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    The Minimum Rectilinear Steiner Tree (MRST) problem is to find the minimal 

spanning tree of a set of points (also called terminals) in the plane that interconnects all 

the terminals and some extra points (called Steiner points) introduced by intermediate 

junctions, and in which edge lengths are measured in the L1 (Manhattan) metric. 

This is one of the oldest optimization problems in mathematics that has been 

extensively studied and has been proven to be NP-complete, thus efficient 

approximation heuristics are more applicable than exact algorithms.  

    In this thesis, we present a new heuristic to construct rectilinear Steiner trees (RSTs) 

with a close approximation of minimum length in ( log )n nΟ  time. To this end, we 

recursively divide a plane into a set of sub-planes of which optimal rectilinear Steiner 

trees (optRSTs) can be generated by a proposed exact algorithm called Const_optRST. 

By connecting all the optRSTs of the sub-planes, a suboptimal MRST is eventually 

constructed. 

    We show experimentally that for topologies with up to 100 terminals, the heuristic 

is 1.06 to 3.45 times faster than RMST, which is an efficient algorithm based on Prim’s 

method, with accuracy improvements varying from 1.31 % to 10.21 %.  

 



i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 About This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Rectilinear Steiner Tree Problem 4
2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Problem Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Generation of Optimal Rectilinear Steiner Trees 10
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Growing Steiner Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Heuristic for Rectilinear Steiner Tree Construction 31
4.1 Partitioning and Optimization . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Conclusion and Future Work 44
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 46



ii

List of Figures

2.1 Hanan grid H(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hanan grid H(G(P )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 A terminal incident to multiple grid points . . . . . . . . . . . . . . . . . 14
3.2 A path through a Steiner point . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Two terminals incident to multiple grid points . . . . . . . . . . . . . . . 16
3.4 Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Type 2, Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Type 2, Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Type 3, Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Type 3, Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Type 4, Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 Type 4, Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Type 4, Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.12 Type 5, Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.13 Type 5, Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14 Type 5, Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.15 Type 5, Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Sequential partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Sequential partitioning schemes . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Sequential partitioning inside a subgraph . . . . . . . . . . . . . . . . . . 34
4.4 Median partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Median partitioning with different directions . . . . . . . . . . . . . . . . 35
4.6 Group partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 (a) Selection of partitioning point; and (b) Alternative selection of parti-

tioning point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 Group partitioning with different directions . . . . . . . . . . . . . . . . 37
4.9 Optimization of total length . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.10 Permutation of each district . . . . . . . . . . . . . . . . . . . . . . . . . 41



iii

List of Tables

4.1 Comparison of total length for 8 ∼ 10 terminals (∆ = 2) . . . . . . . . . 42
4.2 Comparison of runtime for 8 ∼ 10 terminals (∆ = 2) . . . . . . . . . . . 42
4.3 Comparison of total length for 15 ∼ 100 terminals (Per# = 10, 000, Ω = 6) 42
4.4 Comparison of runtime for 15 ∼ 100 terminals (Per# = 10, 000, Ω = 6) . 43



1

Chapter 1

Introduction

In this chapter, we give the background of Steiner tree problem, previous related work,

and the organization of this thesis.

1.1 Background

The Steiner tree problem is named after the Swiss mathematician Jacob Steiner and is

one of the oldest optimization problems in mathematics. Hanan [5] first considered the

concept of minimal rectilinear Steiner tree which is constructed by Manhattan distance

due to its importance in VLSI routing and printed circuit boards.

The Minimum Rectilinear Steiner Tree (MRST) problem is to find the minimal span-

ning tree of a set of points (also called terminals) in the plane that interconnects all the

terminals and some extra points (called Steiner points) introduced by intermediate junc-

tions, and in which edge lengths are measured in the L1 (Manhattan) metric. In 1976, M.

Garey and D. S. Johnson [4] proved that the rectilinear Steiner problem is NP-complete.

Therefore, polynomial-time algorithms for this problem are unlikely to exist. The MRST

problem is fundamental to VLSI design, phylogenetic tree reconstruction in biology, net-

work routing, civil engineering, and so on.
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1.2 Related Work

In 1966, Hanan [5] introduced the rectilinear Steiner problem in which optimal rectilinear

trees can be obtained by constructing horizontal and vertical lines through each terminal.

Hanan also proposed an optimal solution for n ≤ 5 terminals.

Yang and Wing [17] reported the first exact algorithm in 1972 which solves the recti-

linear Steiner problem with up to 9 terminals. Hwang [6] first introduced the rectilinear

Fullsome Steiner Tree (FSTs) in 1976, which is popular for later research for designing

exact and optimal algorithms based on it, and developed the well-known rectilinear FST

generators. In 1981, Winter [27] reported an exact algorithm called GeoSteiner which

solves the rectilinear Steiner problem with up to 15 terminals. In 1989, Sidorenko [21]

made a further progress and proposed an algorithm which is applicable up to 11 termi-

nals. And in 1992, Thomborson, Alpern and Carter [29] reported a similar algorithm for

solving the rectilinear Steiner problem with up to 16 terminals. Ganley and Cohoon [34]

reported an algorithm which solves the problem with up to 28 terminals in 1994. Salowe

and Warme [48] reported an algorithm for solving the problem with 30 terminals in an

average of 30 minutes in 1993.

Since the exact algorithms only exist in exponential time, especially for a large num-

ber of terminals, thus efficient approximation heuristics are more applicable than exact

algorithms. The Batched Iterative 1-Steiner (BI1S) algorithm proposed by Kahng and

Robins [30] computes rectilinear Steiner trees efficiently. The improved BI1S [38] is

currently the most near-optimal approximation algorithm for the rectilinear Steiner prob-

lem. However, the BI1S has a time complexity of O(n4 log n). In practice, RMST [32],

which is Prim’s algorithm (O(n2)) for computing minimal rectilinear spanning trees, is

frequently used for computing minimal rectilinear Steiner trees.
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1.3 About This Thesis

1.3.1 Motivation

Many previous exponential-time algorithms tackle the rectilinear Steiner problem for

large instances, however, in VLSI routing applications, a typical instance often contains

a few terminals [13]. In practice, most VLSI applications have 30 terminals or less, and

the performance, including CPU runtime and accuracy of total length, is clearly criti-

cal. Therefore, our objective in this thesis is to seek a heuristic algorithm which is both

efficient and accurate for VLSI applications with small instances (30 terminals or less).

1.3.2 Contributions

Our major contributions are as follows:

1. We propose a mathematical modeling method to reformulate the minimum rectilin-

ear Steiner tree problem as a problem to be more tractable that only contains permutation

sequences in Hanan grid.

2. We create an optimal algorithm const optRST which can efficiently solve the

rectilinear Steiner problem with up to 7 points.

3. We introduce a new heuristic RSTC which is excellent in both efficiency and

accuracy for constructing rectilinear Steiner trees with up to 100 terminals in the plane.

