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Severe weather events in the United States including tornadoes, hail, and wind are 

often produced by supercell thunderstorms.  These storms are characterized by complex 

hydrometeor distributions which can be influenced by environmental distributions of 

wind and moisture.  Since the Weather Surveillance Radar-1988 Doppler (WSR-88D) 

network was fully upgraded to dual-polarimetric capabilities in 2013, dominant 

hydrometeor species such as hail have been inferable using fuzzy logic.  In this study, 

time series of areal extent of the inferred hail signature at base scan level have been 

estimated for 145 supercell storms, including both tornadic and non-tornadic cases, 

across a variety of environments from February 2012-December 2014.  Proximity 

soundings were gathered for environments representative of the supercells (e.g., on the 

same side of mesoscale boundaries, in a region representative of storm-relative inflow) 

using archived Rapid Update Cycle (RUC) and Rapid Refresh (RAP) model output from 

the National Operational Model Archive and Distribution System (NOMADS).  Model 

sounding points were within ~80 km and the midpoint of the analysis period in order to 

spatiotemporally represent environments during the period in which storms were 

analyzed.  Previous modeling and observational studies have shown that thermodynamic, 



moisture, and shear parameters influence the mean areal extent of hail at the base scan 

level and the temporal variability of inferred hail areal extent (HAE).  Significant 

relationships were determined in this study between mean HAE/variability and several 

environmental parameters.  Hail polarimetric radar signatures were also compared across 

environments; results showed that certain environments produce distinctive mean hail 

areal extent and hail variability.  Correlations between HAE and environment variables 

are generally higher when the storm has a mean altitude greater than 1 km.  An increase 

in some thermodynamic parameters is observed to produce an increase in mean HAE, 

while an increase in shear produces an increase in hail variability.  Predictive equations 

for HAE and hail variability are also developed from the analyzed environmental 

variables.
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Chapter 1. Introduction 

Dissimilar vertical wind and moisture profiles can lead to different microphysical 

structures in supercell storms (e.g., Beatty et al. 2008; Van Den Broeke 2014; Davenport 

and Parker 2015), which should be reflected in their radar presentation.  The dual-

polarization upgrade to the Weather Surveillance Radar-1988 Doppler (WSR-88D) 

network across the United States has made it possible to infer scatterer properties such as 

type, shape, size, and orientation on large spatial and temporal scales.  Microphysical 

processes such as hail growth and melting, which can be indicated by inferred scatterer 

properties, can greatly influence storm evolution (e.g., van den Heever and Cotton 2004; 

Kumjian and Ryzhkov 2008; Van Den Broeke 2014).  For instance, tornado-genesis and 

maintenance may be influenced by the thermodynamic contribution of precipitation 

particles in the rear and forward flanks of supercells (Beatty et al. 2008).  Polarimetric 

radar variables such as reflectivity factor at horizontal polarization ZHH and differential 

reflectivity ZDR (e.g., Balakrishnan and Zrnić 1990; Herzegh and Jameson 1992; Zrnić 

and Ryzhkov 1999) can be used to assess these scatterer properties, among other 

variables.  Understanding storm-scale processes and evolution, especially in different 

environments, is extremely important since supercells produce a disproportionate share of 

the high-impact severe weather across the United States.   

Supercell storms as described by Moller et al. (1994) are examined in this study; 

both storms that generally remain isolated as well as embedded storms are included.  The 

relatively well-understood polarimetric radar signatures of supercell storms offer a way to 

test the hypothesis that storms characterized by dissimilar environmental moisture and 
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shear parameters should exhibit less similarity in inferred hail areal extent (HAE) and 

hail variability than storms characterized by similar moisture and shear parameters.  It is 

hypothesized that environments with drier layers will be associated with larger mean 

HAE, as modeling studies (e.g., Rasmussen and Heymsfield 1977; Van Den Broeke 

2014) have suggested that drier layers are associated with higher hail mixing ratio and 

greater evaporative cooling, leading to greater surviving hail mass; this result is also 

suggested by recent observational studies (e.g., Van Den Broeke 2016).  Additionally, an 

increase in shear should produce a corresponding increase in hail production due to 

possible seeding of ice particles from nearby storms (e.g., Gilmore et al. 2004; Van Den 

Broeke et al. 2010). 

In this thesis, a large scale attempt is undertaken to quantify HAE inferred at the 

base-level radar scan under a variety of different environmental conditions.  Mean 

inferred areal extent and variability are compared across different wind and moisture 

environments to determine the most significant environmental parameters influencing 

these radar-inferable hail characteristics of supercells.  Results from this research should 

aid in operations, as forecasters may be able to warn more effectively for hail threats in 

addition to threats for other types of severe weather.  From a theoretical and modeling 

perspective, it is also important to learn more about how supercell microphysics are 

influenced by environmental variability.  Idealized modeling sensitivity studies (e.g., van 

den Heever and Cotton 2004) indicate that hail size influences not only the type of 

supercell that develops, as well as how a supercell evolves; therefore it stands to reason 

that the amount of hail production within supercell storms will also influence storm 
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evolution.  Rasmussen and Straka (1998) also suggest that precipitation may play a key 

role in the generation of mesocyclones and tornadoes.  Additionally, the observations of 

environmental influence on supercell microphysics with a large sample size, such as in 

this study, can validate previous modeling studies (e.g., Gilmore and Wicker 1998; 

Dennis and Kumjian 2014; Van Den Broeke 2014). 
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Chapter 2. Background 

I.  Supercell Storms 

Supercells are convective storms that contain a strong, deep, and long-lived 

mesocyclone.  The characteristics of a mesocyclone include vertical vorticity of at least 

10
-2

 s
-1

 and temporal continuity for tens of minutes throughout a substantial depth of the 

storm (Moller et al. 1994).  There are three main types of supercells: classic, low-

precipitation (LP), and high/heavy precipitation (HP).  Classic supercells exhibit 

relatively well-known radar and visual signatures, including a hook echo, bounded weak 

echo region (BWER), strong reflectivity gradient on the inflow side of the storm, and a 

sheared updraft column (Moller et al. 1994; Bunkers et al. 2006).   

Visual observations of classic supercells often include a precipitation-free base 

and well-defined wall cloud, which appears as a lowering of the precipitation-free base, 

from which tornadoes may descend (Moller et al. 1994).  Although the inflow bases of 

classic supercells appear precipitation-free, hail and rain may be falling in the portion of 

the storm dominated by outflow.  Above the precipitation-free base, most precipitation 

particles are suspended in the lower part of the cell by the updraft.  Figure 2.1 shows both 

a plan view (a) and an idealized view of the storm by a viewer to its east (b).  The 

idealized view of the storm shows the overshooting top, the precipitation free-base, 

lowered wall cloud, and the outflow portion of the cloud base containing precipitation.  

Depending on distance from the radar, a radar beam may overshoot the part of the storm 

containing outflow. 
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Fig 2.1.  Schematics for a classic supercell storm, showing (a) a plan view looking from 

above showing the precipitation (stippling), surface outflow boundaries (frontal symbols), 

updraft maxima (scalloped line enclosing the gray area), and cloud boundaries (also 

scalloped, enclosing white area), and (b) an idealized view of the storm by a surface 

observer to its east (taken from Moller et al. 1994). 
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Storm characteristics may vary as a function of environment.  LP storms are often 

characterized by higher levels of free convection, low to moderate values of relative 

humidity, and strong storm relative (SR) flow at the anvil level (Moller et al. 1994; 

Rasmussen and Straka 1998).   Hail, the most common form of severe weather produced 

by LP supercells, is the dominant hydrometeor near the updraft of these storms.  

Rasmussen and Straka (1998) suggest that this is due to the strong SR upper-level flow in 

these environments; this strong flow transports hydrometeors away from the updraft 

which reduces the number ingested by the updraft.  Meanwhile HP supercells, which may 

be characterized by enough precipitation in the mesocyclone to obscure rotation, can 

cause extensive damage through hail and downburst winds (Moller et al. 1994).  These 

storms tend to have a weaker SR upper-level flow, leading to higher precipitation rates as 

more hydrometeors are ingested by the updraft.  Additionally, hail embryos in HP storms 

may originate from nearby storms and are advected into the updraft (Rasmussen and 

Straka 1998).  

The two most important ingredients for supercells are buoyancy and vertical wind 

shear (e.g., Lin and Chang 1977; Moller et al. 1994); of these, vertical wind shear is 

considered more critical for the development of supercells and often comes from locally 

backed surface winds along thermal boundaries (e.g., Moller et al. 1994).  One factor that 

has been shown to discriminate between storms that have supercellular characteristics 

and storms with nonsupercellular characters is the bulk wind differential through a deep 

layer of the atmopshere (e.g., Rasmussen and Blanchard 1998; Thompson et al. 2003; 

Houston et al. 2008).  The discrimination between tornadic and nontornadic supercells 
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can also related to bulk wind differential (e.g., Thompson et al. 2012).  The strength of 

the vertical wind shear has also been shown to influence the intensity of the up- and 

downdrafts within a storm, while magnitude of veering or backing with height determines 

the location of these features within a storm (e.g., Lemon 1977; Lin and Chang 1977).  

Supercells have a cyclic lifecycle, the dominant mode of which is determined by 

environmental factors (e.g., Gilmore and Wicker 1998; Adlerman and Droegemeier 

2005).  Supercell demise also has a direct relationship to the storm-relative environment, 

tending to occur when the storm enters an environment that is too stable or which favors 

another convective mode.  Supercells can also dissipate when they interact with other 

thunderstorms and when their supply of buoyant, moist inflow is cut off, whether due to 

other thunderstorms or its own downdraft (Bunkers et al. 2006).  

 

II. Radar Polarimetry 

Radar reflectivity at horizontal polarization (ZHH) is a measure of the amount of 

radiation backscattered to the radar or a measure of the amount of power returned to the 

radar from both hydrometeors and non-meteorological scatterers in the horizontal 

direction (Doviak and Zrnić 1993).  ZHH depends on particle size, composition, phase 

(e.g., the dielectric constant) and the radar wavelength (Kaltenboeck and Ryzhkov 2013).  

Typically, larger particles in the Rayleigh scattering regime have higher reflectivity as 

there is a larger cross-section to backscatter radiation to the radar.  However, the 

dielectric constant of the hydrometeor is also important to consider when determining an 

expected ZHH value.  Since ice has a smaller dielectric constant than liquid water, an ice 
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hydrometeor of a given size will have a lower reflectivity than a water hydrometeor of 

the same size (e.g., Straka et al. 2000).   Particle size and phase are important when 

considering hail, as both the size and water content of hail can vary substantially.   

Another factor that may substantially impact polarimetric radar variable values 

when looking at hail is Mie scatter (Doviak and Zrnić 1993).  In the Mie scattering region, 

the backscattering cross-sectional area of the target can decrease as size increases for 

certain particles (Rinehart 1991).  The effects of Mie scattering typically become 

significant when the following ratio approximately equals unity: 

             
    

 
 

 
             (1) 

where D is the spherical diameter of the particle (cm), ε is the dielectric constant of the 

particle, and λ is the radar wavelength (cm) (Kumjian and Ryzhkov 2008; Kennedy et al. 

