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We present numerical kinetic modeling of generation and evolution of the plasma produced as a

result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte

Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma

expansion by considering the major collisional processes at the microscopic level: elastic scattering,

electron impact ionization, ion charge exchange, and recombination and quenching for metastable

excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations

correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations

are compared with the published results of local drift-diffusion model, obtained for the same

conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in

reasonable quantitative agreement during the ambipolar expansion stage, whereas significant

non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the

REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron

densities as compared to 1D and show a better agreement with experimentally measured microwave

radiation scattering. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882261]

I. INTRODUCTION

There is a great interest for studying plasma and its

applications, generated as a result of Resonance Enhanced

Multiphoton Ionization (REMPI). Primarily, due to the use

of REMPI in a recently appeared precise non-perturbative

diagnostics,1 as well as for pre-ionization in plasma-assisted

ignition methods.2

In the papers,3–5 the evolution of laser-induced REMPI

plasma was modeled within the framework of nonstationary

one-dimensional (1D) drift-diffusion approximation, in

which the electron temperature is determined by the heat

conduction equation. This approximation is valid for the

equilibrium Maxwellian electron gas. It should be expected

that a more adequate approach to describe the REMPI

plasma is non-local, due to its small dimensions

(�10–100 lm) and the short formation time (�1–100 ns).

This is determined by the focusing area and a pulse duration

of the laser beam and a relatively small lifetime of the

plasma due to its expansion and recombination decay. A nat-

ural question arises, how great is the error of the local drift-

diffusion approximation and how adequate is it for the

description of experiments. In this paper, we performed the

numerical modeling of the REMPI plasma evolution using

Particle-In-Cell method with Monte Carlo Collisions

(PIC/MCC) at experimental conditions4 and the results are

compared with calculations based on the local drift-diffusion

approximation and experiments for the same conditions.

Nonlocal effects become more pronounced with

decreasing gas pressure. Therefore, PIC/MCC calculations in

this paper were performed for REMPI plasma in Argon for

the lowest pressure p¼ 5 Torr, at which the experiments

were conducted,4 and compared with calculations performed

in the framework of drift-diffusion approximation for the

same experimental conditions.4

The remainder of the paper is organized as follows.

Section II details the numerical method and physical models

with simulation setup explained in Sec. III. Results of 1D

and two-dimensional (2D) PIC/MCC simulations are pre-

sented in Sec. IV and compared with 1D drift-diffusion

model as well as experimental data.

II. NUMERICAL MODEL

Unlike continuum fluid approximations of plasma dy-

namics, kinetic models capture non-equilibrium transport

and relaxation/excitation processes. These non-equilibrium

processes are important when a characteristic time/length

scales of the problem are comparable to time/length scales of

the microscopic motion of a charged species. The minimum

length scale of REMPI plasma considered by Shneider et al.3

is 10 lm and the mean free path of Ar gas at 5 Torr at 300 K

is approximately 8 lm, this indicates a Knudsen number,

Kn¼ 0.8, i.e., the rarefied gas flow regime. Additionally, the

time scale of the expansion process and the laser pulse is in

nano-seconds, while the time taken by the electrons at 3.2 eV

to equilibrate is �3 ls. Thus non-equilibrium effects are

expected to be significant. In order to study the energy distri-

bution of electrons and for a more accurate prediction of

number density as compared to the fluid model, PIC/MCC6

method has been chosen. In general, PIC/MCC method

solves the fundamental kinetic equations of Boltzmann with-

out equilibrium approximation.