1.3.3 Outline of Thesis

This thesis is structured as follows. Chapter 2 reformulates the minimum rectilinear

Steiner tree problem and gives some definitions and properties. Chapter 3 proposes an ex-

act solution for growing optimal rectilinear Steiner trees. Chapter 4 introduces a heuristic

algorithm for constructing the rectilinear Steiner trees with a set of terminals in the plane,

and describes our experiments and compares our results with a very efficient Prim’s algo-

rithm RMST [32]. Finally, Chapter 5 concludes this thesis with future work.
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Chapter 2

The Rectilinear Steiner Tree Problem

In this chapter, we propose a mathematical modeling method to reformulate the mini-

mum rectilinear Steiner tree problem to be more tractable. In Section 2.1 we define the

rectilinear Steiner tree problem formally. In Section 2.2 we redefine the problem as a

reduced problem that only contains a set of permutation points instead. In Section 2.3 we

introduce some structural properties of rectilinear Steiner tree in Hanan grid.
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2.1 Problem Formulation

Given a finite set T of terminals in the plane, the Hanan grid H(T ) is a grid net which is

composed of vertical and horizontal lines through each terminal in T .

Figure 2.1: Hanan grid H(T )

In Figure 2.1, terminal ti in T is the i-th terminal in the Hanan grid and has two

attributes which are x-coordinate and y-coordinate: ti(ti.x, ti.y). In Hanan grid, the dis-

tance between any two terminals is measured in the L1 (Manhattan) metric: |t1.x−t2.x|+

|t1.y − t2.y|.

The Minimum Rectilinear Steiner Tree (MRST) Problem: Given a finite set V of n

(n ∈ Z+, n > 1) points in the plane, determine a minimal spanning tree T with a set S

(V ⊂ S) of nodes in the rectilinear distance.

A point of V is called a terminal and a node of S − V is called a Steiner point. We

denote RST to be rectilinear Steiner tree and optRST to be optimal rectilinear Steiner

tree.

2.2 Problem Reformulation

Here, we introduce a set of n points with permutation order. By sorting n points according

to their x-coordinates or y-coordinates, a permutation order can be generated.

Lemma 2.1. For a given set of terminals T = {t1, t2, ..., tn} in the plane, there exists a

corresponding permutation C = c1c2...cn.
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Proof. Let T be sorted into T = {ti| ti.x ≤ ti+1.x, 1 ≤ i ≤ n} or T = {ti| ti.y ≤

ti+1.y, 1 ≤ i ≤ n}, therefore, Ty = {ti.y|1 ≤ i ≤ n} = {t1.y, t2.y, ..., tn.y} or

Tx = {ti.x|1 ≤ i ≤ n} = {t1.x, t2.x, ..., tn.x} is an order which can be mapped to a

permutation according to their relative positions.

We design an algorithm for mapping a set of terminals to a permutation as follows:

Algorithm 2.1: TerMapPermut

Input : Given n terminals in the plane
Output: the corresponding permutation

1 sort T by y-coordinates
2 for i = 1 to n do
3 ti.order = i
4 end
5 sort T by x-coordinates
6 for each terminal ti ∈ T do
7 add ti.order into vector C
8 end
9 return C

In the algorithm TerMapPermut, each terminal in T = {t1, t2, ..., tn} has three at-

tributes (ti.x, ti.y, ti.order): x-coordinate, y-coordinate, and the order of sorted position.

C is the permutation of n given terminals. In time complexity, line 2 - 4 and line 6 - 8

are in O(n) time. Therefore, the entire runtime depends on line 1 and line 5 which can be

done by the typical merge-sort algorithm in O(n log n) time.

A permutation C can be structured into a set of permutation points P = {pi|1 ≤

i ≤ n} of which x-coordinates / y-coordinates to be the permutation and y-coordinates /

x-coordinates to be an increasing order.

Lemma 2.2. For a given permutation C = c1c2...cn, there exists a corresponding graph

G(P ) that consists of a set of permutation points P = {p1, p2, ..., pn}.

Proof. For G(V ) = {v1, v2, ..., vn}, let Vx = {v1.x = c1, v2.x = c2, ..., vn.x = cn} or

Vy = {v1.y = c1, v2.y = c2, ..., vn.y = cn}, and Vy = {v1.y = 1, v2.y = 2, ..., vn.y = n}

or Vx = {v1.x = 1, v2.x = 2, ..., vn.x = n}, therefore the vertices of G are a set of

permutation points.
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We design an algorithm for structuring a permutation to a graph G(P ) with permuta-

tion points as follows:

Algorithm 2.2: Permut−G(P )

Input : a permutation C
Output: the corresponding G(P ) with permutation points

1 create a vector P = {pi|1 ≤ i ≤ n}
2 for i = 1 to n do
3 pi.x = ci
4 pi.y = i

5 end
6 return P

In the algorithm Permut − G(P ), G(P ) is a graph which only consists of a set of

permutation points P = {pi|pi.x = ci, pi.y = i, 1 ≤ i ≤ n}. Its obvious that the time

complexity is O(n).

Theorem 1. Given a set of terminals T = {t1, t2, ..., tn} in the plane, there exists a graph

G(P ) with a set of permutation points P = {pi|1 ≤ i ≤ n} which derives from T .

Proof. By Lemma 2.1 and Lemma 2.2, a set of terminals T can be transformed into a

graph G(P ) which only contains a set of permutation points.

The minimum rectilinear Steiner tree problem seeks an optimal rectilinear Steiner tree

for a given set of n terminals in the plane, however, if we can transform the problem with

real distances into a problem with relative distances, the given n terminals can be modeled

as a set of permutation points, and thus the original problem is reformulated to be finding

an optimal rectilinear Steiner tree for a set of permutation points.

Here, we reformulate the problem as: Given a finite set V of permutation points in

the plane, determine a minimal spanning tree T with a set S (V ⊂ S) of nodes in the

rectilinear distance.

According to Theorem 1, in the rest of this thesis, we only study graph G(P ) with

given n permutation points in the plane.
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2.3 Structural Properties

We define G(P,E, L) to be a graph with a set of permutation points in the Hanan grid, P

to be the set of vertices of G, E to be the set of edges of G which are nonnegative, and L

to be the minimal length of G. We assume that graph G(P,E, L) is always underlined in

Hanan grid H(G).

Figure 2.2: Hanan grid H(G(P ))

Figure 2.2 shows that ξi,j is a grid point located in i-th horizontal line and j-th vertical

line, and pi is the i-th vertex of graph G(P,E, L). We use solid circles (•) to denote

vertices, open circles (◦) to denote grid points, and crosses (×) to denote Steiner points.

The rectilinear Steiner tree of graph G grows in Hanan grid H(G) with horizontal

lines H = {h(i)|1 ≤ i ≤ m}, vertical lines V = {v(j)|1 ≤ j ≤ n}, and intersection

points ζ = {ξi,j|1 ≤ i ≤ m, 1 ≤ j ≤ n}. Therefore, we have

h(i): the i-th (1 ≤ i ≤ m) horizontal grid line;

v(j): the j-th (1 ≤ j ≤ n) vertical grid line;

ξi,j : the grid point intersected by the i-th horizontal grid line and the j-th vertical grid

line.