2014).  According to Kennedy et al. (2014), this ratio becomes unity at a diameter of 

approximately 5.6 cm for a hailstone composed of solid ice and not containing a liquid 

water component or air cavities when using a 10-cm radar wavelength.  Both ZHH and 

ZDR can be affected by this difference in scattering regimes, as a smaller or larger amount 

of power may be returned to the radar than expected by scatterers in the Mie regime, 

decreasing or increasing the ZHH and differential reflectivity (ZDR) values. 

The introduction of dual-polarization capabilities to weather radars has allowed 

for the collection of variables that have proven useful for hydrometeor identification 

when combined with reflectivity factor; however, radar reflectivity from singularly-

polarized radars has been used to infer specific hydrometeors (such as hail) as early as the 
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late 1950s (Heinselman and Ryzhkov 2006).  Variables useful for hydrometeor 

identification include ZHH, ZDR, and the co-polar cross-correlation coefficient (ρhv), 

among others.  The information provided from each of these variables, although 

important on their own, can provide more insight regarding the type of scatterer when 

combined (e.g., Doviak and Zrnić 1993; Straka et al. 2000; Park et al. 2009).  The WSR-

88D network provided ZHH before the dual-polarization upgrade; however, the 

availability of variables such as ZDR has come after the upgrade as these variables take 

into account both horizontal and vertical polarization. ZHH and ZDR are briefly defined 

here, with an emphasis on their physical interpretation.  Readers are referred to other 

sources such as Balakrishnan and Zrnić (1990), Herzegh and Jameson (1992), and Zrnić 

and Ryzhkov (1999) for more complete descriptions of these variables.   

ZDR is the logarithmic ratio of the linear reflectivity in the horizontal and vertical 

directions, also described as the difference between the logarithmic reflectivity in the 

horizontal and vertical directions:   

                        
   

   
           (2) 

                                                    (3) 

Since chaotically tumbling hydrometeors such as hailstones appear as spheres to 

the radar in the mean (and therefore the horizontal reflectivity factor (ZHH) equals the 

vertical reflectivity factor (ZVV)), the ZDR in hail regions appears to be ~0 dB or are at 

least local minima within the storm (Doviak and Zrnić 1993; Heinselman and Ryzhkov 

2006; Kumjian 2011).  However, small melting hail can have ZDR values as high as 5-

6 dB as it appears to the radar as large raindrops (WDTD 2013).  The hailfall region 
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appears to be collocated or very close to the maximum ZHH values (Doviak and Zrnić 

1993). ZDR is also dependent on the shape, size, orientation, density, and water content of 

the specific collection of scatterers, although this polarimetric variable is independent of 

particle concentration (Kumjian 2011).  For example, water coated melting hail might 

have slightly higher ZDR when compared to dry hail due to its more stable orientation, 

and giant hail (diameter > 5 cm) may exhibit slightly negative ZDR values due Mie 

scattering (Kaltenboeck and Ryzhkov 2013). According to Kumjian and Ryzhkov (2008), 

one common indicator of hail reaching the ground is high reflectivity factor collocated 

with near-zero ZDR at the lowest elevation angle.  The collocation of these values above 

the freezing level also indicates hail aloft (e.g., Zrnić and Ryzhkov 1999).   

Classification schemes such as the hydrometeor classification algorithm (HCA) 

combine information that is obtained from polarimetric variables, such as ZHH, ZDR, and 

ρhv using a fuzzy logic classification scheme (e.g., Heinselman and Ryzhkov 2006; Park 

et al. 2009).  To classify hydrometeors, fuzzy logic algorithms take the polarimetric 

variables as inputs, assign probabilities to each type of hydrometeor for each variable 

based on a set of weighted rules, and choose the hydrometeor species with the highest 

resultant likelihood (e.g., Liu and Chandrasekar 2000; WDTD 2013).  The HCA assigns a 

membership function, or a range of values typically observed in each polarimetric 

variable (such as those described in Straka et al. 2000), to be associated with each class of 

radar echo (e.g., hail is associated with 55 dBZ < ZHH < 80 dBZ in the HCA at S-band).   

Weights are assigned to each variable based on the efficiency the variable has in 

discriminating each class of hydrometeor, and the HCA chooses the most likely 
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hydrometeor class.  The weight assignment and the weighting matrix used by the WSR-

88D network is presented by Park et al. (2009). ZDR is the most important variable used 

by the HCA to identify graupel, so it is given a weight of 1.0; other variables such as ρhv 

that are not as important are given lower weights.   

 

III. Polarimetric and Microphysical Features of Supercell Storms 

  Polarimetric Features 

Various observational and modeling studies have found hail fallout in repeatable 

locations within supercell storms.  Large hail is often associated with supercell events 

(e.g., Bunkers et al. 2006) and has been observed just downstream from the mesocyclone 

(e.g., Moller et al. 1994; Hubbert et al. 1998; Van Den Broeke et al. 2008).  However, 

these hail signatures may also appear in the echo appendage, near the edges of the 

mesocyclone as previous studies have noted hail observations as well as hail polarimetric 

signatures in these regions (e.g., Browning 1965; Auer 1972; Finley et al. 2001; Van Den 

Broeke 2014, 2016).  ZHH and ZDR have been used to qualitatively infer that hail is 

present most commonly at times leading up to tornadogenesis (Van Den Broeke et al. 

2008).  Hailfall has also been seen to occur more frequently at the time of tornadogenesis 

when compared to pre-tornado times or times after tornado demise (Van Den Broeke et al. 

2008; Kumjian and Ryzhkov 2008).  Kumjian and Ryzhkov (2008) found that in most of 

the tornadic cases in their sample, the status of the hail signature (whether it was present 

or absent) in the time leading up to tornadogenesis remained the same after 

tornadogenesis.  They also found hail signatures to be more intermittent in tornadic 
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supercells, suggesting cyclic hailfall, while nontornadic storms display more persistent 

hail signatures (Kumjian and Ryzhkov 2008; Van Den Broeke 2016).  The authors 

speculate that this is due to the weakening of the tornadic supercell updraft around the 

time of tornadogenesis to the extent that hail production is lessened, and propose that the 

persistence of hail can provide insight into the tornadic potential of a supercell storm.  

Simulations of supercell storms show that hodograph shape may influence the placement 

of hail.  Van Den Broeke et al. (2010) show that in simulations with a half-circle 

hodograph, hail tended to be confined to the storm core.  Meanwhile in simulations with 

full-circle hodographs, hail tended to spread southward and wrap around the west side of 

the mesocyclone (Van Den Broeke et al. 2010).  

 Hail Microphysics 

Hail is formed when either graupel or frozen drops accrete supercooled drops, and 

recent models show that hail formed from these embryos can occur north of the updraft 

region (Rogers and Yau 1996; Van Den Broeke 2014).  Browning and Foote (1976) 

developed a three-stage model for the growth of hail in a supercell: 1) hail embryos are 

grown through a first ascent within weaker storm updrafts, 2) some of the embryos are 

advected away from the main updraft and either evaporate or fall out while some of the 

embryos reach the forward edge of the updraft while descending, and 3) these embryos 

re-enter the main updraft and continue growing until the hailstones cannot be supported 

by the updraft.  Browning and Foote note, though, that “not all of the embryos re-entering 

the main updraft can be expected to grow into large hailstones; many may quickly 



13 

 

 

encounter intense updrafts and be carried above the -40°C level before they had time to 

grow quickly.” 

 The melting of hail is closely related to latent heat transfer and the cloud water 

distribution (Rasmussen et al. 1984 a,b; Rasmussen and Heymsfield 1987).  Rasmussen 

et al. (1984b) defined seven different melting modes for hail (Fig. 2.2), depending on the 

size of the melting hailstone.  The drops shed by hail during these modes can lead to 

characteristic drop size distributions (DSDs) as the DSDs change from this process; 

additionally, latent heat released through this process has major implications for the 

storm’s energy budget via evaporative cooling.  In idealized simulations, van den Heever 

and Cotton (2004) showed that hail size has an impact on low-level dynamic and 

thermodynamic characteristics such as downdraft and cold-pool strength.  This agrees 

with Srivastava (1987), who showed that the cooling of the downdraft is influenced by 

the melting of the ice phase.  These microphysical processes associated with hail impact 

storm morphology and evolution; in order to better understand how supercells evolve, 

these microphysical processes and their response to environmental variability need to be 

better comprehended. 
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Fig. 2.2: Seven different modes of hail melting (taken from Rasmussen et al. 1984b). 

 

IV. Environmental Variability 

Research has shown that certain environmental variables influence supercell 

formation and demise.  Observational studies (e.g., Shabbot and Markowski 2006; Parker 

2014, among others) have provided evidence for how supercell characteristics differ as a 
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function of environmental variability from either mesonet or sounding observations.  

These studies, as well as Markowski et al. (1998), show that representing the storm 

environment using a single sounding can introduce error as there can be large 

environmental variability occurring on small spatial scales in the vicinity of supercells.  

Some of the problems associated with understanding such environments include what 

time and space scales represent storm environments (Brooks et al. 1994).  Model output 

soundings such as those from RUC/RAP have the advantage of a “superior spatial and 

temporal resolution compared to that of the upper-air observing network across the 

United States” (Thompson et al. 2003).  Error analysis, as described by Thompson et al. 

(2003), showed that while outputs tended to be a little too dry and cool at the surface, 

temperature, moisture and wind speed errors tended to be of similar magnitude to those 

of radiosonde measurements.  Additionally, even though the mixed layer convective 

available potential energy (MLCAPE) was over-forecast, errors were too small to have a 

significant impact on evaluation of storm environments.  Benjamin et al. (2016) also 

showed that there are errors on the order of 2-3°C for low-level dewpoints when RAP 

outputs are verified against METAR observations.  This caveat should be noted when 

looking at the environmental variables, as the dewpoint error could influence the 

moisture and instability indices recorded and calculated. 

The production of hail is also dependent on different environmental factors, most 

of which are related to wind or moisture.  Van Den Broeke (2016) showed that the 51.2% 

of the mean base-scan HAE (km
2
) can be predicted using the equation 
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                                                        (4) 

where a is the height of the level of free convection (LFC; m), b is 6-km relative 

humidity (RH; %) and c is convective inhibition (CIN; J kg
-1

).  Higher LFC heights, 

which had a positive correlation to mean HAE (r = 0.55) was thought to be associated 

with an increase in hail production as the updrafts were colder due to their higher altitude.  

6-km RH had a negative correlation to HAE (r = -0.58), which supported previous 

studies.  Simulated storms show that the amount of drying within a layer has an effect on 

the amount of hail produced in a particular storm (Rasmussen and Heymsfield 1987; Van 

Den Broeke 2014).  When layers are drier, a greater amount of hail may survive to reach 

low levels, since hailstones falling through drier air experience greater evaporative 

cooling, leading to less melting (Rasmussen and Heymsfield 1987).  Similarly, altitude of 

the 0°C level was hypothesized to be important for HAE as melting closer to the surface 

would suggest more hail mass survives.  Additionally, it has previously been shown that 

convective inhibition (CIN) can be a predictor of hailstorms (Foote and Wade 1982; 

Colby 1984). 

Simulations have also shown that hail mixing ratio is cyclic in supercell storms 

(Van Den Broeke 2014), consistent with earlier observational results (e.g., Kumjian et al. 

