:0. Symbols correspond to 0.5 lm and lines corre-

spond to 2 lm. Red corresponds to potential and black corresponds to elec-

tric field.
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with respect to the ionization potential of the gas. It can be

seen that when the applied voltage is much higher than the

ionization potential, indicating that there are sufficiently large

number of ionizing collisions in the gap, the ratio tends to 1

indicating that macroscale models predict the ionization coef-

ficient accurately. However, for voltages comparable to the

ionization potential, there is significant deviation from the

macroscale a=p with the dependence of deviation on V/IP to

be quantified later.

It is also worth discussing the effect of backscattering,

which is particularly significant for small values of applied

voltage. To explain this effect, let us consider an atmospheric

pressure microdischarge with 20 V applied across 0.5 lm. In

this microdischarge, an average electron starting from rest at

the cathode can participate in a maximum of 1 ionizing colli-

sion before it reaches the anode. At these low applied vol-

tages, most of the electron-neutral collisions are elastic due

to the significantly higher cross section when compared to

other collision mechanisms. Elastic scattering of low-energy

electrons are largely isotropic resulting in a reasonable frac-

tion of backscattered electrons, which drift towards the cath-

ode. As a result, for a given cathode source current density

j0, the steady state current density in the gap is less than j0
corresponding to an effective ionization coefficient that is

negative based on Eq. (6). However, it is worth noting that

this does not imply the absence of ions in the gap. The

increase in current density due to ionization balances the

decrease due to backscattering when the applied voltage is

about 50% higher than the ionization potential. This essen-

tially corresponds to an effective value of a ¼ 0 (based on

Eq. (6)) where the cathode source current is not amplified in

spite of a few ionizing collisions in the gap. The influence of

backscattering could be included in Eqs. (6) and (8) by using

a factor but is typically not taken into account since the

decrease in current density due to backscattering is only

about 5%.

To describe the deviation of the ionization coefficient at

applied voltages that are comparable to the ionization poten-

tial, we formulate a model that depends on V/IP. This is a pa-

rameter that is closely related to the ratio of the ionization

mean free path to the gap size (k=d � IP=V), which in turn

determines the number of ionizing collisions. The results

from PIC/MCC simulations were observed to be described

accurately using a semi-empirical model given by

a
p
¼ a

p

� �
Macroscale

1� exp � V=IP� 1:0

3:1

� �0:8
 !" #

; (9)

where IP refers to the ionization potential in units of V. The

above model is valid for all applied voltages greater than

the ionization potential and assumes no ion generation for

voltages less than the ionization potential. This assumption

is reasonable though not perfectly true due to the fact that

the electrons introduced at the cathode location have an

energy distribution and there is a small but finite probability

for an electron to gain energy higher than the ionization

potential even when the applied voltage is less than the ioni-

zation potential. For argon, the value of macroscale a=p is

given by6

a
p

� �
Macroscale

¼ C expð�D
ffiffiffiffiffiffiffiffi
p=E

p
Þ; (10)

where C¼ 29.2 1/cm/Torr and D ¼ 26:6 V1=2=cm1=2=Torr1=2,

which is considered to lead to better agreements with experi-

ments for inert gases6 than the model using Ap and Bp. For

nitrogen, the values of Ap and Bp were taken from Raizer.6

The values of Paschen parameters for various common gases

are summarized in Table I.

The proposed model was also compared with PIC/MCC

simulations for a gap size of 2 lm and various values of

pressure. Figure 5 shows the variation of a=p as a function

of pressure for a fixed value of E/p¼ 1000 V/cm/Torr.

While the value of a=p increases with increasing pressure

for pressures in the range 190 Torr to about 1000 Torr, the

rate of increase is lower for higher values of pressure with

a=p tending to a certain value. The values of a=p at

1500 Torr and 2000 Torr agree within 2%. The model given

by Eq. (9) shows good agreement with the PIC/MCC simu-

lations. For example, the a=p value for p¼ 380 Torr,

V¼ 76 V, and d¼ 2 lm from actual PIC/MCC simulations is

7.9335 1/Torr/cm, and the model predicts a value of 7.8958

FIG. 4. Comparison of ratio of ða=pÞ obtained from PIC/MCC simulations

to ða=pÞMacroscale for various gap sizes of argon and nitrogen with the pro-

posed ionization coefficient model given by Eq. (9). Gap sizes range from

0.5 to 8 lm with E/p between 500 and 1000 V/cm/Torr for all cases.

TABLE I. Summary of Paschen parameters from literature for various com-

mon gases. Most of the data is from Raizer6 except for oxygen, which is

based on PIC/MCC simulations in this work.