Suppose we have two grid points a and b, we define

|a− b| = rectilinear distance between a and b;

|a.x− b.x| = horizontal distance between a and b;

|a.y − b.y| = vertical distance between a and b.
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We use upper letters (A,B,C, ...) to denote permutation points, lower case letters

(a, b, c, ...) to denote grid points, e(pi, pj) to denote an edge between two vertices pi and

pj , ϕ(a, b) to denote a segment between two horizontally or vertically adjacent grid points

a and b. For any two grid points a and b (not necessarily adjacent), a rectilinear path δ(a, b)

is a segment chain connecting a and b. |δ(a, b)| is the length of the path starting from a

and ending in b. |ϕ(a, b)| is the length between a and b. |G(P )| is the number of vertices

in G, and in this thesis we only discuss graph G in which |G| ≥ 2.

Definition 2.1. For any two adjacent grid points a and b, |ϕ(a, b)| = 1.

We assume that, in this thesis, any segment between two grid points a and b has 1 unit

length.
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Chapter 3

Generation of Optimal Rectilinear

Steiner Trees

In this chapter, we present an optimal solution to solve the rectilinear Steiner problem

with up to 7 points. In Section 3.1 we introduce basic concepts and preliminaries about

optimal Steiner trees. In Section 3.2 we propose the method of growing Steiner trees.

In Section 3.3 we describe the exact algorithm Const optRST for generating optimal

rectilinear Steiner trees efficiently.
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3.1 Preliminaries

We denote optRST (G) to be an optimal rectilinear Steiner tree of G(P ), B(G) to be a

subgraph which are the boundaries ofG(P ), andR(G) to be an enclosing rectangle which

contains all the terminals of G(P ) in the plane. To compute an optimal rectilinear Steiner

tree of a set of permutation points P = {pi|1 ≤ i ≤ n}, we use a grid matrix to represent

Hanan grid points. A grid matrix consists of all the grid points which are the intersections

of Hanan grid H(G). Therefore, we have

Λ =



ξ1,1 ξ1,2 ... ξ1,n

ξ2,1 ξ2,2 ... ξ2,n

... ... ξi,j ...

ξm,1 ξm,2 ... ξm,n


In the matrix Λ, ξi,j is the grid point located in the i-th row and the j-th column.

An edge/path is called absolute edge/path if there is no other terminals or Steiner points

within the edge/path.

Definition 3.1. Optimal rectilinear Steiner trees with the same length in each two x-

coordinates and in each two y-coordinates are equivalent trees.

3.2 Growing Steiner Trees

In this section, we propose a method for how to grow optimal rectilinear Steiner trees

with n ≤ 7 points in Hanan grid.

Lemma 3.1. LetG′ = {ξi,j, ξs,t} be a subgraph ofG(P ) for some 1 ≤ i ≤ m, 1 ≤ j ≤ n,

1 ≤ s ≤ m, 1 ≤ t ≤ n, i 6= s and j 6= t, if there is an absolute path δ(ξi,j, ξs,t) that

belongs to an optRST (G′), then there exists an alternative path δ′(ξi,j, ξs,t) that belongs

to another optRST (G′).

Proof. Suppose δ(ξi,j, ξs,t) = δ(ξi,j, ξi,t) ∪ δ(ξi,t, ξs,t), then there exists another path

δ′(ξi,j, ξs,t) = δ(ξi,j, ξs,j) ∪ δ(ξs,j, ξs,t), and we have
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|δ(ξi,j, ξs,t)| = |δ(ξi,j, ξi,t)|+ |δ(ξi,t, ξs,t)|

=
i∑

x=i

t∑
y=j

|ϕ(x, y)|+
s∑

x=i

t∑
y=t

|ϕ(x, y)|

=
t∑

y=j

|ϕ(i, y)|+
s∑

x=i

|ϕ(x, t)|

|δ′(ξi,j, ξs,t)| = |δ(ξi,j, ξs,j)|+ |δ(ξs,j, ξs,t)|

=
s∑

x=i

j∑
y=j

|ϕ(x, y)|+
s∑

x=s

t∑
y=j

|ϕ(x, y)|

=
s∑

x=i

|ϕ(x, j)|+
t∑

y=j

|ϕ(s, y)|

Because
t∑

y=j

|ϕ(s, y)| =
t∑

y=j

|ϕ(i, y)| and
s∑

x=i

|ϕ(x, j)| =
s∑

x=i

|ϕ(x, t)|, therefore |δ(ξi,j,

ξs,t)| = |δ′(ξi,j, ξs,t)|.

Lemma 3.2. Let G′ = {e(ξi,j, ξs,j), e(ξp,k, ξt,k)} (s 6= p and i 6= t) to be a subgraph of

G(P ), if there exists an optRST (G′) that contains an absolute edge eq incident to G′,

then by replacing eq with an alternative edge er (eq 6= er) which is perpendicular to

e(ξi,j, ξs,j) and e(ξp,k, ξt,k) results in another optRST (G′).

Proof. Without loss of generality, assume eq is incident to ξq,j and ξq,k, and er is incident

to ξr,j and ξr,k, therefore we have

|eq| = |δ(ξq,j, ξq,k)| =
q∑

x=q

k∑
y=j

|ϕ(x, y)| =
k∑

y=j

|ϕ(q, y)|

|er| = |δ(ξr,j, ξr,k)| =
r∑

x=r

k∑
y=j

|ϕ(x, y)| =
k∑

y=j

|ϕ(r, y)|

Because
k∑

y=j

|ϕ(q, y)| =
k∑

y=j

|ϕ(r, y)|, therefore |eq| = |er|.

Lemma 3.3. Let G′ = G ∩
⋃

1≤x≤i
1≤y≤n

{ξi,j} (1 ≤ i ≤ m), if G′ = {ξi,j|ξi,j ∈ Λ} for some

1 ≤ i ≤ m and 1 ≤ j ≤ n, then there exists an optRST (G) in which the segment

ϕ(ξi,j, ξi+1,j) must be present.

Proof. Since ξi+1,j must be connected to R(G\G′) it is trivial to prove that the segment

ϕ(ξi,j, ξi+1,j) must be present in an optRST (G) if ξi,j is incident to ξi+1,j .

If ξi,j is incident to a random grid point ξi+1,k for some 1 ≤ k ≤ n, without loss

of generality, assume that j ≤ k, then by Lemma 3.1, δ(ξi,j, ξi+1,k) = δ(ξi,j, ξi,k) ∪

δ(ξi,k, ξi+1,k) can be replaced with δ′(ξi,j, ξi+1,k) = δ(ξi,j, ξi+1,j) ∪ δ(ξi+1,j, ξi+1,k) , and

we have
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|δ(ξi,j, ξi+1,k)| = |δ(ξi,j, ξi,k)|+ |δ(ξi,k, ξi+1,k)|

=
i∑

x=i

k∑
y=j

|ϕ(x, y)|+
i+1∑
x=i

k∑
y=k

|ϕ(x, y)|

=
k∑

y=j

|ϕ(i, y)|+
i+1∑
x=i

|ϕ(x, k)|

|δ′(ξi,j, ξi+1,k)| = |δ(ξi,j, ξi+1,j)|+ |δ(ξi+1,j, ξi+1,k)|

=
i+1∑
x=i

j∑
y=j

|ϕ(x, y)|+
i+1∑

x=i+1

k∑
y=j

|ϕ(x, y)|

=
i+1∑
x=i

|ϕ(x, j)|+
k∑

y=j

|ϕ(i+ 1, y)|

Because
k∑

y=j

|ϕ(i, y)| =
k∑

y=j

|ϕ(i + 1, y)| and
i+1∑
x=i

|ϕ(x, k)| =
i+1∑
x=i

|ϕ(x, j)|, therefore

|δ(ξi,j, ξi+1,k)| = |δ′(ξi,j, ξi+1,k)|.