2008; Van Den Broeke et al. 2008).  Thus, hail production is thought to be tied to 

mesocyclone cycling and updraft pulses (Adlerman and Droegemeier 2005; Van Den 

Broeke 2010).  Van Den Broeke (2016) looked into the predictability of hail variability 

by environment.  Variability is defined as the coefficient of variation as in Van Den 
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Broeke (2016).  The coefficient of variation is calculated by dividing the standard 

deviation of the measured value by the mean measured value (Everitt 2002): 

                 
 

 
              (5) 

99.3% of hail variability was found to be predicted by the following equation: 

                      

                                                            (6) 

where a is MLCAPE (J kg
-1

), b is effective storm relative helicity (ESRH; m
2
 s

-2
), c is 

mean 3-9-km RH (%), and d is lifting condensation level (LCL) temperature (°C).  LCL 

temperature should be significant to hail production since colder LCLs can indicate 

colder updrafts; Van Den Broeke (2016) presented no speculations on how this 

thermodynamic parameter would be related to hail variability and noted that 97% of 

variability could be explained without using LCL temperature.  The positive relationship 

between variability of mean areal extent and MLCAPE (r = 0.34) was suggested to be 

due to a relationship between ambient instability and updraft characteristics such as speed.  

  



18 

 

 

Chapter 3. Methods 

The polarimetric radar dataset of storms was constructed generally following the 

approach of Thompson et al. (2003).  Severe weather reports were identified near a 

polarimetric WSR-88D from February 2012-December 2014 using the Storm Events 

Database from the National Centers for Environmental Information (NCEI; NOAA 

2014b).  On a day with storm reports, supercell storms were identified using the criteria 

of Thompson et al. (2003), including one or more radar reflectivity structures 

characteristic of supercells (e.g., a hook echo, inflow notch, weak echo region, and/or V 

notch as suggested by Browning (1965) and Lemon (1977)), the cyclonic azimuthal shear 

in the lowest two elevation angles met the threshold value for mesocyclones defined by 

Stumpf et al. (1998), and this cyclonic shear persisted for at least 30 minutes.  This time 

constraint ensures that at least 7 time steps are included in the analysis of every storm, 

which allows a representative mean HAE to be calculated.   

Supercell storms were also required to be within ~125 km of a WSR-88D to 

ensure high quality polarimetric data for several reasons.  Beam filling influences 

weather radar data quality, especially with increases in range (WDTD 2013).  At large 

ranges, the beam is filled with a mix of hydrometeors; this non-uniform beam filling 

negatively impacts certain dual-polarimetric products as it can produce a gradient of 

precipitation types within the beam (Fig. 3.1).  This implies that even though hail is 

identified through multiple dual-pol products, at long ranges there might be other 

hydrometeors sampled. This is especially true when sampling a convective storm at large 

range or a squall line that is directly down radial from the radar (WDTD 2013). 
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Horizontal and vertical resolutions are also reduced at large ranges since the area that the 

beam samples at large ranges is greater than the area sampled close to the radar.  Finally, 

hail extent needs to be estimated fairly close to the ground in order to make the 

assumption that inferred hail extent at the base-level scan reached the ground; this 

precluded storms at large range. 

 

 

 

 

 

  

 

 

 

 

Fig. 3.1: A non-uniform mixture can produce a gradient of precipitation types within a 

radar beam (black circle).  Mostly hail is sampled at the top of the beam, the middle is 

sampling rain and wet hail, and the bottom of the beam is sampling rain only (taken from 

WDTD 2013). 

 

The resulting dataset consisted of approximately 145 cases and included both 

environments that produced tornadic supercells (94 cases; 65%) and nontornadic 
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supercells (51 cases; 35%); these storms were selected without preference for geographic 

region (Fig. 3.2), though more Great Plain storms were selected due to the prevalence of 

supercell storms in that geographic region.  For each supercell identified, level II radar 

data from the nearest WSR-88D were obtained from NCEI (NOAA 2014a).  The radar 

data were imported into NCEI’s Weather and Climate Toolkit, and differential 

reflectivity (ZDR) data were then converted to shapefiles for analysis.  ZDR data were 

thresholded between -0.5 dB and 1 dB for hail as in previous studies (e.g., Doviak and 

Zrnić 1993; Heinselman and Ryzhkov 2006; Kumjian 2011; Kaltenboeck and Ryzhkov 

2012).  The locations of thresholded values of ZDR were manually compared with 

locations of high ZHH (> 55 dBZ), a common indicator of hail reaching the ground 

(Kumjian and Ryzhkov 2008; WDTD 2013).   Hail was inferred to be present where ZDR 

values within the thresholding range are collocated with high ZHH values within the storm 

core, and the inferred HAE was measured (Fig. 3.3).  It should be noted that the mean 

HAE may depend on storm size, which could be defined as the area enclosed by the 35-

dBZ contour, though this factor was not controlled for in this study. 
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Fig. 3.2: Approximate starting locations for supercellular storms.  Nontornadic storms are 

represented with black dots and tornadic storms are represented with red dots. 
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Fig. 3.3: Method of inferring HAE at the base-level scan for sample storm in the domain 

of KGGW (Glasgow, Montana) on 24 July 2013 at 2202 UTC.  A) Reflectivity factor at 

horizontal polarization (ZHH). B) Differential reflectivity (ZDR) thresholded between -0.5 

dB and 1 dB.  The tan area represents inferred hail that meets both the reflectivity (ZHH > 

55 dBZ) and differential reflectivity (-0.5 dB < ZDR < 1 dB) criteria. 

Legend: dB 

a) 

b) 
10 km 
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Archived Rapid Update Cycle (RUC) and Rapid Refresh (RAP) model output, 

available from the National Operational Model Archive and Distribution System 

(NOMADS; Karsten 2010), were used to provide proximity environmental data, as 

similar data have been used successfully to represent near-storm environments 

(Thompson et al. 2003, 2007).  Sites for which model soundings were available were 

identified within ~80 km of each storm and the midpoint of the analysis period.  Surface, 

satellite, and radar observations are utilized to ensure that the sites were representative of 

the air mass in which the storm is located (e.g., on the same side of mesoscale boundaries, 

and in a region representative of storm inflow).  In rare cases, no sites were representative 

of the storm as there are boundaries in the area, convective contamination, or no nearby 

locations, and the storm was discarded.   

Table 3.1 shows the local variables obtained from the archived RUC/RAP 

soundings, which represent the local thermodynamic environment and vertical 

moisture/wind profiles.  These environmental variables overlap those assessed in prior 

work (e.g., Rasmussen and Blanchard 1998; Rasmussen 2003; Thompson et al. 2003).  If 

two RUC/RAP soundings were obtained for an event (e.g., a 12 UTC and 13 UTC 

soundings for a 1230 UTC event), the two values obtained for a given variable were 

averaged in order to obtain representative values.  Mean relative humidity for a layer was 

calculated using pressure weighting, as in the following equation: 

                       
                      

          
             (7) 

where RHB and RHT are the values of relative humidity at the bottom and top of the layer 

respectively (%), and PB and PT are the pressure associated with the bottom and top of the 
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layer respectively (mb).  This calculation weights the relative humidity toward the part of 

the layer with higher density, and is especially important at upper levels. 
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Table 3.1: Local variables obtained from archived RUC/RAP soundings.   

Classification Variable 

Thermodynamic Parameters MLCAPE (J kg
-1

) 

 MUCAPE (J kg
-1

) 

 CIN (J kg
-1

) 

 LFC Height (m) 

 Ambient 0°C Level (m) 

 LCL Temperature (°C) 

Moisture Parameters 6 km Relative Humidity (%) 

 3-6 km Mean Relative Humidity (%) 

 3-9 km Mean Relative Humidity (%) 

Shear Parameters 0-1  km bulk shear (kt.) 

 0-3 km bulk shear (kt.) 

 0-6 km bulk shear (kt.) 

 Effective bulk shear (kt.) 

 0-1 km storm relative helicity (m
2
 s

-2
) 

 0-3 km storm relative helicity (m
2
 s

-2
) 

 Effective storm relative helicity (m
2
 s

-2
) 

Hodograph Parameters General hodograph type: Linear, Curved, 

Segmented 
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The Wilcoxon-Mann-Whitney (WMW) rank-sum test was employed to determine 

which differences in average inferred HAE and hail variability are statistically significant 

across environments.  The WMW test, a non-parametric test which indicates whether two 

means come from different populations, tests the one-tailed or two-tailed null hypothesis 

that two samples come from different populations (Wilks 2011).  This nonparametric test 

is used, as no assumptions were made about the distributions of the data, and some 

groups being compared were relatively small.  Unless otherwise stated, all WMW tests 

were run at the 5% confidence level and were run testing the two-tailed null hypothesis 

since no assumptions were made about which sample should have a larger mean value 

(Wilks 2011).    
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Chapter 4. Environmental Variables 

Values representative of the near-storm environment were obtained or calculated 

from RUC/RAP model soundings as in Thompson et al. (2003, 2007).  These variables, 

found in Table 4.1, overlap those assessed in prior work (e.g., Rasmussen and Blanchard 

1998; Rasmussen 2003; Thompson et al. 2003).  The 25
th

 and 75
th

 percentiles were 

calculated for all variables and these were compared to values in previous studies (e.g., 

Rasmussen and Blanchard 1998; Rasmussen 2003; Thompson et al. 2003, 2007).  It was 

determined that the calculated values were representative of supercell environments.  

These percentiles were also used to describe low (less than 25%) and high (greater than 

75%) environments while running the Wilcoxon-Mann-Whitney p-test in order to see if 

there were statistical differences between environments.  Correlations were also run 

between the analyzed variables which were investigated in more detail (Table 4.2).  After 

environmental analysis, the Belsley condition index (Belsley et al. 2005) was used to 

check the collinearity between variables in order to remove linearly dependent variables 

from the developed predictive equations.  Variables that had a condition index value 

greater than 30 were removed from the predictive equations.  
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Table 4.1: Variables (and units) obtained from archived RUC/RAP model soundings.  

The 25
th

 and 75
th

 percentile values are shown for each variable. 

Variable (Units) 25th percentile 75th percentile Reference 

MLCAPE (J kg
-1

) 190.5 1413.5 Evans and Doswell (2001); 

Thompson et al. (2003) 

MUCAPE (J kg
-1

) 621 1740.5 Evans and Doswell (2001) 

CIN (J kg
-1

) 9 87 Foote and Wade (1982); 

Colby (1984);  

Rasmussen and Blanchard 

(1998) 

0-1 km Shear (kt.) 8 17 Thompson et al. (2003) 

0-3 km Shear (kt.) 19 33 Thompson et al. (2003) 

0-6 km Shear (kt.) 31.5 49 Thompson et al. (2003) 

ESHEAR (kt.) 23 35.5 Thompson et al. (2007) 

0-1 km SRH (m
2
 s

-2
) 44.5 242.5 Rasmussen and Blanchard 

(1998); 

Rasmussen (2003) 

0-3 km SRH (m
2
 s

-2
) 92.5 334 Rasmussen and Blanchard 

(1998); 

Rasmussen (2003) 

ESRH (m
2
 s

-2
) 70 255 Thompson et al. (2007) 

LCL Height (m) 308.5 1125.5 Rasmussen and Blanchard 

(1998) 
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LFC Height (m) 1164 2646  

LCL Temp (°C)
 

13.5 19.5  

0°C Height (m) 3000 3850  

1 km RH (%) 64.3 95.8  

3 km RH (%) 40.3 90.3  

6 km RH (%) 9.3 65.79  

9 km RH (%) 18.2 66.6  

1-3 km mean RH (%) 59.6 84.1  

3-6 km mean RH (%) 32.9 70.4  

3-9 km mean RH (%) 37.9 70  

6-9 km mean RH (%) 19.12 63.2  

SCP 0.1 0.5 Thompson et al. (2003) 

STP 0.1 1.4 Thompson et al. (2003) 

EHI 0.02 1.1 Rasmussen (2003) 
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Chapter 5. Results and Discussion 

After storms were discarded due to a lack of representative sites, the storms were 

categorized as having occurred in tornadic environments or nontornadic environments.  