Particles are defined in continuum space through their

position and velocity. Field is determined at discretea)Electronic mail: alexeenk@purdue.edu.
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locations in space. However, both fields and particles are

defined at discrete times. Particle and field values are

advanced sequentially in time, starting from initial condi-

tions, with a temporal leap-frog scheme.10 Monte Carlo

Collision scheme is applied to consider collisions. A sche-

matic of PIC/MCC simulation algorithm for REMPI plasma

expansion is shown in Fig. 1. In the Lorenz force, the com-

ponent due to magnetic field is negligible in comparison

with that due to electric field in the present case and, hence,

not considered in the computations. The electric field is com-

puted from the electric potential, which in turn is computed

by solving the Poisson equation using Dynamic Alternating

Direction Implicit (DADI) numerical scheme which is

unconditionally stable.15

Since low pressure REMPI plasma in Ar is considered,

the major species (with Ar as the background gas) involved

in the process are electrons, Ar ions (Arþ) and Ar metasta-

bles (Ar*). The molecular ions are neglected for the

low-pressure case of p¼ 5 Torr. The generation of metasta-

bles, electrons, and ions is based on the total photon flux

from the laser pulse, which is integrated in time to obtain net

flux during the time step and is performed before the

particles are weighted to the grid at the beginning of every

time step as shown in Fig. 1.

The fundamental kinetic equation of Boltzmann for

each species in this case can be written as

@ðf�n�Þ
@t

þ v� �
@ðf�n�Þ
@r

¼ C� þ _nREMPI
� f M

� ; (1)

@ðfeneÞ
@t

þ ve �
@ðfeneÞ
@r

þ qeE

me
� @ðfeneÞ
@ve

¼ Ce þ _nREMPI
e f RI

e ; (2)

@ðfþnþÞ
@t

þ vþ �
@ðfþnþÞ
@r

� qeE

mþ
� @ðfþnþÞ

@vþ

¼ Cþ þ _nREMPI
þ f RI

þ : (3)

The terms C, n, f, and v are the collision integral, num-

ber density, velocity distribution function, and relative veloc-

ity, respectively. The subscripts “*”, “e,” and “þ” represent

metastables, electrons, and atomic ions, respectively, with qe

being the charge of an electron. The metastable relaxation

term C* consists of the quenching reactions with neutrals,

i.e., binary and three body quenching and time decay. The

collision term for electrons, Ce, includes the ionization of

neutrals, recombination with ions and binary elastic colli-

sions with neutrals. The ion collision term, Cþ, consists of

the ionization of neutrals, charge exchange collisions,

recombination with electrons and binary elastic collisions

with neutrals.

The particles generated by the REMPI process are mod-

eled as source terms for each species, as given in the last

term of Eqs. (1)–(3). The term f M represents Maxwellian

velocity distribution function with 0.026 eV as the mean

energy, and f RI is the random isotropic velocity distribution

function with a constant energy, which is 3.2 eV in case of

electrons and 0.026 eV in case of ions. The parameters r,

beff, k1, and k2 are the collision cross-section, effective

recombination rate coefficient of Argon ion and electron,

binary quenching rate coefficient and three body quenching

rate coefficient for Ar*, respectively. The net rate of number

density change of a species due to excitation or ionization by

REMPI is given by _nREMPI. The effective life-time of Ar

metastables is sd¼ 66 ns. The reactions involved in the

REMPI plasma expansion process in Ar gas are listed in

Table I. Figure 2 shows the dependence of collision cross

section on energy for electron-neutral collisions and

ion-neutral collisions.

A. Model for particle generation by REMPI

The three photon excitation cross section, r(3)¼ 2.81

� 10�92 m6 s2 and single photon ionization cross section,

rPi¼ 7.77� 10�23 m2 have been used for 3þ 1:REMPI of

Argon, which have been calculated by Zhang et al.3 The

number of metastables (N*), electrons (Ne), and ions (Nþ) to

be generated in a volume DV at the (iþ 1)th time step (with

“i” being the previous time step number) due to REMPI, are

based on the total photon flux and the gas number density,

ng and metastable number density, n* (since _nREMPI

¼ limitDt!0;DV!0 N=ðDVDtÞ) and are given by

Niþ1
� ¼ DVðngrð3ÞðFiþ1Þ3 � ni

�rPiF
iþ1Þ;

Niþ1
e ¼ DVðniþ1

� rPiF
iþ1Þ;

Niþ1
þ ¼ DVðniþ1

� rPiF
iþ1Þ:

(4)

The time dependence of laser pulse is shown in Fig. 3.