If ξi,j is incident to multiple random grid points γ = {ξi+1,r, ..., ξi+1,s, ..., ξi+1,t} (1 ≤

j ≤ r ≤ s ≤ n), according to Lemma 3.2, δ(ξi,s, ξi,t) can be replaced with δ(ξi+1,s, ξi+1,t),

consequently leading ϕ(ξi,t, ξi+1,t) to being redundant. Likewise, δ(ξi,r, ξi,s) can be re-

placed with δ(ξi+1,r, ξi+1,s) leaving ϕ(ξi,s, ξi+1,s) to being redundant. Let G1 = G ∩⋃
i≤x≤i+1
1≤y≤n

{ξx,y}, G2 = δ(ξi,j, ξi,r) ∪ δ(ξi,r, ξi,s) ∪ δ(ξi,s, ξi,t), G3 = {ϕ(ξi,y, ξi+1,y)|r ≤

y ≤ n, ξi+1,y ∈ G1}, G4 = δ(ξi,j, ξi+1,r) ∪ δ(ξi+1,r, ξi+1,s) ∪ δ(ξi+1,s, ξi+1,t), α =

G1 ∪ G2 ∪ G3 and β = G1 ∪ G4, and we have |α| = |δ(ξi,j, ξi,r)| + |ϕ(ξi,r, ξi+1,r)| +

|δ(ξi,r, ξi,s)|+|δ(ξi,s, ξi,t)|+|G3\ϕ(ξi,r, ξi+1,r)|, |β| = |δ(ξi,j, ξi+1,j)|+|ϕ(ξi+1,j, ξi+1,r)|+

|δ(ξi+1,r, ξi+1,s)|+|δ(ξi+1,s, ξi+1,t)|. Because |ϕ(ξi,r, ξi+1,r)| = |δ(ξi,j, ξi+1,j)|, |δ(ξi,j, ξi,r)

= |ϕ(ξi+1,j, ξi+1,r)|, |α| = |β| + |G3|. And also because |G3\ϕ(ξi,r, ξi+1,r)| > 1, |β| <

|α|. Therefore, in this case, ϕ(ξi,j, ξi+1,j) must be present in an optRST for G which

contains |β|.

If ξi,j is incident to G\{ξi,j} through a Steiner point, then that Steiner point can be

removed. Thus, the segment ϕ(ξi,j, ξi+1,j) must be present in an optRST for G.

Corollary 3.1. Let G′ = G ∩
⋃

1≤x≤m
1≤y≤j

{ξi,j} (1 ≤ j ≤ n), if G′ = {ξi,j|ξi,j ∈ Λ} for

some 1 ≤ i ≤ m and 1 ≤ j ≤ n, then there exists an optRST (G) in which the segment

ϕ(ξi,j, ξi,j+1) must be present.

Proof. When G′ = G ∩
⋃

1≤x≤m
1≤y≤j

{ξi,j} (1 ≤ j ≤ n), it can be clockwise rotated to G′ =
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Figure 3.1: A terminal incident to multiple grid points

Figure 3.2: A path through a Steiner point

G ∩
⋃

1≤x≤i
1≤y≤n

{ξi,j} (1 ≤ i ≤ m) by 90 degrees in geometry. According to Lemma 3.3, the

segment ϕ(ξi,j, ξi,j+1) must be present in an optRST (G).

Corollary 3.2. Let G′ = G ∩
⋃

1≤x≤m
j≤y≤n

{ξi,j} (1 ≤ j ≤ n), if G′ = {ξi,j|ξi,j ∈ Λ} for

some 1 ≤ i ≤ m and 1 ≤ j ≤ n, then there exists an optRST (G) in which the segment

ϕ(ξi,j, ξi,j−1) must be present.

Proof. When G′ = G ∩
⋃

1≤x≤m
j≤y≤n

{ξi,j} (1 ≤ j ≤ n), it can be anticlockwise rotated to

G′ = G∩
⋃

1≤x≤i
1≤y≤n

{ξi,j} (1 ≤ i ≤ m) by 90 degrees in geometry. According to Lemma 3.3,

the segment ϕ(ξi,j, ξi,j−1) must be present in an optRST (G).

Corollary 3.3. Let G′ = G ∩
⋃

i≤x≤m
1≤y≤n

{ξi,j} (1 ≤ i ≤ m), if G′ = {ξi,j|ξi,j ∈ Λ} for
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some 1 ≤ i ≤ m and 1 ≤ j ≤ n, then there exists an optRST (G) in which the segment

ϕ(ξi,j, ξi−1,j) must be present.

Proof. When G′ = G ∩
⋃

i≤x≤m
1≤y≤n

{ξi,j} (1 ≤ i ≤ m), it can be anticlockwise rotated to

G′ = G ∩
⋃

1≤x≤i
1≤y≤n

{ξi,j} (1 ≤ i ≤ m) by 180 degrees in geometry. According to Lemma

3.3, the segment ϕ(ξi,j, ξi−1,j) must be present in an optRST (G).

Lemma 3.4. Let L(x) = G(P ) ∩
n⋃

j=1

{ξx,j} for some 1 ≤ x ≤ m and R′(G) = R(G) ∩

i⋃
x=1

{L(x)}(1 ≤ i ≤ m), if R′(G) = {ξi,j, ξi,k}, for some 1 ≤ i ≤ m, 1 ≤ j ≤ n and

1 ≤ k ≤ n, then there exists an optRST (R(G)):

optRST (R(G)) = min


optRST (R1(G)) ∪ ϕ(ξi,j, ξi+1,j) ∪ ϕ(ξi,k, ξi+1,k)

optRST (R2(G)) ∪ ϕ(ξi,j, ξi+1,j) ∪ ϕ(ξi,j, ξi,k)

optRST (R3(G)) ∪ ϕ(ξi,j, ξi,k) ∪ ϕ(ξi,k, ξi+1,k)

where


R1(G) = R(G)\{ξi,j, ξi,k} ∪ {ξi+1,j, ξi+1,k}

R2(G) = R(G)\{ξi,j, ξi,k} ∪ {ξi+1,j}

R3(G) = R(G)\{ξi,j, ξi,k} ∪ {ξi+1,k}

Proof. We first prove that there are at most 2 edges for the grid points ξi,j and ξi,k to

be incident to R(G\{ξi,j, ξi,k}). Suppose ξi,j and ξi,k are incident to more than 2 points

in R(G\{ξi,j, ξi,k}), say α = {ξi+1,s, ξi+1,s+1, ..., ξi+1,t−1, ξi+1,t}. According to Lemma