Nontornadic and tornadic categories were determined from NCEI’s Storm Events 

Database, although this source may have omitted a weak tornado.  NCEI’s Storm Events 

Database was also utilized in order to confirm that storms in tornadic environments 

produced a tornado; if no tornado was produced, the storm was discarded.  This resulted 

in a final dataset consisting of 123 storms, 40% (n = 49) of which were nontornadic and 

60% (n = 74) of which were tornadic.  Independence of storm environments was 

examined within the dataset; first, each separate event had its own unique sounding, 

which helps establish independence.  Additionally, the number of events from the same 

day and region were quantified.  It is seen that 89 of the storms (72%) occurred on 

separate days, while the remaining cases were divided into 13 different sets of cases that 

occurred on the same day (Table 5.1).  If the soundings for the storms in these cases were 

farther apart than 100 km, it was determined that these cases were spatially independent.  

It was observed that for events occurring on the same day in the same general region, 

their environments were observed to be independent. 
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Table 5.1: Independence of cases that occurred on the same day.  Asterisks denote cases 

that contained storms that were both spatially independent and non-spatially independent.  

In these cases, the first number in the second column is the number of cases that are not 

spatially independent. 

Day Number of Cases Independent by 

Space (> 100 km 

between soundings) 

Independent by 

Environmental 

Profile 

2 March 2012* 2/1 No/Yes Yes 

14 April 2012 2 Yes  

2 February 2013 2 No Yes 

18 March 2013 2 Yes  

31 March 2013 2 No Yes 

11/12 April 2013 2 No Yes 

20 May 2013* 2/5 No/Yes Yes 

27 May 2013 2 Yes  

17 June 2013 3 Yes  

18 June 2013 2 Yes  

15 August 2013 2 No Yes 

17 November 2013 3 Yes  

20 May 2014 2 Yes   
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While analyzing the data, the mean height of the hail core at the base-level scan 

was recorded for each time step in order to calculate the mean height of the radar sample 

volume (HRSV).  This metric was also used to categorize storm data in order to 

separately consider storms with a mean HRSV below 1 km and storms with a mean 

HRSV above 1 km in height.  These separate height categorizations were needed as the 

HRSV increases as the beam travels farther from the radar:  

                                
 

               (8) 

where h is the height of the radar beam, r is the range from the radar, a is the radius of the 

earth, ke is the constant 4/3, and θe is the elevation angle (Doviak and Zrnić 1993).  This 

is important from the perspective of hail.   More hail might be present with greater 

altitude due to melting at low levels.  Additionally, HAE at the HRSV may not match 

HAE on the ground as melting might occur between the scan altitude and ground level.  

The presence of melting hail can modify low-level thermodynamic environments, which 

can in turn modify storm evolution (e.g., Van Den Broeke 2014).  As the mean HRSV 

increases, so does the measured inferred HAE (Figure 5.1).  Approximately 12% of the 

variability of HAE is explained by HRSV.   
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Figure 5.1: Average HAE (km
2
) vs. average HRSV (km).  As the average height of the 

radar sample volume increases, the average areal extent of inferred hail also increases 

slightly. 

 

Table 5.2 shows the sample sizes from the categories that were developed when 

the storms were subdivided by mean HRSV and tornadic/nontornadic status.  For the 

Wilcoxon-Mann-Whitney p-tests, the environmental variables were broken into the 

lowest 25% of values for the entire dataset (LOW), the middle 50% (MID), and the 

highest 25% (HIGH) in order to see if there was a statistical difference between LOW 

and HIGH environments (e.g., if hail extent and variability that occurred in LOW-CAPE 
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environments were different than those that occurred in HIGH-CAPE environments), and 

to see if extreme events are associated with particular hail characteristics (e.g., are LOW-

CAPE environments different than both MID- and HIGH-CAPE environments).  

Nontornadic storms with mean HRSV below and above 1 km, tornadic storms with mean 

HRSV below and above 1 km, and all storms with mean HRSV below and above 1 km 

were all used to calculate p-values. 

 

Table 5.2: Sample sizes and percent of total storms analyzed for each defined category. 

Category n % of total 

Nontornadic below 1 km 22 18 

Nontornadic above 1 km 27 22 

Tornadic below 1 km 37 30 

Tornadic above 1 km 37 30 

All Storms below 1 km 59 48 

All Storms above 1 km 64 52 

  

The variability in mean inferred HAE, measured by the coefficient of variation, 

was also calculated for each storm.  Values range from 0.162 (variations in HAE were 

quite small relative to the mean) to 1.314 (variations in HAE exceeded the mean value).  

Mean hail variability does not differ substantially between tornadic storms (mean 

coefficient of variation = 0.56) and nontornadic storms (mean coefficient of variation = 

0.62); this result appears to be in contrast with results Van Den Broeke (2016).  Kumjian 
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and Ryzhkov (2008) also found that tornadic storms have more variability; however, they 

compared the frequency of the presence of hail signatures throughout the mature lifetime 

of the storm.  This study does not take into account when the variability, with respect to 

the mean, takes place within the lifetime of a particular storm.  Van Den Broeke et al. 

(2008) found that tornadic storms showed high variability of hailfall at low levels, while 

low variability occurs in nontornadic storms at low levels.  It was speculated that lower-

level samples would generally have larger mean hail variability; however, there was also 

no substantial difference in mean hail variability based on the mean HRSV of the storm 

(Table 5.3). 
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Table 5.3: Mean hail variability for each category. 

Height Tornadic/Nontornadic Mean Coefficient of 

Variation 

Below 1 km Nontornadic 0.66 

 Tornadic 0.56 

 All Storms 0.60 

Above 1 km Nontornadic 0.58 

 Tornadic 0.55 

 All Storms 0.56 

Any altitude Nontornadic 0.62 

 Tornadic 0.56 

 All Storms 0.58 

 

Analyses were performed on each subset of data to determine correlation 

coefficients between 1) the mean hail areal extent of storms within a subset to 

corresponding values of environmental variables hypothesized to influence the hail areal 

extent (Fig. 5.2) and b) the variability of hail areal extent of storms within a subset to 

corresponding environmental variables hypothesized to influence the variability of 

hailfall within supercell storms (Fig. 5.3).  If the correlation coefficient was substantial 

(|r| ≥ 0.4), areal extent and variability were divided into quartiles (Table 5.4) in order to 

determine if an environmental variable was strongly correlated to hail characteristics 

within a specific range of HAE or variability. 
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Fig. 5.2: Correlation coefficient values calculated for mean HAE (km
2
) vs. selected 

environmental variables for a) all environments, b) tornadic environments, and c) 

nontornadic environments.  Storms with HRSV less than 1 km are represented by red 

dots, storms with a HRSV greater than 1 km by black dots, and all storms combined by 

blue dots.  Dashed lines indicate correlation coefficients with a magnitude of 0.4. 

 

 

a b 

c 
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Fig. 5.3: Correlation coefficient values calculated for hail variability vs. selected 

environmental variables for a) all environments, b) tornadic environments, and c) 

nontornadic environments.  Storms with HRSV less than 1 km are represented by red 

dots, storms with a HRSV greater than 1 km by black dots, and all storms combined by 

blue dots.  Dashed lines indicate correlation coefficients with a magnitude of 0.4. 

 

a b 
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Table 5.4: Quartile values for mean HAE (km
2
) and hail variability. 

Quartile Mean Areal Extent Variability 

Minimum 1.92 km
2
 0.16 

First (25%) 23.63 km
2 

0.42 

Second (50%) 43.93 km
2
 0.55 

Third (75%) 77.97 km
2
 0.72 

Maximum 297.52 km
2
 1.31 

. 

 

 

I.  Thermodynamic Parameters 

 

Previous modeling and observational studies have shown that the evolution of 

storm characteristics is highly associated with upon various thermodynamic parameters 

such as CAPE; LFC, LCL, freezing level heights; and LFC and LCL temperatures (e.g., 

Weisman and Klemp 1982; McCaul and Weisman 2001; Kirkpatrick et al. 2007, 2009, 

2011).  Model simulations have shown that properties of thermodynamic profiles are 

correlated to an increase in updraft strength, which in turn can lead to an increase in 

hydrometeor production (Gilmore et al. 2004).  These properties include variables such as 

CAPE, LFC height, and cloud-base temperature (Kirkpatrick et al. 2007, 2009, 2011).   

 

MLCAPE 
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Previous studies suggest a relationship between CAPE and updraft characteristics 

such as updraft strength (Weisman and Klemp 1982; Kirkpatrick et al. 2007; James and 

Markowski 2010; Naylor and Gilmore 2014).  Observational studies such as Van Den 

Broeke (2016) have also shown that hail variability is directly proportional to the 

environmental MLCAPE value.  No correlations of substantial magnitude are found when 

inspecting all storms, nontornadic storms, or tornadic storms in the dataset, even when 

taking HRSV into consideration.  Neither LOW MLCAPE nor HIGH MLCAPE 

environments produced statistically different HAE for all six categories examined, using 

a Wilcoxon-Mann-Whitney p-test.  However, analysis of nontornadic storms with a mean 

HRSV greater than 1 km show that LOW MLCAPE environments produce a mean 

variability of 0.393 whereas MID and HIGH MLCAPE environments produce a mean 

variability of 0.606, which is a statistically significant difference (p = 0.08).  Tornadic 

storms with a mean HRSV less than 1 km in environments characterized by HIGH 

MLCAPE produce a mean variability of 0.499, whereas storms in all other MLCAPE 

environments produce a mean variability of 0.567; this difference is statistically 

significant (p = 0.03). 

 

MUCAPE 

 

Hail production was hypothesized to increase with an increase in most unstable 

CAPE (MUCAPE), as modeling studies have shown that the CAPE value is directly 
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related to updraft strength.  A theoretical estimate of the peak updraft vertical velocity 

can be directly related to CAPE by 

                               (9) 

although this does not take into account mass loading due to condensate, entrainment of 

ambient air, or pressure perturbation effects.  More hail is expected to be present with 

greater updraft speeds, as an increase in hydrometeor production is expected with an 

increase in updraft speed (e.g., Rasmussen and Straka 1998; Gilmore et al. 2004; Van 

Den Broeke 2014).   