Gas Ap Bp C D

Helium 3 34 4.4 14

Argon 12 180 29.2 26.6

Nitrogen 12 342

Oxygen 14 341

Air 15 365

Xenon 26 350
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1/Torr/cm, which agrees within 1%. Though the error is

higher for a pressure of 2000 Torr, it is still within accepta-

ble limits at 17%.

It should be mentioned that at very high E/p, the value

of aMacroscale obtained using Paschen parameters (for exam-

ple, Eq. (10)) becomes inaccurate and it would be better to

use the most accurate macroscale theory corresponding to

such high E/p.29,30 Strictly speaking, the parameters in Eq.

(9) may show a weak dependence on the gas under consider-

ation, but since the ionization cross section variation near the

ionization potential is similar for a wide range of gases, the

proposed model can be used as a first approximation for the

microscale ionization coefficient in the absence of reliable

data. However, if data are available at microscales for a cer-

tain gas, it is likely to be more accurate than the semi-

empirical model proposed here. Since the model proposed in

Eq. (9) for deviation from macroscale theories (based on ei-

ther Paschen parameters or high E/p theories29,30) is based

on simulations performed for 500 < E=p < 1000 V=cm=
Torr, it is worth evaluating its performance for conditions

outside this range of E/p. Here, the performance of the em-

pirical model is demonstrated using PIC/MCC simulations

of two argon microdischarges at E/p¼ 2000 V/cm/Torr. The

first microdischarge has 456 V applied across 3 lm, and the

second microdischarge has 45.6 V applied across 0.3 lm.

Since 456 V is much higher than the ionization potential of

argon, the value of a=p obtained from this simulation is a

good estimate of ða=pÞMacroscale, and hence, the ratio of a=p
for these two simulations can be used to evaluate the per-

formance of the empirical model at E=p > 1000 V=cm=
Torr. The ratio of a=p for the two cases was obtained as

0.4904 with Eq. (9), predicting a value of 0.3900 correspond-

ing to an error of about 20%. Therefore, the model describes

the deviation from macroscale a=p reasonably well even at

E/p values higher than 1000 V/cm/Torr. Here, it should be

mentioned that the value of aMacroscale at these high E/p is

better represented by high E/p theories29,30 since Paschen

parameters tend to overpredict30 the value of a at such high

E/p. For example, macroscale a=p at E/p¼ 2000 V/cm/Torr

is predicted as 16.1089 1/cm/Torr using Paschen parameters

in comparison to 13.2051 1/cm/Torr obtained using PIC/

MCC simulations.

B. Ion-enhancement coefficient

The previous section studied ionization in microscale

gaps but did not deal with field emission, which is the most

important phenomenon for breakdown in microgaps. The

role played by the ion-enhancement coefficient c0 is similar

to the role played by cse in macroscale gaps, and its value

can be extracted17 using PIC/MCC numerical experiments.

The initial set of simulations were performed for b ¼ 55,

which is a reasonable estimate based on actual microscale

structures16 though the dependence on b will be addressed

subsequently. The cathode material was assumed to be nickel

with a work function of 5.15 eV. The value of cse was taken

to be 0 without loss of generality. The numerical experi-

ments were performed for gap sizes ranging from 0.5 to

3 lm for the purpose of validation of the model formulated

in this work. Figure 6(a) shows the electron and ion current

density variation in the gap for an applied voltage of 58 V.

FIG. 5. Variation of a=p as a function of pressure for a given value of

E/p¼ 1000 V/cm/Torr obtained from PIC/MCC simulations and the pro-

posed ionization coefficient model given by Eq. (9). The gap size was fixed

at 2 lm.

FIG. 6. Current density, potential and electric field variation across the gap

for an applied voltage of 58 V across a 1 lm argon gap. The value of b ¼ 55

and cse ¼ 0.
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Apart from the total current densities at steady state, the

figure also shows the current densities that would correspond

to pure F-N emission (using the nominal electric field of

58 V/lm) and F-N emission coupled with ionization in the

gas phase. The F-N emission coupled with ionization (la-

beled as “Fowler-NordheimþIonization” was obtained as

jFNþion ¼ jFN expðadÞ; (11)

where d ¼ 10�4 cm; jFN is the F-N current density, and a is

obtained using the microscale model presented in Sec. III A.