3.2, we notice that δ(ξi,t−1, ξi,t) and δ(ξi,t−2, ξi,t−1) can be replaced with δ(ξi+1,t−1, ξi+1,t)

and δ(ξi+1,t−2, ξi+1,t−1), resulting in ϕ(ξi,t−1, ξi+1,t−1) to be redundant. Likewise, it

goes until the path ϕ(ξi,s+2, ξi,s) = ϕ(ξi,s+2), ξi,s+1) ∪ ϕ(ξi,s+1, ξi,s) is replaced with the

path ϕ(ξi+1,s+2, ξi+1,s) = ϕ(ξi+1,s+2), ξi+1,s+1) ∪ ϕ(ξi+1,s+1, ξi+1,s) making the segment

ϕ(ξi,s+1, ξi+1,s+1) be redundant. Finally, a set of segments β = {ϕ(ξi,s+1, ξi+1,s+1),

ϕ(ξi,s+2, ξi+1,s+2), ..., ϕ(ξi,t−1, ξi+1,t−1) can be removed, resulting in two pathsϕ(ξi,j, ξi+1,s)

and ϕ(ξi,k, ξi+1,t) connected to R(G\{ξi,j, ξi,k}). Therefore, there exists an optRST (G)

in which ξi,j and ξi,k are incident toR(G\{ξi,j, ξi,k}) with at most two edges (e(ξi,s, ξi+1,s)

and e(ξi,t, ξi+1,t)).

Case I: ξi,j and ξi,k are connected to R(G\{ξi,j, ξi,k}) with two edges.
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Figure 3.3: Two terminals incident to multiple grid points

(a) If ξi,j and ξi,k are incident to R(G\{ξi,j, ξi,k}) through grid points ξi,s(j < s) and

ξi,t(t < k) respectively. In this case, the path δ(ξi,j, ξi+1,s) = δ(ξi,j, ξi,s) ∪ ϕ(ξi,s, ξi+1,s)

can be replaced with the path δ′(ξi,j, ξi+1,s) = ϕ(ξi,j), ξi+1,j) ∪ δ(ξi+1,j, ξi+1,s). In the

same way, the path δ(ξi,k, ξi+1,t) = δ(ξi,k), ξi,t) ∪ ϕ(ξi,t, ξi+1,t) also can be replaced with

the path δ′(ξi,k, ξi+1,t) = ϕ(ξi,k), ξi+1,k) ∪ δ(ξi+1,k, ξi+1,t).

(b) If ξi,j and ξi,k are incident to R(G\{ξi,j, ξi,k}) through grid points ξi,s(s < j) and

ξi,t(k < t) respectively. In this case, the path δ(ξi,j, ξi+1,s) = δ(ξi,j, ξi,s) ∪ ϕ(ξi,s, ξi+1,s)

can be replaced with the path δ′(ξi,j, ξi+1,s) = ϕ(ξi,j), ξi+1,j) ∪ δ(ξi+1,j, ξi+1,s). In the

same way, the path δ(ξi,k, ξi+1,t) = δ(ξi,k), ξi,t) ∪ ϕ(ξi,t, ξi+1,t) also can be replaced with

the path δ′(ξi,k, ξi+1,t) = ϕ(ξi,k), ξi+1,k) ∪ δ(ξi+1,k, ξi+1,t).

Case II: ξi,j and ξi,k are connected to R(G\{ξi,j, ξi,k}) with one edge.

(a) If ξi,j is incident to R(G\{ξi,j, ξi,k}) through the grid point ξi+1,j . In this case,

optRST (R2(G)) ∪ ϕ(ξi,j, ξi+1,j) ∪ ϕ(ξi,j, ξi,k) (R2(G) = R(G)\{ξi,j, ξi,k} ∪ {ξi+1,j})

is a candidate for optRST (R(G)). (b) If ξi,j is incident to R(G\{ξi,j, ξi,k}) through the

grid point ξi+1,k. In this case, optRST (R3(G)) ∪ ϕ(ξi,j, ξi,k) ∪ ϕ(ξi,k, ξi+1,k) (R3(G) =

R(G)\{ξi,j, ξi,k} ∪ {ξi+1,k}) is a candidate for optRST (R(G)).

Case III: ξi,j and ξi,k are connected toR(G\{ξi,j, ξi,k}) with no edge. Since there must

be at least one edge between α = {ξi,j, ξi,k} and G\{ξi,j, ξi,k}, therefore this case never

happens.

Corollary 3.4. Let L(y) = G(P ) ∩
m⋃
i=1

{ξi,y} for some 1 ≤ y ≤ n and R′(G) = R(G) ∩
j⋃

y=1

{L(y)}(1 ≤ j ≤ n), if R′(G) = {ξi,j, ξk,j}, for some 1 ≤ i ≤ m, 1 ≤ k ≤ m, and



17

1 ≤ j ≤ n then there exists an optRST (R(G)):

optRST (R(G)) = min


optRST (R1(G)) ∪ ϕ(ξi,j, ξi,j+1) ∪ ϕ(ξk,j, ξk,j+1)

optRST (R2(G)) ∪ ϕ(ξi,j, ξi,j+1) ∪ ϕ(ξi,j, ξk,j)

optRST (R3(G)) ∪ ϕ(ξi,j, ξk,j) ∪ ϕ(ξk,j, ξk,j+1)

where


R1(G) = R(G)\{ξi,j, ξk,j} ∪ {ξi,j+1, ξk,j+1}

R2(G) = R(G)\{ξi,j, ξk,j} ∪ {ξi,j+1}

R3(G) = R(G)\{ξi,j, ξk,j} ∪ {ξk,j+1}

Proof. When R′(G) = R(G) ∩
j⋃

y=1

{L(y)}(1 ≤ j ≤ n), it can be clockwise rotated to

R′(G) = R(G) ∩
i⋃

x=1

{L(x)}(1 ≤ i ≤ m) by 90 degrees in geometry. According to

Lemma 3.4, optRST (R1(G)), optRST (R2(G)) and optRST (R3(G)) are candidates for

optRST (R(G)).

Corollary 3.5. Let L(y) = G(P ) ∩
m⋃
i=1

{ξi,y} for some 1 ≤ y ≤ n and R′(G) = R(G) ∩
n⋃

j≤y
{L(y)}(1 ≤ j ≤ n), if R′(G) = {ξi,j, ξk,j}, for some 1 ≤ i ≤ m, 1 ≤ k ≤ m, and