When tornadic and nontornadic storms were not differentiated, only storms with 

HRSV over 1 km show moderate correlation between mean HAE and MUCAPE (r = 

0.311).  When mean HAE and MUCAPE are compared in nontornadic storms, storms 

containing a mean HRSV less than 1 km in height have the strongest correlated (r = 

0.358).  However, MUCAPE differentiates between LOW and HIGH environments for 

all storms with a HRSV less than 1 km and storms with a HRSV greater than 1 km (p = 

0.07 and 0.09, respectively).  Storms with a mean HRSV less than 1 km in LOW 

MUCAPE environments produce a HAE of ~30 km
2
 whereas HIGH MUCAPE 

environments produce HAE of ~56 km
2
.  Storms with a mean HRSV greater than 1 km in 

LOW MUCAPE environments produce a HAE of ~71 km
2
 whereas HIGH MUCAPE 

environments produced HAE of ~109 km
2
.  HIGH MUCAPE environments are 

statistically different than the combination of LOW and MID environments when 

considering all storms with mean HRSV greater than 1 km (p = 0.07), whereas LOW 

MUCAPE environments are statistically different than the combination of MID and 
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HIGH environments when the mean HRSV is less than 1 km (p = 0.03).  These findings 

are consistent with theoretical expectations: it is theorized that the MUCAPE values are 

associated with higher updraft speeds (e.g., Brooks and Wilhelmson 1993; Kirkpatrick 

2009), and previous work has shown that higher updraft speeds can be associated with 

higher hail mixing ratio (e.g., Gilmore et al. 2004; Van Den Broeke 2014). 

Mean HAE in tornadic storms with a mean HRSV above 1 km have a moderate 

correlation with MUCAPE (r = 0.469), while all tornadic storms and tornadic storms with 

a HRSV less than 1 km have weaker positive correlations (r = 0.337 and 0.180, 

respectively; Fig. 5.4).  Even though there is a moderate correlation between HAE and 

MUCAPE in tornadic storms over 1 km, no statistically significant differences between 

environments are present for tornadic storms.  It is possible that the positive relationship 

between HAE and MUCAPE is due to the resulting stronger updrafts, which in turn 

influences overall hydrometeor production as suggested by previous research (e.g., 

Rasmussen and Straka 1998; Gilmore et al. 2004; Van Den Broeke 2014). 
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Fig. 5.4: Scatter plot for mean HAE (km
2
) vs. MUCAPE (J kg

-1
) for tornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed. 

 

 

CIN 

 

In the model developed by Van Den Broeke (2016) through multiple linear 

regression used to predict mean base-scan HAE (Eq. 4), one of the variables included is 

CIN (J kg
-1

).  Even though this equation, which also includes LFC height (m) and 6-km 

relative humidity (%) could only explain 51.2% of the HAE variability, the relationship 

between CIN and mean inferred HAE was further examined in this study.  Other 
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observational studies show that CIN can be predictive of convection including hailstorms 

(Foote and Wade 1982; Colby 1984). 

 HAE in both nontornadic storms with a HRSV greater than 1 km and all 

nontornadic storms is uncorrelated to this environmental variable, whereas nontornadic 

storms with a HRSV less than 1 km have a slightly stronger negative correlation (r = -

0.261).  The mean HAE of all storms with a HRSV less than 1 km is uncorrelated to CIN, 

while all storms with a HRSV over 1 km in height and all storms analyzed have slightly 

higher positive correlations (r = 0.232 and 0.219, respectively) between HAE and CIN.  

Different CIN environments are not associated with significantly different HAE inferred 

at the base level scan for nontornadic storms or all storms whose HRSV was below 1 km.  

However, in all storms with a HRSV above 1 km, there is a significant difference when 

comparing LOW CIN environments to HIGH CIN environments (p = 0.05); storms in 

LOW CIN environments have an average HAE of ~55 km
2
 while storms in HIGH CIN 

environments have an average HAE of ~105 km
2
.  Additionally, LOW CIN environments 

show distinctive HAE signatures when compared to all other environments (p = 0.07, 

respectively).  

Examining tornadic storms, however, give a different result (Fig. 5.5).  Overall, 

tornadic storms have a moderate positive correlation to CIN with an r value equal to 

0.410.  Tornadic storms with HRSV greater than 1 km also have a moderate positive 

correlation to this thermodynamic parameter (r = 0.424), while storms having a mean 

HRSV less than 1 km have a positive correlation that was slightly lower in magnitude (r 

= 0.387).  Moderate to strong relationships are also seen between HAE and CIN in storms 
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that exhibit HAE greater than the mean value (Fig. 5.6).  Defining environments based on 

the magnitude of CIN also produces significant results when looking at tornadic storms.  

In tornadic storms with a HRSV below 1 km, LOW CIN environments produce HAE 

values of ~ 25 km
2
, while storms in other CIN environments are associated with an 

average areal extent of ~ 43 km
2
 (p = 0.04; Fig. 5.7).  In general, this result disagrees 

with prior work, as Van Den Broeke (2016) showed that there was a negative correlation 

between HAE and CIN (Eq. 4) using a smaller sample of storms.  The positive 

correlation seen between HAE and CIN may be due to the influence of lowered low-level 

RH within a layer, as discussed later. 
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Fig. 5.5: Scatter plot for mean HAE (km
2
) vs. CIN (J kg

-1
) for tornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed.  
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Fig. 5.7: An example of how HAE (km
2
) varies in association with CIN. a) Storm in the 

domain of KINX (Tulsa, Oklahoma) on 20 May 2013 at 2030 UTC; CIN is 1 J kg
-1

 and 

the mean HAE is 27.30 km
2
.  b) Storm in the domain of KGLD (Goodland, Kansas) on 

17 June 2013 at 2029 UTC; CIN is 188 J kg
-1

 and the mean HAE is 120.75 km
2
. 

 

LFC Height 

 

Another variable that has been found to have a moderate relationship with mean 

HAE is the LFC height (Van Den Broeke 2016).  A direct relationship between LFC 

height and mean HAE is hypothesized for a couple reasons.  The updraft might be colder 

on average on days with a high LFC as the updraft will be at a higher altitude.  

Additionally, there is a fairly strong positive correlation between LFC height and CIN 

(Table 4.2) that is influenced by low-level RH.  A direct relationship is observed when 

looking at all the storms analyzed in the present study, although the correlation for this 

dataset was not as strong as the previous study (r = 0.55 in Van Den Broeke 2016; r = 

0.22 in this study).   

a b 
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Storms with a HRSV above 1 km are slightly better correlated (r = 0.312) and the 

storms containing a HRSV below the 1 km threshold are slightly negatively correlated.  

LOW LFC environments produce an average HAE of ~48 km
2
, whereas HIGH LFC 

environments produce an average HAE of ~126 km
2
 when considering all storms with an 

HRSV above 1 km (p  = 0.006).  Additionally, LOW LFC environments produce 

statistically different HAE values than other LFC environments, which produce a mean 

HAE of ~100 km
2
 (p = 0.009). Mean HAE values found in the HIGH environments are 

also statistically different than values found in any other environment, although to a 

lesser degree as LOW and MID environments produce a mean HAE value of ~68km
2
 (p 

= 0.02).   

Interrogation of the nontornadic storms showed that storms with a HRSV below 1 

km have the strongest correlation, albeit a negative one (r = -0.384), whereas the mean 

HAE in storms above 1 km in height and all nontornadic storms have a slightly positive 

correlation. There is no relationship between all nontornadic storms and LFC height.  

Tornadic storms follow this same trend (Fig. 5.8), with both the mean HAE of storms 

with a mean HRSV above 1 km and all tornadic storms having moderate correlations (r = 

0.403 and 0.368, respectively); meanwhile, tornadic storms with HRSV below 1 km have 

slightly weaker correlation between mean HAE and LFC height.  Storms containing 

mean HAE below the mean value show slight correlation to LFC height, whereas when 

the HAE of the storm was above the dataset mean value, a moderate relationship is seen 

(Fig. 5.9).  This is especially true when looking at all tornadic storms containing a mean 

HAE greater than the mean value and tornadic storms with a HRSV less than 1 km (r = 
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0.608).  Here as well, when considering values analyzed in tornadic environments with 

HRSV greater than 1 km, values are different when looking at HIGH and LOW LFC 

environments.  Wilcoxon-Mann-Whitney test p-values show that extreme HIGH and 

LOW LFC heights were distinguished by mean HAE, as LOW LFC environments are 

associated with a mean HAE of ~39 km
2
 and HIGH LFC environments are associated 

with a mean HAE of ~119 km
2
 (p = 0.01; Fig. 5.10).  Not only are LOW LFC 

environments also significantly different than all other environments, which have a mean 

HAE of ~ 87 km
2 

(p = 0.02), but HIGH LFC environments are significantly different than 

all other environments (mean HAE ~50 km
2
; p = 0.02).  These results generally support 

those found by Van Den Broeke (2016); as the LFC height increased, it was generally 

closer to the 0°C level (and therefore colder), although there was almost no correlation 

between these two variables (Table 4.2).   

LFC height appeared to exhibit a strong negative relationship to hail variability in 

previous research (Van Den Broeke 2016), so this relationship was investigated more in 

depth. The highest-magnitude correlation between hail variability and LFC height is in 

nontornadic storms containing a HRSV greater than 1 km in height (r = -0.207). This 

value is negative as found in previous research, although a few of the other data subsets 

had positive correlations (e.g., variability in nontornadic storms with a HRSV less than 1 

km).  HIGH LFCs for nontornadic storms with a HRSV above 1 km have statistically less 

variable HAE (0.53) whereas LFC heights lower than 2625 m have more variable HAE 

(0.63) (p = 0.07). 
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Fig. 5.8: Scatter plot for mean HAE (km
2
) vs. LFC height (m) for tornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed. 
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Fig. 5.10: An example of how HAE (km
2
) varies in association with LFC height. a) 

Storm in the domain of KFFC (Atlanta, Georgia) on 18 August 2013 at 2334 UTC; LFC 

height is 743 m and the mean HAE is 9.44 km
2
.  b) Storm in the domain of KABR 

(Aberdeen, South Dakota) on 21 June 2013 at 1855 UTC; LFC height is 3,666 m and the 

mean HAE is 196.95 km
2
. 

 

Ambient 0°C Level  

 

The hypothesis that there would be an inverse relationship between the altitude of 

the 0°C level and the mean inferred HAE was tested.  This inverse relationship was 

hypothesized the understanding that a lower 0°C level would allow onset of melting 

closer to the surface, resulting in more hail mass surviving to the base-scan level.  When 

studying the relationship between mean inferred HAE of tornadic storms and the 

environmental freezing level, an inverse relationship is seen in all three tornadic subsets: 

all tornadic storms, storms with an HRSV below 1 km, and storms with an HRSV above 

a b 
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1 km (r = -0.274, -0.235, and -0.277 respectively).  HAE in nontornadic storms 

containing a HRSV greater than 1 km show an even stronger inverse relationship (r = -

0.514; Fig. 5.11 and 5.12).  There are also moderate negative correlation values when 

observations are made between the datasets that did not differentiate between tornadic 

and nontornadic storms.  All storms analyzed that had a HRSV above 1 km in height 

show this relationship (r = -0.300).   

Environments containing HIGH freezing levels (above 3850 m) are significantly 

different than other environments for nontornadic storms and tornadic storms with a 

HRSV greater than 1 km (p = 0.07and 0.02 respectively).  For nontornadic storms, HIGH 

freezing levels are associated with a mean HAE of ~52 km
2
, whereas for all other 

environments are associated with a mean HAE of ~116 km
2
; for tornadic storms, HIGH 

freezing levels are associated with a mean HAE of ~36 km
2
, whereas for all other 

environments are associated with a mean HAE of ~80 km
2
.
   