The total PIC/MCC current density at steady state is higher

than jFNþion by a factor of 1.38. This increase in the total cur-

rent density is due to the effect of field emission enhance-

ment due to space charge and c0 can be extracted using a

relation similar to Eq. (8), where cse is replaced by c0. The

value of c0 was obtained as 0.4231 for the above case. Even

though the electric field at the cathode location, as shown in

Figure 6(b) increased by only about 1.43%, it contributes to

a significant increase in the F-N current density due to the

exponential relation between electric field and F-N current

density. Microscale gas breakdown through electron ava-

lanche occurs when the cathode electric field changes by

about 3%. A model that describes microscale gas breakdown

should have the capability to predict, apart from the total cur-

rent density, parameters such as c0 and the increase in cath-

ode electric field due to positive space charge in the gap.

In order to formulate such a model, we use an approach

similar to that used by Boyle and Kisliuk7 with suitable modi-

fications as presented below. We can write the F-N equation as

jFN ¼ CFNE2exp �DFN

E

� �
; (12)

where E is the applied electric field. The constants CFN and

DFN depend on AFN; BFN; b, and / and are given by

DFN ¼
0:95BFN/3=2

b
; (13)

CFN ¼
AFNb2

/t2ðyÞ exp
ð3:79� 10�4Þ2BFN

/1=2

 !
: (14)

When there is positive space charge in the gap, the cathode

electric field is modified to, say, Eþ Eþ, where Eþ is the

increase in electric field due to the positive space charge.

The F-N current density at the enhanced electric field is

given by

j0FN ¼ CFNðEþ EþÞ2 exp � DFN

Eþ Eþ

� �
: (15)

The change in electric field Eþ is small in comparison to the

applied electric field E and the above expression can be sim-

plified, using a Taylor’s series expansion on each term

involving Eþ and neglecting the higher order terms, to

j0FN ¼ CFNE2 1þ 2Eþ

E

� �
exp

DFNEþ

E2

� �
exp �DFN

E

� �
: (16)

This increased F-N current density is enhanced due to ioniza-

tion in the gap and secondary electron emission, leading to a

steady state total current density of

jtot ¼ j0FN

expðadÞ
1� cseðexpðadÞ � 1Þ

¼ jFN exp
DFNEþ

E2

� �
1þ 2Eþ

E

� �
expðadÞ

1� cseðexpðadÞ � 1Þ :

(17)

The total current density can also be written, in terms of c0, as

jtot ¼
jFN expðadÞ

1� ðcse þ c0ÞðexpðadÞ � 1Þ : (18)

Comparing the two expressions for jtot gives an expression

for c0 as

c0 ¼ 1� ½1� cseðexpðadÞ � 1Þ�expð�DFNEþ=E2Þ
ðexpðadÞ � 1Þð1þ 2Eþ=EÞ � cse:

(19)

It should be mentioned that previous work7,32 dealing with

microscale gas breakdown recommend a variation given by

c0 ¼ K exp �DFN

E

� �
; (20)

where K is a constant. The only unknown parameter in

Eq. (17) for total current density and Eq. (19) for c0 is Eþ,

which is the increase in the cathode electric field due to the

positive space charge. Starting from the Poisson’s equation,

we obtain an approximate expression for the value of Eþ.

The Poisson’s equation is given by

dE

dx
¼ q
�0

; (21)

where q is the charge density and �0 is the permittivity of

free space. Assuming that the electric field at the center of

the gap is the nominal electric field (based on results of PIC/

MCC simulations) and also a constant charge density from

d/2 to d, we can write

Eþ ¼ qd

2�0

: (22)

The charge density can be written in terms of the ion current

density (jion) and the ion drift velocity (vd) as

q ¼ jion

vd
: (23)

The ion current density at the cathode is related to the total

current density in the gap through the relation

jion ¼
jtotðexpðadÞ � 1Þ

expðadÞ : (24)

Using Eq. (17), this can be simplified to
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jion ¼
jFN exp DFNEþ

E2

� �
1þ 2Eþ

E

� �
ðexpðadÞ � 1Þ

1� cseðexpðadÞ � 1Þ : (25)

Therefore, Eq. (22) can be written as

Eþ ¼ djFNðexpðadÞ � 1Þ
2vd�0½1� cseðexpðadÞ � 1Þ� exp

DFNEþ

E2

� �
1þ 2Eþ

E

� �
:

(26)

Multiplying both sides of the above equation by DFN=E2 and

referring to DFNEþ=E2 as x, we get an equation of the form

expðxÞð1þ 2E�xÞ
Fbrx

¼ 1; (27)

where E� ¼ E=DFN and Fbr is a breakdown parameter given

by

Fbr ¼
2vd�0E2½1� cseðexpðadÞ � 1Þ�

DFNdjFNðexpðadÞ � 1Þ : (28)

Solving for this x numerically using, say, Newton’s method

gives the enhancement in the electric field Eþ, which when

used in Eqs. (17) and (19) give the values of total current

density and c0, respectively. Note that the ion drift velocity is

obtained using the expression33

vd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ekTgE

pmprCE

s
; (29)

where k is the Boltzmann’s constant, Tg is the neutral gas

temperature, and rCE is the charge exchange cross section.