1 ≤ j ≤ n then there exists an optRST (R(G)):

optRST (R(G)) = min


optRST (R1(G)) ∪ ϕ(ξi,j, ξi,j−1) ∪ ϕ(ξk,j, ξk,j−1)

optRST (R2(G)) ∪ ϕ(ξi,j, ξi,j−1) ∪ ϕ(ξi,j, ξk,j)

optRST (R3(G)) ∪ ϕ(ξi,j, ξk,j) ∪ ϕ(ξk,j, ξk,j−1)

where


R1(G) = R(G)\{ξi,j, ξk,j} ∪ {ξi,j−1, ξk,j−1}

R2(G) = R(G)\{ξi,j, ξk,j} ∪ {ξi,j−1}

R3(G) = R(G)\{ξi,j, ξk,j} ∪ {ξk,j−1}

Proof. When R′(G) = R(G) ∩
n⋃

j≤y
{L(y)}(1 ≤ j ≤ n), it can be anticlockwise rotated

to R′(G) = R(G) ∩
i⋃

x=1

{L(x)}(1 ≤ i ≤ m) by 90 degrees in geometry. According to

Lemma 3.4, optRST (R1(G)), optRST (R2(G)) and optRST (R3(G)) are candidates for

optRST (R(G)).
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Corollary 3.6. Let L(x) = G(P ) ∩
n⋃

j=1

{ξx,j} for some 1 ≤ x ≤ m and R′(G) =

R(G) ∩
m⋃
i≤x
{L(x)}(1 ≤ i ≤ m), if R′(G) = {ξi,j, ξi,k}, for some 1 ≤ i ≤ m, 1 ≤ j ≤ n

and 1 ≤ k ≤ n, then there exists an optRST (R(G)):

optRST (R(G)) = min


optRST (R1(G)) ∪ ϕ(ξi,j, ξi−1,j) ∪ ϕ(ξi,k, ξi−1,k)

optRST (R2(G)) ∪ ϕ(ξi,j, ξi−1,j) ∪ ϕ(ξi,j, ξi,k)

optRST (R3(G)) ∪ ϕ(ξi,j, ξi,k) ∪ ϕ(ξi,k, ξi−1,k)

where


R1(G) = R(G)\{ξi,j, ξi,k} ∪ {ξi−1,j, ξi−1,k}

R2(G) = R(G)\{ξi,j, ξi,k} ∪ {ξi−1,j}

R3(G) = R(G)\{ξi,j, ξi,k} ∪ {ξi−1,k}

Proof. When R′(G) = R(G) ∩
m⋃
i≤x
{L(x)}(1 ≤ i ≤ m), it can be clockwise rotated to

R′(G) = R(G) ∩
i⋃

x=1

{L(x)}(1 ≤ i ≤ m) by 180 degrees in geometry. According to

Lemma 3.4, optRST (R1(G)), optRST (R2(G)) and optRST (R3(G)) are candidates for

optRST (R(G)).

3.3 Optimal Algorithm

In this section, we design an optimal algorithm called const optRST which can generate

the rectilinear Steiner trees with n ≤ 7 points.

We denote MinX(G) to be a set of points which are extracted from G and have the

minimal x-coordinate, MinY (G) to be a set of points which are extracted from G and

have the minimal y-coordinate, MaxX(G) to be a set of points which are extracted from

G and have the maximal x-coordinate, and MaxY (G) to be a set of points which are

extracted from G and have the maximal y-coordinate.
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Algorithm 3.1: Const optRST
Input : A given G(P ) in which |G(P )| ≤ 7
Output: the optRSTs of G(P )

1 set TreeList = ∅
2 set G.grown = false
3 add G into TreeList
4 TreeList.generated = false
5 for each G ∈ TreeList do
6 if G.grown = false then
7 if extreme(G) = true then
8 fork(G, TreeList)
9 end

10 else
11 set G.grown = true
12 end
13 end
14 end
15 set TreeList.generated = true
16 return min(TreeList)

In the algorithm Const optRST , TreeList is a linked list of which each node stores

a graph. When a graph is constructed as a rectlinear tree, G.grown is set to be ture. At

first, we add the given graph G(P ) into the TreeList. And then we reduce the graph by

extreme(G). When extreme(G) is finished and returns true, we further reduce the graph

with three forked subgraphs by fork(G). And then add the subgraphs into TreeList

and delete the original graph. When extreme(G) returns false, that means the graph has

been formed as a subtree. When each subgraph in the TreeList has became a subtree,

TreeList.generated is set to be true. At last, we return the subtree with the minimal

length. In time complexity, it depends on extreme(G) and fork(G) which can be imple-

mented in O(n) and O(3n) respectively, therefore the entire algorithm is in O(3n) time.
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Algorithm 3.2: extreme(G)

Input : A given G(P )
Output: True or false

1 if G.size == 2 then
2 G.P = G.p2
3 G.E = G.E ∪ e(G.p1, G.p2)
4 G.L = G.L+ |e(G.p1, G.p2)|
5 return false
6 end
7 if MinY (MinX(G)) = MaxY (MinX(G)) then
8 G.P = G.P\{ξi,j} ∪ {ξi,j+1}
9 G.E = G.E ∪ ϕ(ξi,j, ξi,j+1)

10 G.L = G.L+ |ϕ(ξi,j, ξi,j+1)|
11 end
12 else if MinY (MaxX(G)) = MaxY (MaxX(G)) then
13 G.P = G.P\{ξi,j} ∪ {ξi,j−1}
14 G.E = G.E ∪ ϕ(ξi,j, ξi,j−1)
15 G.L = G.L+ |ϕ(ξi,j, ξi,j−1)|
16 end
17 else if MinX(MaxY (G)) = MaxX(MaxY (G)) then
18 G.P = G.P\{ξi,j} ∪ {ξi−1,j}
19 G.E = G.E ∪ ϕ(ξi,j, ξi−1,j)
20 G.L = G.L+ |ϕ(ξi,j, ξi−1,j)|
21 end
22 else if MinX(MinY (G)) = MaxX(MinY (G)) then
23 G.P = G.P\{ξi,j} ∪ {ξi+1,j}
24 G.E = G.E ∪ ϕ(ξi,j, ξi+1,j)
25 G.L = G.L+ |ϕ(ξi,j, ξi+1,j)|
26 end
27 else
28 return true;
29 end
30 extreme(G);

In the routine extreme(G), we recursively reduce a graph according to Lemma 3.3,

Corollary 3.1, Corollary 3.2 and Corollary 3.3. In time complexity, it can be implemented

in O(n) time.
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Algorithm 3.3: fork(G, TreeList)

Input : G, TreeList
Output: the updated TreeList with forked subgraphs from G

1 create G1, G2 and G3

2 set G1 = G, G2 = G and G3 = G
3 if MinX(G) = MinY (MinX(G)) ∪MaxY (MinX(G)) then
4 G1.P = G1\{ξi,j, ξi,k} ∪ {ξi+1,j, ξi+1,k}
5 G1.E = G1.E ∪ ϕ(ξi,j, ξi+1,j) ∪ ϕ(ξi,k, ξi+1,k)
6 G1.L = G1.L+ |ϕ(ξi,j, ξi+1,j)|+ |ϕ(ξi,k, ξi+1,k)|
7 add G1into TreeList
8 G2.P = G2\{ξi,j, ξi,k} ∪ {ξi+1,j}
9 G2.E = G2.E ∪ ϕ(ξi,j, ξi+1,j) ∪ ϕ(ξi,j, ξi,k)