The total photon flux over time can be computed either by

analytically integrating the photon flux in the time between

the time limits or by multiplying the volume average of

photon flux with the time step (given by the time between

the limits used in integration). However, the latter approach

over predicts by 1%, which is significant when the number

of particles being generated are almost in the order of mil-

lions and hence the former method is used in the present

model. The time integrated total photon flux, F, is a function

of the laser pulse frequency, x (for a wavelength of

261.27 nm), and the laser pulse intensity, I, and is given by

Fiþ1 ¼
ðtiþ1

ti

Iðr; z; tÞ
�hx

dt; (5)

where �h is the reduced Plank’s constant. Laser intensity,

which is given byFIG. 1. PIC/MCC algorithm.
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I ¼ I0 exp � 2ðt� t0Þ
sp

 !2

� r

rb

� �2

� z

zb

� �2

2
4

3
5; (6)

where, I0 ¼ 2E=ðp3=2r2
bspÞ is the amplitude of the intensity,

E is the energy of the pulse, sp is the full-width half maxi-

mum of the pulse, rb is the laser focal radius, and zb is the

axial focal length. The full kinetic computation of gas heat-

ing involves the computation of exact energy loss by plasma

to the neutrals in every collision and coupling it to

Boltzmann equation for the gas to solve for the microscopic

thermal distribution.

B. Model for collisional processes

With ions as the target species in the recombination colli-

sions, the frequency of effective recombination of Argon ions

with electrons is �ef f ðr; z; TeÞ ¼ bef f ðr; z; TeÞnþðr; zÞ. Hence,

the probability of an electron undergoing effective recombi-

nation in a time Dt is Pef f ¼ 1� expð��ef f ðr; z; TeÞDtÞ. The

electron undergoing collision is chosen randomly, and the

collision takes place if the uniform random number generated

is less than Peff.

The loss of metastables to neutral atoms occurs by

binary quenching, three body quenching, and time decay.

Let the frequency of these loss mechanisms be �1, �2, and

�3, respectively, which are functions of spatial coordinates

(r, z) and energy of metastables. These processes are mod-

eled by the null collision method.10 The null collision fre-

quency is given by, �0 ¼ maxr;z;eð�1 þ �2 þ �3Þ. Hence, the

maximum number of metastables that undergo the loss proc-

esses in a time Dt is given by N�ð1� expð��0DtÞÞ. The

metastables undergoing collisions are chosen randomly and

the mechanism of loss process of a metastable with energy

e* is determined with the help of a random number, R as

given in Eq. (7)

TABLE I. Collisions modeled in PIC/MCC simulations for Argon gas.

S. No Type of collision Collision Rate coefficients7–9/cross sections10

(1) Electron elastic Arþ e! Arþ e

rðm2Þ ¼

1

10 19þ �

0:11

 ! ; � � 0:2 eV

ð9:07� 10�19Þ�1:55ð�þ 70Þ1:1

ð1:4þ �Þ3:25
; � > 0:2 eV

8>>>>>>>><
>>>>>>>>:

(2) Impact ionization Arþ e! Arþþ 2 e

rðm2Þ ¼

1:7155 � 10�18ð�� 15:76Þ
�2lnð0:0634�Þ ; 15:76 eV � � � 79 eV

2:648� 10�18ð�� 15:76Þ
�2lnð0:0344�Þ ; � > 79 eV

8>>>>><
>>>>>:

(3) Ion elastic ArþArþ ! ArþArþ rðm2Þ ¼ 1:8 � 10�19 þ 4�10�19ffiffi
�
p ; � 	 4 eV

(4) Charge exchange ArþArþ ! ArþþAr rðm2Þ ¼ 2� 10�19 þ 5:5�10�19ffiffi
�
p ; � 	 4 eV

(5) Binary quenching Ar*þAr! ArþAr k1¼ 10�21 [m3/s]

(6) Three body quenching Ar*þ 2Ar! Arþ 2Ar k2¼ 10�34 [m6/s]

(7) Recombination Arþþ 2 e! Arþ e For Te< 0.5 eV, bef f ¼ 1:55� 10�16T�0:63
e þ 3:61� 10�17T�2:18

e n0:37
e

þ 3:8� 10�21T�4:5
e ne½m3=s
 (Te in K and ne in m�3)