The charge exchange cross section typically depends on the

energy and the drift velocity obtained should be consistent

with the ion energy at which rCE is computed. The approxi-

mate theory formulated above is compared with results from

PIC/MCC simulations for various gap sizes ranging from 0.5

to 3 lm at various values of applied voltage with the results

summarized in Figure 7, which shows the variation of the

total current density at steady state. The results have been

plotted as a function of E/p though all cases were simulated

at a pressure of 760 Torr. The value of cse was taken to be 0.

The proposed model shows very good overall agreement

with the PIC/MCC simulations. It also clearly shows the

change in the slope of the current density variation when the

applied voltage reaches the breakdown voltage. This was

also observed in measurements reported by Hourdakis

et al.34 The minor differences between the proposed model

and PIC/MCC simulations occur right at breakdown where

the simulations consistently predict earlier breakdown by

about 0.5–1 V. This discrepancy could be due to some of the

simplifying assumptions made while formulating the

increase in electric field Eþ at the cathode.

The proposed model was also compared with PIC/MCC

simulations performed at a fixed value of bV for 1 and 2 lm

gaps. The value of bV was chosen as 3190 V for the 1 lm

gap and 5830 V for the 2 lm gap. Fixing the value of bV
fixes the value of the nominal field emission current density

(jFN), but the enhancement due to positive space charge will

be different depending on the value of b. Also, due to the dif-

ferent applied voltages, the ionization characteristics in the

gap are different for the different cases. The PIC/MCC simu-

lations show that the total current density, as shown in Figure

8, decreases with increasing b, indicating that for the lower

values of b, the decrease in the ion-enhancement coefficient

is compensated by a significantly higher ionization coeffi-

cient in the gap. The differences between the simulations

and the proposed model at lower values of b can be attrib-

uted to the error in computing the ionization coefficient at

very high E/p values. For example, the 2 lm case at b ¼ 25

corresponds to E/p¼ 1500. Since the purpose of this work is

not to study high E/p effects, we did not use high E/p ioniza-

tion coefficient models here. Using the less accurate

FIG. 7. Comparison of total current density in the gap as a function of E/p
for various gap sizes.

FIG. 8. Comparison of total current density in the gap as a function of b for

a fixed value of bV. The value of bV ¼ 3190 V for 1 lm and bV ¼ 5830 V

for 2 lm.
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moderate E/p model at high E/p results in an error of about

20% in a.

C. Avalanche breakdown voltage

In this subsection, the theoretical and semi-empirical

models formulated in the previous two subsections are used

to predict the breakdown voltage and compare it with the

breakdown voltages predicted by PIC/MCC simulations by

obtaining the voltage at which the number of electrons and

ions in the simulation diverges. The breakdown criteria for

the scaling law presented here can be obtained by consider-

ing the equation for the enhancement in the cathode electric

field, Eþ. The value of Eþ is obtained by solving an equa-

tion of the form gðxÞ ¼ expðxÞð1þ 2E�xÞ=Fbrx ¼ 1. This

equation has a solution only when a pre-breakdown steady

state exists for the microdischarge under consideration.

Specifically, the minimum value of the function gðxÞ ¼
expðxÞð1þ 2E�xÞ=Fbrx can be shown to occur when x ¼
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8E�
p

� 1Þ=4E� and no solution exists if

gðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8E�
p

� 1Þ=4E�Þ > 1. In other words, breakdown

occurs when gð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8E�
p

� 1Þ=4E�Þ ¼ 1 is satisfied. There-

fore, our breakdown criterion is

Fbr ¼
2vd�0E2½1� cseðexpðadÞ � 1Þ�

DFNdjFNðexpðadÞ � 1Þ ¼ expðx0Þð1þ 2E�x0Þ
x0

;

(30)

where x0 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8E�
p

� 1Þ=4E� lies between 0 and 1 with

the value of x0 tending to 1 for E� � 1. Therefore, the right

hand side of Eq. (30) has a finite value. At first glance it

might seem like this breakdown condition does not retrieve

the classical Townsend avalanche criterion in the absence of

field emission. However, in the absence of field emission or

when field emission effects are extremely small, the denomi-

nator goes to 0, which implies the numerator has to approach

zero for the ratio to have a finite value. The numerator going

to zero directly corresponds to the classical Townsend ava-

lanche criterion of

cseðexpðadÞ � 1Þ ¼ 1: (31)