10 G2.L = G2.L+ |ϕ(ξi,j, ξi+1,j)|+ |ϕ(ξi,j, ξi,k)|
11 add G2 into TreeList
12 G3.P = G3\{ξi,j, ξi,k} ∪ {ξi+1,k}
13 G3.E = G3.E ∪ ϕ(ξi,k, ξi+1,k) ∪ ϕ(ξi,j, ξi,k)
14 G3.L = G3.L+ |ϕ(ξi,k, ξi+1,k)|+ |ϕ(ξi,j, ξi,k)|
15 add G3 into TreeList
16 TreeList = TreeList\G
17 return TreeList;
18 end
19 if MaxX(G) = MinY (MaxX(G)) ∪MaxY (MaxX(G)) then
20 ... ...
21 end
22 if MinY (G) = MinX(MinY (G)) ∪MaxX(MinY (G)) then
23 ... ...
24 end
25 if MaxY (G) = MinX(MaxY (G)) ∪MaxX(MaxY (G)) then
26 ... ...
27 end

Line 20 in the routine fork(G, TreeList):

1 G1.P = G1\{ξi,j, ξi,k} ∪ {ξi−1,j, ξi−1,k}
2 G1.E = G1.E ∪ ϕ(ξi,j, ξi−1,j) ∪ ϕ(ξi,k, ξi−1,k)
3 G1.L = G1.L+ |ϕ(ξi,j, ξi−1,j)|+ |ϕ(ξi,k, ξi−1,k)|
4 add G1into TreeList
5 G2.P = G2\{ξi,j, ξi,k} ∪ {ξi−1,j}
6 G2.E = G2.E ∪ ϕ(ξi,j, ξi−1,j) ∪ ϕ(ξi,j, ξi,k)
7 G2.L = G2.L+ |ϕ(ξi,j, ξi−1,j)|+ |ϕ(ξi,j, ξi,k)|
8 add G2 into TreeList
9 G3.P = G3\{ξi,j, ξi,k} ∪ {ξi−1,k}
10 G3.E = G3.E ∪ ϕ(ξi,k, ξi−1,k) ∪ ϕ(ξi,j, ξi,k)
11 G3.L = G3.L+ |ϕ(ξi,k, ξi−1,k)|+ |ϕ(ξi,j, ξi,k)|
12 add G3 into TreeList
13 TreeList = TreeList\G
14 return TreeList;
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Line 23 in the routine fork(G, TreeList):

1 G1.P = G1\{ξi,j, ξi,k} ∪ {ξi,j+1, ξi,k+1}
2 G1.E = G1.E ∪ ϕ(ξi,j, ξi,j+1) ∪ ϕ(ξi,k, ξi,k+1)
3 G1.L = G1.L+ |ϕ(ξi,j, ξi,j+1)|+ |ϕ(ξi,k, ξi,k+1)|
4 add G1into TreeList
5 G2.P = G2\{ξi,j, ξi,k} ∪ {ξi,j+1}
6 G2.E = G2.E ∪ ϕ(ξi,j, ξi,j+1) ∪ ϕ(ξi,j, ξi,k)
7 G2.L = G2.L+ |ϕ(ξi,j, ξi,j+1)|+ |ϕ(ξi,j, ξi,k)|
8 add G2 into TreeList
9 G3.P = G3\{ξi,j, ξi,k} ∪ {ξi,k+1}
10 G3.E = G3.E ∪ ϕ(ξi,k, ξi,k+1) ∪ ϕ(ξi,j, ξi,k)
11 G3.L = G3.L+ |ϕ(ξi,k, ξi,k+1)|+ |ϕ(ξi,j, ξi,k)|
12 add G3 into TreeList
13 TreeList = TreeList\G
14 return TreeList;

Line 26 in the routine fork(G, TreeList):

1 G1.P = G1\{ξi,j, ξi,k} ∪ {ξi,j−1, ξi,k−1}
2 G1.E = G1.E ∪ ϕ(ξi,j, ξi,j−1) ∪ ϕ(ξi,k, ξi,k−1)
3 G1.L = G1.L+ |ϕ(ξi,j, ξi,j−1)|+ |ϕ(ξi,k, ξi,k−1)|
4 add G1into TreeList
5 G2.P = G2\{ξi,j, ξi,k} ∪ {ξi,j−1}
6 G2.E = G2.E ∪ ϕ(ξi,j, ξi,j−1) ∪ ϕ(ξi,j, ξi,k)
7 G2.L = G2.L+ |ϕ(ξi,j, ξi,j−1)|+ |ϕ(ξi,j, ξi,k)|
8 add G2 into TreeList
9 G3.P = G3\{ξi,j, ξi,k} ∪ {ξi,k−1}
10 G3.E = G3.E ∪ ϕ(ξi,k, ξi,k−1) ∪ ϕ(ξi,jξi,k)
11 G3.L = G3.L+ |ϕ(ξi,k, ξi,k−1)|+ |ϕ(ξi,j, ξi,k)|
12 add G3 into TreeList
13 TreeList = TreeList\G
14 return TreeList;

In the routine fork(G), we further reduce the graph by forking three subgraphs ac-

cording to Lemma 3.4, Corollary 3.4, Corollary 3.5 and Corollary 3.6. In time complexity,

it can be implemented in O(3n) time.

Theorem 2. The algorithm Const optRST is optimal for growing rectilinear Steiner

trees for any G(P ) in which |G(P )| ≤ 7.

Proof. We prove that Theorem 2 is correct for 3, 4, 5, 6 and 7 points respectively.

Type 1: |G(P )| = 3.

When there are 3 points in the plane, without loss of generality, suppose they are
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randomly distributed as (a). By corollary 3.1, the segment f must be present in an

optRST (G) as shown in (b). By seeding a quasi-terminal A′ into G(P )\{A}, then G(P )

can be reduced to G′ = G(P )\{A} ∪ {A′} = {A′, B, C} as shown in (c). Likewise,

the segment g is also present in the optRST (G), and by seeding a quasi-terminal B′, G′

can be further reduced to G′′ = G′\{B} ∪ {B′} = {A′, B′, C} as shown in (e). Finally,

by recursively applying extreme(G), G′′ can be reduced to G′′′ = {C} as shown in (f).

Therefore, extreme(G) can generate all the optRSTs for G(P ) in which |G(P )| = 3

and reduce it to a single point.

Figure 3.4: Type 1

Type 2: |G(P )| = 4.

Case I: |B(G)| < 4. When there are 4 points in the plane, without loss of generality,

suppose they are randomly distributed as shown in (a). First of all, by the line 7 - 11

and line 12 - 16 of extreme(G), two segments f and g are added into G.E and G(P ) is

reduced to G′ = {A′, B, C,D′}. Likewise, G′ can be reduced to G′′ = {A′′, B, C,D′′}

by the line 17 - 21 and line 22 - 26. If G(P ) is reduced to three points in the plane,
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then according to the conclusion of Type 1, it can be further reduced to a single point.

Therefore, in this case, any G(P ) can be reduced to a subgraph with |B(G′)| = 4 or a

single point.

Figure 3.5: Type 2, Case 1

Case II: |B(G)| = 4. In this case, assume the vertices of G(P ) are distributed as

shown in (a), the optRSTs of G(P ) can be mapped into two topologies ((b) and (c)). For

growing the optRST as shown in (b), we apply the line 3 - 18 of fork(G), and two paths

f and g are added into G.E. Therefore G(P ) is reduced to G′ = {D,B} which can be

further reduced to G′′ = {D} by the line 22 - 26 of extreme(G). Likewise, for growing

the optRST as shown in (c), we apply the line 22 - 24 of fork(G), and path f and path

g are added into G.E. Hence G(P ) is reduced to G′ = {C,D} which can be further

reduced to G′′ = {D} by the line 7 - 11 of extreme(G).