For Te	 0.5 eV, bef f ¼ 8:75� 10�39T�4:5
e ne þ 2:9 � 10�19T�0:75

e ½m3=s

(Te in eV and ne in m�3)

FIG. 3. Laser pulse in time domain used in experiments.4
FIG. 2. Collision cross-sections for neutral interaction with electrons and

ions in Ar gas.10
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R � �1ðe�Þ
�0

) Binary quenching

�1ðe�Þ
�0

< R � �1ðe�Þ þ �2ðe�Þ
�0

) Three body

quenching

�1ðe�Þ þ �2ðe�Þ
�0

< R � �1ðe�Þ þ �2ðe�Þ þ �3ðe�Þ
�0

) Time decay

�1ðe�Þ þ �2ðe�Þ þ �3ðe�Þ
�0

< R) No collision: (7)

III. SIMULATION SETUP

This section gives a brief description of the parameters

and the boundary conditions considered for the simulations.

All simulations were performed in cylindrical co-ordinate

system, since the problem is axisymmetric. For 1D and 2D

simulations, all the boundaries except the axis (for 1D simu-

lations, boundaries are only in the radial direction) were con-

sidered to be at a potential of 0 V. The initial electron energy

considered in the simulation is based on a random isotropic

velocity distribution,16 with constant energy of 3.2 eV, across

all the electrons generated from the laser pulse. Both 1D and

2D PIC/MCC simulations11 were performed at a gas pressure

of 5 Torr and a gas temperature of 300 K.

The constraint on the grid size is to resolve the smallest

characteristic length scale of plasma, i.e., Debye length,

hence a grid size of 0.5 lm was used both in radial and axial

directions. The constraint on time-step is that it should be

small enough that the fastest moving particle, i.e., the elec-

tron, does not cross more than one cell in a given time-step

and hence a time step of 10�13 s was used in all the simula-

tions. The REMPI plasma is simulated in 1D with 512 cells

in the radial direction and a total of about 0.5� 106 computa-

tional particles. The 2D simulations are performed with over

600 cells in the axial direction and 500 cells in the radial

direction and about 1� 106 particles ensemble averaged

over 5 simulations with varying random seed values.

IV. RESULTS AND DISCUSSION

The results presented here are from the PIC/MCC simu-

lations for the 3þ 1:REMPI of Argon at 5 Torr and at a tem-

perature of 300 K, with respect to the experimental laser

pulse parameters:4 energy per pulse, E¼ 2.1 mJ/pulse,

sp¼ 37 ns, effective beam radius, rb¼ 7.5 lm; effective beam

axial length, zb¼ 100 lm; laser wavelength¼ 261.27 nm. The

laser is assumed to start at t¼�10 ns. The results are plotted

considering R¼ 2 lm, which is 4 cells away from the axis, as

near the axis. This is done for better statistical accuracy in

comparison with R¼ 0.5 lm, which is only one cell away

from the axis, because of the square dependence of the vol-

ume on the radius.

A. 1D approximation

The radial distribution of number densities of all the

species considered at 0 ns and 50 ns are shown in Fig. 4. The

evolution of the radial distribution of number densities of

ions and electrons in Fig. 4, indicates ambipolar diffusion of

plasma. The electrons out of the quasi-neutral region in Figs.

4(a) and 4(b) are the electrons that have initially diffused

through free diffusion and those that have escaped the polar-

ization field.

A comparison of radial number density distribution of

electrons, ions, and metastables at 100 ns from PIC/MCC

simulation and fluid approximation calculations from

Shneider et al.4 is shown in Fig. 5. Ambipolar diffusion

along with free diffusion outside the bounds of the quasi-

neutral plasma can be seen in Fig. 5. A good agreement has

been found with respect to number density distribution and

also the boundary of the quasi-neutral region at 100 ns with

the results from Shneider et al.4 There is a difference in the

number density distribution of electrons, ions, and metasta-

bles, farther away from the axis and this variation in the

number density distribution can be attributed to the fact that

PIC/MCC simulations are kinetic while Shneider et al.4 uses

FIG. 4. Plasma expansion at (a) t¼ 0 ns and (b) t¼ 50 ns, showing free diffusion and ambipolar diffusion with arrow representing the bound of quasi-neutral

plasma.
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a fluid approximation. The former factors in various aspects

of the process in addition to the latter as described in Sec. II.