Additionally, results show a 

significant difference (p < 0.01) when looking at all storms with an HRSV greater than 1 

km.  A significant difference appears in the mean HAE between environments containing 

HIGH and LOW freezing levels (p = 0.005), as ~40 km
2
 and ~126 km

2
 of mean hailfall 

are associated respectively. HIGH freezing levels also produce a significant difference in 

the amount of HAE inferred when compared against mean HAE in other environments 

(~97 km
2
; p = 0.0007). 
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Fig. 5.11: Scatter plot for mean HAE (km
2
) vs. 0°C height (m) for nontornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed. 
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LCL Temperature  

 

Colder mean updrafts, suggested by colder LCL temperatures, are hypothesized to 

be associated with increased hail production.  Colder updrafts would provide more 

opportunity for hail growth by supercooled water through the riming process.  In this 

dataset, colder LCL temperatures are seen to be associated with higher mean inferred 

HAE, although there are no strong relationships. When not taking into account the mean 

HRSV, tornadic storms are the most strongly correlated to LCL temperature (r = -0.233).  

When HRSV was above 1 km, nontornadic storms have an inverse relationship (r = -

0.201), similar to that found in all tornadic storms.  

Studying the relationships between hail variability and LCL temperature did not 

produce results similar to those shown by previous literature (Van Den Broeke 2016).  

Surprisingly, almost every subset has no correlation between the hail variability and LCL 

temperature; nontornadic storms with a HRSV greater than 1 km had the strongest 

relationship in all the datasets (r = 0.348).   

 

b) Moisture Parameters: 1-km RH, 1-3-km mean RH, 3-6-km mean RH, 3-9-km mean RH 

 

Previous observational and modeling studies (e.g., Rasmussen and Heymsfield 

1987; Van Den Broeke 2014, 2016) have shown that the moisture characteristics of the 

layer through which hail descends is important to the amount of hail that reaches the 
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surface.  Drier layers allow greater evaporative cooling when melting begins and thus 

slow the melting process and allow greater hailstone mass to survive to the surface. 

The strongest associations found between inferred HAE and a moisture variable at 

a single vertical level were with 1-km RH.  When examining correlation coefficients 

between mean HAE and 1-km RH for different subsets of data, moderate relationships 

are found for all tornadic storms and tornadic storms whose HRSV was below 1 km (r = -

-0.425 and -0.516 respectively, Fig. 5.13).  Tornadic storms with HRSV above 1 km also 

show a slightly weaker negative correlation (r = -0.381).  Additionally, the mean HAE in 

nontornadic storms whose HRSV was above 1 km as well as in all storms and all storms 

with a HRSV greater than 1 km is negatively correlated to 1 km RH, with magnitudes 

greater than 0.3.  A few statistically significant differences are found in mean HAE in 

environments characterized by different amounts of low-level moisture.  The most 

significant results are seen when looking at all storms with a mean HRSV greater than 1 

km.  LOW RH environments produce ~134 km
2
 in mean HAE, while HIGH RH 

environments produce a mean HAE of ~61 km
2
, which is a significant difference (p = 

0.004).  Additionally, LOW RH environments are significantly different than other 

environments, which have a mean HAE of ~59 km
2
 (p = 0.0001).   

 

 

 

 

 



60 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13: Scatter plot for mean HAE (km
2
) vs. 1-km RH (%) for tornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed. 

 

 

The 1-3 km mean RH was calculated as a pressure-weighted value (%) in order to 

characterize the environment through which hail was descending instead of simply using 

the value at one height.  Similar results to those seen when looking at 1-km RH are 

observed.  All tornadic storms, tornadic storms below 1 km in height, and tornadic storms 

greater than 1 km in height all show moderate negative relationships (r = -0.461, -0.362, 

and -0.466  respectively; Fig. 5.14).  All storms above 1 km in height and nontornadic 
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storms below 1 km in height also show moderate relationships between HAE and 1-3 

mean RH, although the relationship in nontornadic storms is positive (r = -0.379 and 

0.392 respectively).   

The negative relationships with this environmental variable, as well as those seen 

with 1 km RH, support the hypothesis that drier layers of the atmosphere tend to produce 

larger inferred HAEs, most likely due to greater evaporative cooling.  A decreased low-

level RH in a layer could also help explain the relationships seen between the HAE and 

CIN or LFC height.  A reduction in the low-level RH is one way that the amount of CIN 

could increase.  Enhancement of CIN is one of ways that brings about an increased LFC 

height and explains the high correlation between these two variables, as seen in Table 4.2. 

Significant differences between average HAE are somewhat related to this 

measure of the dryness of the 1-3 km layer of the atmosphere. Most of those differences 

occurred when tornadic and nontornadic environments were not discriminated.  In all 

storms with a HRSV greater than 1 km, there is a significant difference in the amount of 

hailfall in LOW 3-6 km RH environments (p = 0.002); storms in environments 

characterized by LOW 1-3 km RH produce a mean HAE of ~119 km
2
, while in all other 

environments a mean HAE of ~64 km
2
 is produced.  LOW RH environments are also 

statistically different than HIGH RH environments, which produce ~44 km
2
 of HAE (p = 

0.002).  LOW RH environments are also statistically different when observing tornadic 

storms with a HRSV greater than 1 km.  These environments are distinguished by HAEs 

of ~103 km
2
, whereas HIGH RH environments show HAEs of ~38 km

2
 (p = 0.09).  
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Additionally, storms in MID and HIGH environments produce ~53 km
2
, which is also 

statistically different than LOW environments (p = 0.08). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14: Scatter plot for mean HAE (km
2
) vs. 1-3-km RH (%) for tornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed. 

 

 

The 3-6 km mean RH was also calculated; correlation magnitudes between 3-6 

km mean RH and mean HAE are greater than 0.2 for all nontornadic storms, nontornadic 

storms with a HRSV greater than 1 km, and nontornadic storms with a HRSV less than 1 
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km (r = 0.220, 0.349, and 0.275 respectively; Fig. 5.15).  When the results are separated 

by the mean value (Fig. 5.16), there is a relatively high correlation between HAE and 3-6 

mean RH in the upper half of the storms that had an HRSV less than 1 km (r = 0.585) as 

well as a moderate relationship when observing all nontornadic storms in the upper half 

of the data sub-set and nontornadic storms with a HRSV greater than 1 km (r = 0.341 and 

0.319 respectively).  

Significant differences between average HAE are somewhat related to this 

measure of the dryness of this particular layer of the atmosphere. Most of those 

differences occurred when tornadic and nontornadic environments were not discriminated.  

In all storms with a HRSV less than 1 km, there is a significant difference in the amount 

of hailfall in LOW 3-6 km RH environments (p = 0.09); in storms with LOW 3-6 km RH, 

a mean HAE of ~29 km
2
 is observed, while in all other environments a mean HAE of ~47 

km
2
 is observed.  Meanwhile in all storms that had a HRSV greater than 1 km, HIGH 3-6 

km RH environments are associated with a mean HAE of ~68 km
2
, whereas all other 

environments are associated with an average HAE ~88 km
2
, a significant difference (p = 

0.05).  When tornadic storms whose HRSV was greater than 1 km are analyzed, it is 

observed that environments containing high values of 3-6 km mean RH produce a mean 

HAE of ~29 km
2
, while all other environments produce a mean HAE of ~83 km

2
, which 

is also a significant difference (p = 0.01). 
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Fig. 5.15: Scatter plot for mean HAE (km
2
) vs. 3-6-km RH (%) for nontornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed. 
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The previous observational study by Van Den Broeke (2016), which utilized a 

much smaller dataset, showed that the variability of inferred HAE decreased with 

increasing mean RH in the 3-9 km layer (r = -0.48); the previous study did not speculate 

as to why these variables were associated in this way.  The hail variability of both 

nontornadic storms and all storms with a HRSV less than 1 km exhibits the same inverse 

relationship (r = -0.453 and -0.207 respectively, Fig. 5.17).  Contrastingly, though, hail 

variability in nontornadic storms with a HRSV greater than 1 km in the upper half of all 

hail variability values has a moderate positive correlation with 3-9 km mean RH (r = 

0.491; Fig. 5.18).  Throughout the subsets of data studied, the variability in storms with 

low percentages of 3-9 km mean RH is not significantly different than the variability in 

storms with high percentages of this moisture parameter.  In addition, environments with 

neither LOW nor HIGH mean 3-9 km RH values are associated with a significantly 

different amount of variability in HAE through the analysis period.  
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Fig. 5.17: Scatter plot for hail variability vs. 3-9-km RH (%) for nontornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed. 
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c) Shear parameters 

 

Shear parameters, such as bulk shear and storm relative helicity (SRH) through 

different layers, distinguish storm structure (e.g., multi-cellular vs. supercell; Weisman 

and Klemp 1982, 1984).  Furthermore, these parameters are closely tied to precipitation 

production through the life cycle of supercells (e.g., Rasmussen and Straka 1998; 

Gilmore et al. 2004).  Prior modeling work (e.g., Van Den Broeke et al. 2010; Dennis and 

Kumjian 2014) as well as observational studies (e.g., Van Den Broeke 2016) have shown 

that hail production should have a positive relationship with increases in storm relative 

winds. Stronger shear values should be associated with a higher mixing ratio of ice-phase 

particles, including hail (Van Den Broeke et al. 2010).  Additionally, an increase in 

updraft strength due to an increase in shear has been observed in modeling studies 

(Weisman and Klemp 1984). 

 

0-1-km shear, 0-3-km shear, 0-6-km shear 

 

Analysis of the data subsets show that only a few moderate relationships existed 

between mean HAE and 0-1 km shear.  Both tornadic storms and all storms with an 

HRSV above 1 km have a negative correlation between HAE and this shear parameter (r 

= -0.229 and -0.222 respectively).  Moreover, size of the inferred hail region is not 

significantly different depending upon the amount of 0-1 km environmental shear.  Shear 

values through a deeper layer (0-6 km) were also analyzed in comparison to mean HAE.  
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Most of the data subsets analyzed do not show significant correlations between 0-6 km 

shear values and HAE; although nontornadic storms with HRSV below 1 km have a 

moderate correlation (r = -0.258).  Similar results were expected, due to the high 

correlation between the 0-1 km and 0-6 km shear (Table 4.2).  However, HAE is 

significantly different in LOW and HIGH shear environments.  Nontornadic 

environments with HRSV less than 1 km and LOW values of 0-6 km shear have a HAE 

of ~65 km
2
, while all other environments show a mean HAE of ~49 km

2
, which is a 

significant difference (p = 0.09).  Based on these results, 0-6 km shear is the best shear 

variable predictor of mean HAE.  

Stronger relationships were seen when comparing hail variability and shear.  A 

moderate relationship is seen between hail variability and 0-1 km shear for all tornadic 

storms with HRSV < 1 km (r = 0.463, Fig. 5.19).  Significant differences are observed in 

the variability of mean HAE when looking at 0-1 km shear in tornadic environments 

when the average HRSV was ≥ 1 km.  LOW shear environments produce a mean 

coefficient of variation of ~0.453, while HIGH shear environments produce a mean 

coefficient of variation of ~0.709; this is a significant difference (p = 0.05; Fig. 5.20). 