Figure 9 shows the variation of breakdown voltage as a

function of gap size for argon at atmospheric pressure for vari-

ous values of cse. When cse ¼ 0, the Paschen curve predicts

infinite breakdown voltage. However, if field emission is

included, the breakdown voltages are finite as can be seen in

Figure 9. With an increase in the value of cse to 0.01, the clas-

sical Paschen curve predicts a finite breakdown voltage. How-

ever, for very small gap sizes, the breakdown process is

completely determined by the space charge enhancement. For

larger gap sizes, the breakdown voltage follows the traditional

Paschen curve corresponding to cse ¼ 0:01 since c0 � 0:01

for these gaps. The modified Paschen curve merges with the

Paschen curve at about 7 lm for cse ¼ 0:01. With further

increase in the value of cse, the modified Paschen curve

merges with the Paschen curve at a gap size of about 3 lm.

The proposed breakdown model predicts breakdown voltages

that agree extremely well with PIC/MCC simulations. It

should be mentioned that obtaining breakdown voltage from

PIC/MCC simulations requires several runs at various vol-

tages to observe when the number of ions and electrons in

the simulation diverge. Therefore, the PIC/MCC breakdown

voltages were obtained only for cse ¼ 0.

D. Comparison with experiments

The proposed scaling law for gas breakdown was then

used to compare with published experimental data for break-

down in air. The comparisons were performed for two inde-

pendent sets of experimental data for atmospheric pressure

air. The first set by Lee et al.35 (data obtained from Ref. 36)

was performed for a polished iron needle cathode, and the

FIG. 9. Comparison of variation of breakdown voltage as a function of gap

size for argon obtained from PIC/MCC simulations and the proposed break-

down model.

FIG. 10. Comparison of breakdown voltage of atmospheric pressure air

obtained using the proposed model and experimental data using iron

(/ ¼ 4:5 eV) and gold (/ ¼ 5:1 eV) cathodes. The value of cse ¼ 0:01. The

experimental data were obtained from the setup of Hourdakis et al.34 and

Lee et al.35 (data extracted from Slade and Taylor36).
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second set by Hourdakis et al.34 was for a planar gold cath-

ode. The work function of iron and gold were used as 4.5

and 5.1 eV, respectively. The ionization potential for air was

used as 14.9 eV, and the Paschen parameters were taken

from Raizer.6 Figure 10 compares results obtained using the

proposed breakdown model and the experimental data. It can

be seen that the experimental data of Lee et al. are described

well using a reasonable value of b ¼ 40 and the experimen-

tal data of Hourdakis et al. are described using b ¼ 90. The

value of cse was fixed at 0.01 for both cases and was not fit-

ted to agree better with the experimental data at larger gaps

since the main goal was to demonstrate that the models show

good agreement for microscale breakdown voltages. Though

the value of b is an uncertain parameter as was mentioned

earlier, the proposed breakdown model explains the general

trend of the experimental data very well. The value of b
strongly depends on the method used to fabricate the micro-

scale structure and once a reasonable value of b can be esti-

mated for a particular fabrication technique, the proposed

breakdown model can be used to compute the voltage limit

beyond which gas breakdown could contribute to the failure

of the microscale device.

IV. CONCLUSIONS

The gas breakdown at microscale has been studied

using fundamental one-dimensional PIC/MCC numerical

experiments and compared with a scaling law proposed in

this work. Initially, microscale gaps of argon gas at atmos-

pheric pressure were considered for various gap sizes and

the microdischarge structures were compared and con-

trasted with each other. PIC/MCC simulations of argon and

nitrogen microdischarges were used to obtain a general

model for the microscale ionization coefficient. An approx-

imate theoretical analysis was used to quantify the space

charge enhancement coefficient and its influence on micro-

scale gas breakdown. Closed form analytical expressions

were obtained for the increase in cathode electric field, total

steady state current density, and the ion-enhancement coef-

ficient. The proposed model was validated using PIC/MCC

simulations for gap sizes ranging from 0.5 to 3 lm. The

proposed breakdown model was also shown to agree very

well with experimental data reported earlier. Being a gen-

eral breakdown model makes it suitable for use in the

design and analysis of microscale electrostatic devices with

a direct current voltage bias applied across them. Though

the model presented here is for direct current breakdown, it

can be extended to cases in which the applied voltage is

varying as a function of time.
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