Figure 6 shows a comparison of the electron temperature

at the core of the laser focus between PIC/MCC simulations

and drift diffusion approximation.4 The temperatures tend to

the same value (�0.65 eV) as time progresses. For PIC/MCC

simulations, a peak in electron temperature of Te� 2.2 eV

could be observed at approximately 10 ns, which precedes

the peak in the laser pulse occurring at about 20 ns. During

the laser pulse, the electron energy distribution is highly

non-equilibrium. The electron temperature at the core is a

weighted average of the temperature of “hot” and “cold”

electrons. The “hot” electrons are those that had just been

generated by the laser pulse. The cold electrons are those

that had already been scattered by the gas. Note that the

mean time for an electron to undergo an elastic collision

with an Argon neutral is sm¼ 37.7 ps.12 The electron temper-

ature reaches a peak when the fraction of hot electrons is at a

maximum. It can also be observed that this trend continues

until the start of ambipolar diffusion. In contrast, the

drift-diffusion approximation corresponds to a single temper-

ature Maxwell-Boltzmann distribution and yields a monoto-

nously decreasing electron temperature. There is also

heating of the gas due to the electron energy relaxation in

collisions with gas particles and transfer of the kinetic energy

of the electrons and ions to the gas during the ambipolar

expansion, but it decreases with time and the gas at the core

reaches a temperature increase in the order of 10 K, which is

in agreement with Shneider et al.3

A comparison of the electron energy distribution func-

tion (EEDF) from PIC/MCC simulation and Maxwell-

Boltzmann energy distribution for the same mean energy

near the axis at different time instants is shown in Fig. 7. At

t¼ 10 ns, it can be observed that there is a significant fraction

of electrons that are both accelerated and decelerated from

their initial energy of 3.2 eV. The decelerated electrons are

those that diffuse radially outward and are decelerated by the

polarization field, while the accelerated electrons are those

that have a radial velocity towards the axis and hence are

accelerated by the polarization field. Figure 7 also shows the

qualitative deviation of the EEDF from Maxwell-Boltzmann

for the same mean energy, and it is higher for t¼ 10 ns than

at t¼ 100 ns, since, as time progresses, the EEDF from

PIC/MCC tends towards Maxwell-Boltzmann distribution.

The deviation of the EEDF from Maxwell-Boltzmann

distribution is quantified in terms of a parameter, f eq
max given

by

f eq
maxð%Þ ¼

DN

N

� �
PIC=MCC;e1

DN

N

� �
Boltzmann;e1

� 1

2
66664

3
77775� 100; (8)

where N is the total number of electrons, e1 is the energy that

corresponds to the maximum value of (DN/N)PIC/MCC for a

given mean energy (�e) in the EEDF, and (DN/N)Boltzmann,e1 is

the fraction of electrons from the Maxwell-Boltzmann energy

FIG. 5. Comparison of radial distribution of number densities from

PIC/MCC and from drift diffusion approximation4 at t¼ 100 ns with the

arrow representing the bound of quasi-neutral plasma. PIC/MCC simulation

results are represented by symbols and drift diffusion approximation results4

are represented by lines.

FIG. 6. Comparison of time evolution of electron temperature at the core of

the laser focus from PIC/MCC and from drift diffusion approximation at the

axis.4

FIG. 7. Comparison of EEDF between PIC/MCC and Maxwell-Boltzmann

of the same mean energy at R¼ 2 lm from PIC/MCC at (a) t¼ 10 ns and

(b) t¼ 100 ns.
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distribution (constructed based on the mean energy of

electrons (�e) from the simulation) that have the energy, e1.