HIGH shear environments are also significantly different from all other shear 

environments, as the other environments produce a mean coefficient of variation of ~ 

0.486 (p = 0.04).   
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Fig. 5.19: Scatter plot for variability vs. 0-1 km shear (kt.) for tornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed.  
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Fig. 5.20: An example of how HAE (km
2
) varies cyclically through time as in association 

with 0-1 km shear.  a) A time series of mean HAE from a supercell in the domain of 

KHPX (Ft. Campbell, Kentucky) from 0000 to 0056 UTC 7 July 2013; variability is 

~0.16 and shear is 7 kt.; b) a time series of mean HAE from a supercell in the domain of 

KAMA (Amarillo, Texas) from 2300 UTC 14 August 2013 to 0058 UTC 15 August 

2013; variability is ~0.8 and shear is 26 kt. 

 

 

However, tornadic storms with a HRSV greater than 1 km have almost no 

correlation between mean HAE and 0-3 km and 0-6 km shear. HIGH 0-6 km shear 

environments are significantly different than other environments in storms greater than 1 

km in height (p = 0.09) as HIGH shear environments produce a HAE of ~59 km
2
, while 

other environments produce ~100 km
2
 of hail.  In nontornadic environments with HRSV 

below 1 km, LOW 0-3 km shear environments produce less variable storms (mean 

variability of ~0.463) while other environments produce storms that have a mean 
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variability of ~0.699, which is statistically significant (p = 0.05).  Meanwhile, in tornadic 

environments with HRSV above 1 km, LOW 0-3 km shear environments (< 19 kt.) 

produce significantly less variable storms (mean variability ~ 0.454) when compared to 

HIGH shear environments, which are defined as having shear ≥ 33 kt. (mean variability 

~0.740; p = 0.03). Variability in mean HAE is significantly larger in HIGH shear 

environments than in other shear environments, which have an average variability of 

~0.499 (p = 0.04). 

Significant differences in hail variability are also found across differing 

environments for 0-6 km shear.  LOW 0-6 km shear environments for nontornadic 

environments with HRSV below 1 km contain a mean variability of ~0.446, whereas all 

other environments contain a mean variability of ~0.703; this difference is statistically 

significant (p = 0.04).  0-6 km shear also show significant differences in the hail 

variability in tornadic storms whose HRSV is greater than 1 km.  Environments 

characterized by HIGH values of deep-layer shear have a mean variability of ~0.726, 

while all other environments have a mean variability of ~0.505, which is a significant 

distinction (p = 0.07).  Additionally, environments characterized by HIGH values of 0-6 

km shear are significantly different than environments characterized by LOW values of 

0-6 shear (mean variability ~0.496; p = 0.06).  An example of this difference is seen in 

Fig. 5.21. 
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Fig. 5.21: An example of how HAE (km
2
) varies cyclically through time as a function of 

0-6 km shear.  a) A time series of mean HAE from a supercell in the domain of KCCX 

(State College, Pennsylvania) from 1801 to 1856 UTC 27 June 2013; variability is 

~0.489 and shear is 23 kt.; b) a time series of mean HAE from a supercell in the domain 

of KTWX (Topeka, Kansas) from 0001 to 0057 UTC 15 April 2012; variability is ~0.864 

and shear is 76 kt. 

 

These results generally support previous literature (e.g., Gilmore et al. 2004; Van 

Den Broeke et al. 2010), as an increase in environmental shear produces an increase in 

mean HAE.  Hail production is thought to be tied to mesocyclone cycling and updraft 

pulses as suggested by Adlerman and Droegemeier (2005) and Van Den Broeke (2010).  

Adlerman and Droegemeier (2005) showed that an increase in vertical shear magnitude 

slows down and eventually terminates the cycling process, which would result in less 

variability in hailfall.  However, the results presented here show that hail variability 

increases with an increase in low-level shear.  Part of the disparity may be due to the use 
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of liquid-only microphysics by Adlerman and Droegemeier (2005).  Van Den Broeke 

(2010) showed the mesocyclone cycling is possible in high-shear environments in 

simulations with ice-inclusive microphysics.  The results presented here show that an 

increase in shear is associated with increased hail variability.  However, taking a look at 

how hail variability changes over the parameter space (Fig. 5.22), variability remains 

relatively constant at values of shear greater than 32 kt. 
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ESHEAR 

 

To account for shear in the effective inflow layer and account for elevated 

supercells, the effective bulk shear (ESHEAR) was estimated and relationships were 

determined between these values and the mean HAE.  The effective inflow layer is based 

on a lifted parcel where the CAPE ≥ 100 J kg
-1

 and CIN ≥ -250 J kg
-1

 (Thompson et al. 

2007).  Initial associations between mean HAE and ESHEAR values are positive, in 

contrast to the three other shear measurements (0-1 km, 0-3 km, and 0-6 km shear).  Even 

though there is no correlation between all storms (both tornadic and nontornadic) when 

height is differentiated, an increase in mean HAE with an increase in effective bulk shear 

is found when all storms are analyzed (r = 0.146).  All three tornadic storm classifications 

(all tornadic storms, storms with HRSV below 1 km, and storms with HRSV above 1 km) 

show relatively moderate relationships between mean areal extent and this shear 

parameter (r = 0.331, 0.523, and 0.296 respectively; Fig. 5.23).  Additionally, tornadic 

storms containing mean HAE greater than the mean HAE and an HRSV less than 1 km 

have a moderate correlation to ESHEAR (r = 0.558; Fig. 5.24).  HAE in nontornadic 

storms with a HRSV over 1 km is also correlated to ESHEAR, although this correlation is 

negative (r = -0.347).   

Both tornadic storms and all storms with a mean HRSV less than 1 km display 

low p-values from the Wilcoxon-Mann-Whitney test when the measured variable is mean 

HAE at the base-level scan.  In tornadic storms, LOW ESHEAR environments have 

statistically lower mean HAE (~31 km
2
) than HIGH ESHEAR environments (~54 km

2
; p 
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= 0.06).  Additionally, there are statistical differences between the mean HAE in HIGH 

ESHEAR environments versus in all other environments, as a mean value of ~33 km
2
 is 

inferred (p = 0.04).  However, looking at all storms with a HRSV below 1 km, statistical 

differences are found between mean HAE in LOW and HIGH ESHEAR environments as 

mean HAE of ~30 km
2
 and ~55 km

2
 are inferred (p = 0.05).  Additionally, a mean HAE 

of ~53 km
2
 is inferred for MID and HIGH ESHEAR environments; this is significantly 

different than the value produced in LOW ESHEAR environments (p = 0.07). 

Correlation coefficients between ESHEAR and hail variability were also 

calculated for each of the data subsets; the hail variability is not correlated to ESHEAR 

for many of the subsets considered.  Tornadic storms with HRSV greater than 1 km have 

the strongest association between hail variability and ESHEAR (r = 0.166).  It is deduced, 

though, that values of HAE variability are not significantly different in environments 

characterized by different amounts of ESHEAR.  
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Fig. 5.23: Scatter plot for mean HAE (km
2
) vs. ESHEAR (kt.) for tornadic storms.  

Correlation coefficients for storms whose mean HRSV is under 1 km (red stars), storms 

whose HRSV is over 1 km (black stars), and all storms are listed. 
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Storm Relative Helicity: 0-1 km SRH and ESRH 

 

Interrogation of 0-1 km storm relative helicity (SRH), a measure of the potential 

for cyclonic updraft rotation in right-moving supercells (SPC 2016), was also performed 

in addition to effective SRH (ESRH).  ESRH is calculated using thresholded CAPE and 

CIN values which are meant to confine the SRH layer to the part of the sounding where 

lifted parcels are buoyant (Thompson et al. 2007; SPC 2016).  Across all storms, the 

association between mean HAE at the base-level scan and 0-1 km SRH is weak.  The 

strongest correlations between mean HAE and 0-1 km SRH were in nontornadic storms 

with a HRSV greater than 1 km (r = -0.255).   

Further analysis of all storms with HRSV greater than 1 km shows that HIGH 0-1 

km SRH environments are associated with mean HAE of ~53 km
2
, whereas all other 

environments have a mean HAE of ~101 km
2
 (p = 0.05).  In nontornadic storms with a 

mean HRSV below 1 km, LOW ESRH environments produce a mean HAE of ~43 km
2
 

while HIGH ESRH environments produce a mean HAE of ~119 km
2
 (p = 0.07); 

additionally, HIGH environments produce a statistically significant difference in mean 

HAE when compared to all other environments (average HAE of ~53 km
2
; p = 0.07).   

Even though variability in HAE was not well correlated with 0-1 km SRH, the 

strongest correlations were seen when looking at tornadic storms.  Variability of tornadic 

storms with a HRSV greater than 1 km produce the strongest correlations of any data 

subsets (r = 0.368, respectively).  Further analysis of all storms with a HRSV less than 1 

km showed that HIGH ESRH environments have a mean variability of ~0.516 while all 
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other environments have a mean variability of ~0.592, which is a significant difference (p 

= 0.05).  

 

Hodograph Type 

Hail production and variability has been shown to be affected by the hodograph 

shape in previous modeling studies (e.g., Adlerman and Droegemeier 2005; Van Den 

Broeke et al. 2010).  Varying wind profiles have also produced differences in storm 

intensity and morphology in modeling studies (e.g., McCaul and Weisman 2001).  

Simulations in Van Den Broeke et al. (2010) showed that hail mixing ratio was higher in 

storms with full-circle hodographs, as areas near the updraft could contain many ice 

particles which could serve as hail embryos.  Table 5.5 summarizes the categorization of 

hodograph types used for this analysis while Table 5.6 summarizes the sample sizes 

obtained for the different hodograph types. 
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Table 5.5: Name and description used when classifying hodograph types.  A 

representative example of each hodograph type is also included. 

Classification Description Example 

Segmented 

Has well-defined segment(s) 

with cyclonic and anticyclonic 

curvature 

 

 

 

 

Curved 

Dominated by cyclonic OR 

anticyclonic curvature through 

most of the 0-6 km depth 

 

 

 

 

 

 

Linear 

Mostly straight-line; weak 

curvature through most of the 

0-6 km depth  

 

 

 

 

  



84 

 

 

Table 5.6: Summary of dominant hodograph type for six subsets of data.  Sample size (n) 

and percentage of storms within that subset. 

Height Tornadic/Nontornadic 

Dominant 

Hodograph 

Type 

n (%) 

Below 1 km Nontornadic Linear 9 (41%) 

Above 1 km Nontornadic Curved 13 (48%) 

Below 1 km Tornadic Curved 19 (43%) 

Above 1 km Tornadic Segmented 19 (41%) 

Below 1 km All Storms Curved 26 (39%) 

Above 1 km All Storms Curved 24 (36%) 

 

 

These overarching results were broken down into two bins differentiated by the 

mean value (Table 5.4) for both mean HAE and hail variability.  Looking at tornadic 

environments with a HRSV under 1 km showed that 50% of these storms have either a 

curved or a segmented hodograph and a HAE below the mean value (n = 11 in both 

cases).  In tornadic environments with a HRSV above 1 km, 10 storms (22%) have a 

segmented hodograph and a mean HAE below the 50
th

 percentile, while 9 storms (20%) 

have a segmented hodograph and a mean HAE above the 50
th

 percentile.  There is no 

clear pattern of hodograph type in nontornadic environments with a HRSV below 1 km, 
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whereas nearly 41% (n = 11) of nontornadic environments with a HRSV above 1 km 

have a curved hodograph and a mean HAE above the 50
th

 percentile.   