The maximum deviation of EEDF from Maxwell-Boltzmann

distribution is shown in Fig. 8. Figure 8 clearly shows

that the electrons tend to equilibrium as time progresses, as

the maximum deviation of EEDF (PIC/MCC) from

Maxwell-Boltzmann tends to a small constant value of

about 15%.

Considering mean energy is directly proportional to

mean temperature, Fig. 9 shows the temporal evolution of

the electron temperature at R¼ 2 lm. Till 10 ns from the start

of the pulse, i.e., t¼ 0 s, the Debye radius, kD� 6 lm at

R¼ 2 lm, and the plasma radius, Rp, do not cross 6 lm till

t¼ 3 ns. Since kD>R till t¼ 3 ns, the dominant diffusion

process is free diffusion. At t� 3 ns, the Debye radius,

kD� 6 lm and plasma radius, Rp� 7.5 lm, hence kD<Rp

indicating ambipolar diffusion. Hence, the time zone- Free
Diffusion is predominantly characterized by pure (free) elec-

tron diffusion. There is a drop in mean energy at t� 7.5 ps

which is equal to the time taken by the electrons to

travel across the initial plasma core, i.e., t¼ (7.5 [lm]/ve

[m/s])� 7.5 ps. The increase in the mean energy near the

axis can be attributed to the acceleration of electrons with a

negative radial velocity due to the polarization field. The

time zone- Ambipolar Expansion is predominantly character-

ized by unsteady ambipolar expansion and hence the

decrease in the mean energy.

B. 2D approximation

The number density contours of electrons and ions at

different instants in time are shown in Fig. 10. Figures

10(a)–10(c) clearly indicate the presence of the quasi-neutral

plasma region in the shape of an ellipse in the R-Z plane.

Figures 10(a)–10(c) also show that a fraction of elec-

trons are outside the quasi-neutral plasma and free diffusion

is the process of their expansion. At the same time, the

FIG. 8. Maximum deviation of EEDF from PIC/MCC to that of Maxwell-

Boltzmann for the same mean energy.

FIG. 9. Electron temperature evolution with time, near the axis (R¼ 2 lm).
FIG. 10. Evolution of plasma with time: (a) t¼ 20 ns (AR¼ 1.45), (b)

t¼ 40 ns (AR¼ 1.15), and (c) t¼ 80 ns (AR¼ 1.02) from 2D approximation.
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clear expansion of the ions and electrons together from

Figs. 10(a) to 10(c) indicates ambipolar diffusion. A fraction

of ions can be seen outside the plasma, which in a way repre-

sent the cathode fall region.14

One of the key results from the 2D simulations, is the

comparison of the extents of axial and radial expansion. This

can be analyzed based on the variation of aspect ratio (AR) of

the ellipse in the R-Z plane with time. Hence, in this case, the

AR of the expanding plasma is defined as the ratio of the axial

length of the plasma to twice the radial length of the plasma.

The aspect ratio of the plasma decreases from 5 to 1.02 in

100 ns, indicating a broadening of the ellipsoidal plasma region

towards a spherical one. Hence, a significant axial expansion is

present, indicating the importance of the 2D effects.

A comparison of the number densities of electrons and

ions at t¼ 100 ns is shown in Fig. 11. It could be clearly seen

that the plasma has expanded in both the radial and axial

directions. Note that the relative expansion in the axial

direction (Dz/z0� 115/100¼ 1.15) is an order of magnitude

smaller than that in the radial (Dr/r0� 97.5/7.5¼ 13). The

number density comparison in Fig. 11 also shows higher

densities near the axis in 1D than in 2D, because the axial

expansion is not accounted for in 1D. A region similar to the

cathode fall with more number of ions, in glow discharges is

observed in the REMPI plasma expansion process at the

boundary of the plasma both in 1D and 2D, because of the

lower number of electrons (due to the loss of electrons by

FIG. 11. Comparison of electron and ion number densities at t¼ 100 ns

between (a) 1D approximation and (b) 2D approximation (AR¼ 1.02).

FIG. 12. Comparison of time evolution in 1D and 2D of: (a) electron number density at R¼ 2 lm, (b) electron number density at R¼ 20 lm, (c) metastable

number densities at R¼ 2 lm, and (d) electron temperature at the core of the laser pulse averaged over a region from Z¼�1 lm to Z¼ 1 lm.
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free diffusion) as is observed by the number density contours

of electrons and ions in Fig. 11(b).

Figures 12(a)–12(c) show the number density compari-

son of multiple species involved in the expansion process for

1D and 2D approximations near the axis. Up to t¼ 20 ns,

i.e., 30 ns from the start of the laser pulse, the electron and

metastable number densities for the 2D approximation fol-

low the 1D approximation very closely and then it starts to

diverge from 1D approximation. It can be observed that the

1D approximation predicts 1.5 to 2 times the 2D approxima-

tion values of the number densities from Figs. 12(a)–12(c),

since the REMPI expansion process is both radially and axi-

ally dependent in 2D approximation, while it is only radially

dependent in 1D approximation and, hence, the relaxing

effect as has been explained earlier with the help of the

expanding plasma’s aspect ratio. The temporal evolution of

ion number densities near the axis is same as that of the elec-

trons (as it is in the plasma core). Fig. 12(b) has a higher

deviation in the electron number densities than that of

Fig. 12(a) initially because the electrons in that region are

governed by free diffusion till then. Fig. 12(d) shows a com-

parison of electron temperature in 1D and 2D at the core of

the laser pulse for 1D and 2D approximations, and it can be

observed that the electron temperature for 2D is approxi-

mately 15% lower than the 1D approximation.

Temporal evolution of potential shown in Fig. 13(a),

indicates a peak in potential in the first few nanoseconds,

both at R¼ 2 lm and R¼ 20 lm and then a monotonous

decrease due to ambipolar diffusion. Fig. 13(b) shows the

temporal evolution of electron number density for 2D

approximation at R¼ 2 lm and R¼ 20 lm averaged over a

region from Z¼�1 lm to Z¼ 1 lm, and as expected, the

peak in the electron number density is higher near the axis,

due the inverse exponential dependence of laser intensity

with the radius which leads to a higher amount of plasma

generation towards the axis. The electron number density

both at R¼ 2 lm and R¼ 20 lm tends to approximately the

same value as time progresses as shown in Fig. 13(b).

In this case, the microwave radiation wavelength is

much higher than the plasma dimensions, and the skin layer

exceeds the plasma scale, and all plasma electrons are

oscillating in the same phase, the microwave scattering by

the micro-plasma occurs in the Rayleigh mode.3,4,13 Wherein

the intensity of the scattered microwave radiation, Im � N2
e

and therefore, the amplitude of the electric field, measured

by homodyne detection, Em�Ne(t).
3,4 A comparison of the

normalized total number of electrons between 1D PIC/MCC,

2D PIC/MCC, and Shneider et al.,4 theory and microwave

scattering signal from experiments is shown in Fig. 14. The

results in Fig. 14 show that PIC/MCC computations are in

good agreement with the experiments. The PIC/MCC simu-

lation results follow the drift diffusion approximation4 till

t¼ 110 ns, but PIC/MCC simulation results closely follow

the experiments.

V. CONCLUSIONS

A computational model for REMPI plasma expansion of

Argon gas at low pressures, using PIC/MCC both in 1D and

2D, has been presented. The results of calculations within

the PIC/MCC and diffusion-drift approximations are in qual-

itative and in reasonable quantitative agreement. All stages

of the ambipolar diffusion have been captured in the simula-

tions. In spite of the fact that the 2D and 1D calculations are

qualitatively consistent with each other, the two-dimensional

FIG. 13. Time evolution of (a) electric potential and (b) electron number density at R¼ 2 lm and R¼ 20 lm averaged over a region from Z¼�1 lm to

Z¼ 1 lm for 2D approximation.

FIG. 14. Comparison of the scattering microwave signal from experiment

from Shneider et al.4 with 1D fluid approximation from Shneider et al.,4 1D

PIC/MCC and 2D PIC/MCC for 3þ 1:REMPI of Ar gas at p¼ 5 Torr, with

a laser pulse of 261.27 nm wavelength and E¼ 2.1 mJ/pulse.
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effects are important, as the calculations showed a significant

quantitative difference of the plasma characteristics, growing

with time. It can be concluded that the polarization field

plays a very important role in the relaxation of the electrons.