Looking at hail variability, 25% (n = 11) of storms in tornadic environments with 

a HRSV < 1 km have variability values less than the 50
th

 percentile and curved 

hodographs.  Meanwhile, 24% (n = 11) of storms in these same environments and a 

HRSV above 1 km have straight hodographs and variability values greater than the 50
th

 

percentile.  Analysis of storms in nontornadic environments, show that 26% (n = 7) of 

storms have a linear hodograph when the HRSV was greater than 1 km while 27% (n = 6) 

of storms have the same type of hodograph when the HRSV was less than 1 km; both of 

these produce hail variabilities greater than the 50
th

 percentile.  Further analysis shows 

that none of the hodograph types produce a significant difference in mean HAE or hail 

variability. 

 

IV. Predictive Models for HAE and Hail Variability 

A final step was to calculate predictive equations for both mean HAE and hail 

variability for different data subsets through multiple linear regression.  Variables were 

included in the derivation of a predictive equation if the magnitude of the correlation 

coefficient between that variable and the subset of data was greater than 0.2.  Since only a 

few variables had this strong of a relationship when looking at hail variability, the 

threshold was lowered to 0.1 for those predictive equations.  Collinearity between the 

variables was checked using the Belsley condition index (Belsley et al. 2005); this greatly 

increases confidence in the value of the predictive equations as it allows for removal of 
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variables that are linearly dependent.  Variables that have a condition index greater than 

30 exhibit collinearity, and one of these variables would need to be removed from the 

analysis. 

When looking at mean HAE, the following equation was developed for storms in 

tornadic environments with a HRSV above 1 km: 

                                                   

                                                              (10)      

where a is MUCAPE (J kg
-1

), b is CIN (J kg
-1

), c is LFC height (m), d is ambient 0°C 

level (m), e is 1 km RH (%), f is 0-1 km shear (kt.), and g is ESHEAR (kt.).  These 

variables were determined not to be collinear as the maximum condition index (MCI) 

was 21.6.  This equation predicts 74.9% of the changes in mean HAE in tornadic storms 

with a HRSV > 1 km (Fig. 5.25).  Meanwhile, 50.4% of the changes in mean HAE is 

predicted in tornadic storms with a mean HRSV < 1 km (MCI = 20.6) and approximately 

44% of mean HAE is predicted in any tornadic storm (MCI = 22.9; Fig. 5.26) by the 

following equations, respectively: 

                                                           

                                                   (11) 

 

                                                                    

                                                 (12) 
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where a is CIN (J kg
-1

), b is LFC height (m), c is LCL Temperature (°C), d is 1 km RH 

(%), e is 1-3 km mean RH (%), f is ESHEAR (kt.), g is MUCAPE (J kg
-1

), and h is 

ambient 0°C level (m).  If the one extreme event (circled in red; Fig. 5.26) is removed 

from this last dataset, the predictability falls to 41.7%. 

For comparison, HAE predictive equations were also derived for all supercells in 

tornadic environments, regardless of whether or not a tornado was produced.  

Predictability for mean HAE is slightly lower for all tornadic storms (~39%) and tornadic 

storms with a mean HRSV less than 1 km (~50%); meanwhile, predictability is 

substantially lower for tornadic storms greater than 1 km in height (~48% compared to 

~75%).  This underscores the importance of choosing tornadic supercells in similar work 

and increases the confidence that environmental variables may be able to differentiate 

tornadic from nontornadic storms, even in similar environments.   

The predictability of HAE in tornadic storms less than 1 km in height is 

comparable to that predicted by the model of Van Den Broeke (2016; 51.2%).  Although 

both models include LFC height and CIN, the previously developed model (Eq. 4) and 

the model developed in this study include different moisture parameters.  Previously only 

6-km RH was included while this study includes 1-km RH and the mean pressure 

weighted RH in the 1-3 km layer.  Additional thermodynamic parameters (MUCAPE and 

LCL temperature), as well as ESHEAR, are also included in the predictive equation 

developed in this study.  There may be a couple reasons for the small differences in 

predictability: the relatively small sample size used and the inclusion of both tornadic and 

nontornadic environments in the previous study.   
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Meanwhile, the following equation predicts 41.4% of the changes in mean HAE 

in storms in nontornadic environments with a HRSV ≥ 1 km (MCI = 19.8): 

                                           

                                                    (13) 

where a is ambient 0°C height (m), b is 1-3 km mean RH (%), c is 3-6 km RH (%), d is 

0-6 km shear, e is ESHEAR (kt.), and f and g are 0-1 and 0-3 km SRH (m
2
 s

-2
) 

respectively.  Out of the three subsets of nontornadic storms, nontornadic storms with a 

mean HRSV greater than 1 km have the greatest predictability (Fig. 5.27).  Looking at all 

storms, HAE is best predicted for storms greater than 1 km in height by: 

                                                               

                                                            (14) 

where a is MUCAPE (J kg
-1

), b is CIN (J kg
-1

), c is LFC height (m), d is 0°C height (m), 

e is 1 km RH (%), f is 1-3 km RH (%), and g is 0-1 km shear (MCI: 26.0), which explains 

48.8% of the mean HAE.   

Equations were also developed for the predictability of hail variability; overall, 

hail variability currently is not very predictable given the environmental variables 

analyzed.  Hail variability was best predicted in nontornadic storms greater than 1 km in 

height where 37.1% of the variability is predicted (MCI: 12.5; Fig. 5.28): 

                                               

                                                              (15) 

where a is LFC height (m), b is LCL temperature (°C), c is 3-9 km RH(%), d is 0-1 km 

shear (kt.), e is ESHEAR (kt.), and f is ESRH (m
2
 s

-2
).  Predictability of hail variability in 
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tornadic storms (not shown) ranges from 10.7% (all tornadic storms) to 25.8% (tornadic 

storms with a HRSV greater than 1 km); additionally, hail variability in all storms was 

not predictable using environmental variables as predictability ranges from 1.9% to 

12.1%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.25: Observed HAE (km
2
) vs. predicted HAE (km

2
) for storms in tornadic 

environments with a HRSV > 1 km.  The equation used to obtain the predicted HAE 

(refer to text for variables corresponding to letters) and correlation coefficient (r
2
) 

between datasets are given. 
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Fig. 5.26: Observed HAE (km
2
) vs. predicted HAE (km

2
) for all storms in tornadic 

environments.  The equation used to obtain the predicted HAE (refer to text for variables 

corresponding to letters) and correlation coefficient (r
2
) between datasets are given. The 

correlation coefficient (r
2
) was 0.417 with the extreme event (circled in red) removed. 
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Fig. 5.27: Observed HAE (km
2
) vs. predicted HAE (km

2
) for storms in nontornadic 

environments with a HRSV > 1 km.  The equation used to obtain the predicted HAE 

(refer to text for variables corresponding to letters) and correlation coefficient (r
2
) 

between datasets are given.  
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Fig. 5.28: Observed hail variability vs. predicted hail variability for storms in nontornadic 

environments with a HRSV > 1 km.  The equation used to obtain the predicted hail 

variability (refer to text for variables corresponding to letters) and correlation coefficient 

(r
2
) between datasets are given.  
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Chapter 6. Summary and Conclusions 

As storm morphology and evolution can be impacted by the amount of HAE as 

well as the variability of HAE, it is important to understand how these might change as a 

function of environment.  Using a dataset composed of 123 supercells within ~125 km of 

a WSR-88D across differing environments, significant relationships were determined 

between thermodynamic, moisture, and shear parameters and hail areal extent inferred at 

the base-scan level and between these same parameters and the variability of hail extent 

within supercell storms.  This study shows how environmental variability affects the 

amount of hailfall and its temporal variability in supercell storms.  

Overall, a combination of thermodynamic, shear, and moisture parameters were 

predictive of the mean HAE in tornadic and nontornadic storms, while shear parameters 

were strongly associated with hail variability in these storms.  Predictive equations were 

developed through multiple linear regression for both mean HAE and HAE variability 

(Equations 10 - 15).  These equations increased confidence that environmental variables 

may be able to differentiate tornadic from nontornadic storms, even in similar 

environments as predictability was substantially decreased with the inclusion of 

nontornadic supercells in tornadic environments. 

Strong differences between environments were seen in mean HAE when 

examining LFC height, with an increase in LFC height associated with an increase in 

mean HAE.  This variable is likely to be useful for looking at supercell variability 

between environments in the future. Height of the ambient 0°C level also emerged as 

differentiating mean HAE among the data subsets.  When looking at mean hail variability 
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among storms, however, there was no one environmental variable that differentiated 

among the different environments for the subsets examined.  Additionally, previous 

research showed that HAE variability was dependent on whether the storms were 

tornadic or nontornadic (e.g., Kumjian and Ryzhkov 2008; Van Den Broeke 2016).  

Results presented here show that HAE variability was not dependent on whether storms 

were tornadic or nontornadic; one caveat is that results presented here are not directly 

analogous to previous results, as the method of comparing hail variability is different 

between these studies. 

Results support previous research (e.g., Rasmussen and Straka 1998; Gilmore et 

al. 2004; Van Den Broeke 2014) as an increase in MUCAPE was associated with an 

increase in the mean HAE of storms.  Additionally, there were significant differences in 

HAE across MUCAPE environments for all storms, providing observational evidence 

that hail production increases with stronger updrafts.  There is also evidence that an 

increase in low-level shear produces an increase in mean HAE, which supports previous 

modeling studies (e.g., Gilmore et al. 2004; Van Den Broeke et al. 2010).  One possible 

explanation for this result is that ice particles from nearby storms could have been 

advected and lofted into the region of the analyzed storm.  However, when examining 

low-level shear and hail variability, results seem to contradict previous modeling studies.  

Adlerman and Droegemeier (2005) implied that an increase in shear values should lead to 

a reduction in hail variability as the mesocyclone cycling process will slow down and 

terminate with an increase in shear.  Van Den Broeke (2010), however, showed that with 

the inclusion of ice-microphysics, hail should become more variable with higher shear.   
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Even though mean HAE and hail variability can be correlated to individual 

environmental parameters, as shown, it is important to remember that there is strong 

interdependence among several of the parameters included in the analysis, as noted 

earlier (Table 4.2).  Not only are several variables likely conveying similar information 

(e.g., 0-1- and 0-3-km SRH), but there might be many factors not captured by the 

environmental variables included in this study that affect storm-scale evolution and 

microphysical processes in supercell storms.  It is hoped that the results of this study 

provide a foundation for the prediction of hailfall areal extent based on representative 

environmental conditions.  Future work in this area may include adding to this dataset 

from after 2014 to continue trying to understand the microphysics of hail growth and hail 

variability more in depth, as well as breaking down the dataset to see if there are regional 

and seasonal differences in the response of hail areal extent to environmental variables, as 

different regions and seasons have different threshold values for several of the variables 

analyzed. 
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