The deviation of EEDF from the Maxwell-Boltzmann energy

distribution has been qualitatively shown. A clear demarca-

tion of the physical phenomena that are predominant at dif-

ferent instances of time has been identified.

Even for an elongated ellipsoid REMPI, which behaves

as 1D plasma initially, over time evolves to a faster 2D

spherical ambipolar plasma expansion with a significantly

lower electron temperature and, therefore, more intense

recombination processes. The PIC/MCC model follows the

experimental measurements more closely than the drift diffu-

sion approximation. Application of PIC/MCC, allows to

resolve self-consistently, the problem of the microwave radi-

ation scattering dynamics, taking into account the real phase

changes of the electron oscillations in the microwave field.

ACKNOWLEDGMENTS

The development of extended plasma chemistry model

in the PIC/MCC solver was partially supported by NSF

ECCS Grant No. 1202095.

1R. Miles, Z. Zhang, S. Zaidi, and M. Shneider, AIAA J. 45, 513

(2007).
2S. F. Adams, J. A. Miles, and A. Laber, in 48th AIAA Aerospace Sciences
Meeting, Orlando, Florida (AIAA, 2010), p. 87.

3Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005

(2007).
4M. N. Shneider, Z. Zhang, and R. B. Miles, J. Appl. Phys. 102, 123103

(2007).
5F. H. M. Faisal, Theory of Multiphoton Processes, 1st ed. (Plenum Press,

1986).
6J. P. Verboncoeur, Plasma Phys. Controlled Fusion 47, A231 (2005).
7Reference Book on Constants of Elementary Processes with Atoms, Ions,
Electrons and Photons, edited by A. G. Zhiglinskii (Saint Petersburg State

University, Saint Petersburg, Russia, 1994).
8Y.-J. Shiu and M. A. Biondi, Phys. Rev. A: At., Mol., Opt. Phys. 17, 868

(1978).
9J. Stevefelt, J. Boulmer, and J. F. Delpech, Phys. Rev. A: At., Mol., Opt.

Phys. 12, 1246 (1975).
10V. Vahedi and M. Surendra, Comput. Phys. Commun. 87, 179

(1995).
11J. Verboncoeur, A. Langdon, and N. Gladd, Comput. Phys. Commun. 87,

199 (1995).
12Y. P. Raizer, Gas Discharge Physics, 1st ed. (Springer-Verlag, 1994).
13M. N. Shneider and R. B. Miles, J. Appl. Phys. 98, 033301 (2005).
14A. Fridman and L. A. Kennedy, Plasma Physics and Engineering, 3rd ed.

(CRC Press, 2011).
15C. K. Birdsall, Plasma Physics via Computer Simulation, 1st ed. (CRC

Press, 1991).
16G. A. Bird, Molecular Gas Dynamics and the Simulation of Gas Flows, 1st

ed. (Clarendon Press, 1991).

063507-9 Tholeti, Shneider, and Alexeenko Phys. Plasmas 21, 063507 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.210.206.145 On: Wed, 23 Dec 2015 20:59:05

http://dx.doi.org/10.2514/1.28964
http://dx.doi.org/10.1103/PhysRevLett.98.265005
http://dx.doi.org/10.1063/1.2825041
http://dx.doi.org/10.1088/0741-3335/47/5A/017
http://dx.doi.org/10.1103/PhysRevA.17.868
http://dx.doi.org/10.1103/PhysRevA.12.1246
http://dx.doi.org/10.1103/PhysRevA.12.1246
http://dx.doi.org/10.1016/0010-4655(94)00171-W
http://dx.doi.org/10.1016/0010-4655(94)00173-Y
http://dx.doi.org/10.1063/1.1996835

	Purdue University
	Purdue e-Pubs
	2014

	Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures
	Siva Sashank Tholeti
	Mikhail N. Shneider
	Alina A. Alexeenko
	Recommended Citation


	