Type 3: |G(P )| = 5.

Case I: |B(G)| = 5. In this case, there are only two possible topologies as shown

in (b) and (c). By applying the line 22 - 24 of fork(G), G(P ) = {A,B,C,D,E} can

be reduced to G′ = {C,E,D} as shown in (d), and according to the conclusion of Type

1, G′ can be further reduced to a single point. Likewise, by applying the line 3 - 18 of

fork(G), G(P ) can be reduced to G′ = {F,B,E,D} as shown in (e), and according to

the conclusion of Type 2, G′ can be further reduced to a single point. If there is an edge

which leaves point E horizontally and enters into edge e(A,B) by introducing a Steiner

point F , such an optRST is equivalent to the topology as shown in (c).

Case II: |B(G)| < 4. In this case, according to the conclusions of Type 1 and Type 2,
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Figure 3.6: Type 2, Case 2

Figure 3.7: Type 3, Case 1

G(P ) can be transformed to a subgraph with |B(G)| = 4 or reduced to a single point.

Case III: |B(G)| = 4. In this case, there is only one point inside boundaries. If there is

an edge which is incident to point E and perpendicular to edge e(B,D) by introducing a

Steiner point F as shown in (b), then there is only one possible topology as (c) illustrates.

Likewise, if there is an edge which is incident to point E and perpendicular to edge

e(C,D) by introducing a Steiner point F as shown in (d), then there is also only one

possible topology as (e) illustrates.

Type 4: |G(P )| = 6.

Case I: |B(G)| = 6. When all the points on boundaries, without loss of generality,

suppose the vertices of G(P ) are distributed as shown in (a). Since it is impossible that

there are two edges which are perpendicular to e(A,C) and e(A,B) both in the middle, if

there is no edge perpendicular to e(A,C) in the middle, then by applying the line 3 - 18 of
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Figure 3.8: Type 3, Case 3

fork(G), G(P ) can be reduced to G′ = {E,D, F,G,B} as (b) illustrates, and according

to the conclusion of Type 3, it can be eventually reduced to a single point. Likewise,

if there is no edge perpendicular to e(A,B) in the middle, then by applying the line 22

- 24 of fork(G), G(P ) can be reduced to G′ = {C,E,D,A, F} as (c) illustrates, and

according to the conclusion of Type 3, G′ can be eventually reduced to a single point.

Figure 3.9: Type 4, Case 1

Case II: |B(G)| = 5, and |G(P )\B(G)| = 1. Without loss of generality, suppose

the vertices of G(P ) are distributed as shown in (a), therefore it is impossible for point

F is perpendicular to e(A,C) and e(A,B) both in the middle. If F is only perpendicular

to e(A,C) ((b)), then by applying the line 22 - 24 of fork(G), G(P ) can be reduced to

G′ = {C,E,D,A, F,B}, and according to the conclusion of Case I, G′ can be eventually

reduced to a single point. If point F is only perpendicular to e(A,B) as shown in (d), then

by applying the line 3 - 18 of fork(G), G(P ) can be reduced to G′ = {C,E,D, F,A,B}

as shown in (e), and according to the conclusion of Case I, G′ can be eventually reduced

to a single point.

Case III: |B(G)| = 4, and |G(P )\B(G)| = 2. If point E and F are perpendicular

to e(A,C) as shown in (b), it is impossible for E or F is perpendicular to e(C,D) or
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Figure 3.10: Type 4, Case 2

e(A,B). Then by applying the line 25 - 27 or line 22 - 24 of fork(G), G(P ) can be

reduced to (c) or (d), and according to the conclusion of Case II, it can be eventually

reduced to a single point.

If point E and point F are perpendicular to different edges, assume e(A,C) and

e(B,D), it is impossible for E perpendicular to e(A,B) and F perpendicular to e(C,D).

Then by applying the line 25 - 27 or line 22 - 24 of fork(G), G(P ) can be reduced to (c)

or (d), and according to the conclusion of Case II, it can be eventually reduced to a single

point. If there is an edge which is perpendicular to e(C,D) and e(A,B) through point F ,

then by applying the line 19 - 21 of fork(G), G(P ) can be reduced to (g), and according

to the conclusion of Case II, it can be eventually reduced to a single point.

Type 5: |G(P )| = 7.

Case I: |B(G)| = 7. Suppose there is an edge which is perpendicular to e(D,E) as

shown in (b), if point G is incident to e(D,E) as shown in (c), it can be transformed to

(d). By applying the line 25 - 27 of fork(G), (d) can be reduced to (g). If point G is

incident to e(D,E) as shown in (e), it can be transformed to (f). By applying the line 25 -
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Figure 3.11: Type 4, Case 3

27 of fork(G), (d) can be reduced to (g). According to the conclusion of Type 4, (g) can

be eventually reduced to a single point.

Figure 3.12: Type 5, Case 1
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Case II: |B(G)| = 6. Suppose point G is perpendicular to edge e(A,F ) as shown in

(b), it is impossible for point G is also perpendicular to e(F,E), therefore by applying

the line 25 - 27 of fork(G), (b) can be reduced to (c), and according to the conclusion of

Type 3, it can be eventually reduced to a single point.

Figure 3.13: Type 5, Case 2

Case III: |B(G)| = 5. Suppose point G is perpendicular to e(A,F ) and point D

is perpendicular to e(F,E) as shown in (b), it is impossible for point G or point D is

perpendicular to e(E,B). Then by applying the line 19 - 21 of fork(G), (b) can be

reduced to (c), and according to the conclusion of Type 4, it can be eventually reduced to

a single point.

Figure 3.14: Type 5, Case 3

Case IV: |B(G)| = 4. Suppose point E is perpendicular to e(A,B), point F is per-

pendicular to e(C,B), and point G is perpendicular to e(D,C) as shown in (b), it is

impossible for point E, F orG is perpendicular to e(D,A) too. Then by applying the line
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3 - 18 of fork(G), (b) can be reduced to (c), and according to the conclusion of Case II,

it can be eventually reduced to a single point.

Figure 3.15: Type 5, Case 4

Remark 3.1. In this thesis, equivalent optimal rectilinear Steiner trees are considered as

one topology.
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Chapter 4

Heuristic for Rectilinear Steiner Tree

Construction

In this chapter, we introduce a new heuristic to construct rectilinear Steiner trees effi-

ciently in O(n log n) time. In Section 4.1 we investigate approaches to split a large graph

and optimize it. In Section 4.2 we describe the heuristic algorithmRSTC for constructing

rectilinear Steiner trees. In Section 4.3 we report the experiments and results.
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4.1 Partitioning and Optimization

4.1.1 Partitioning

Here, we use G(λ) to denote a graph with n > 7 terminals and G(σ) to denote a graph

with n ≤ 7 terminals, therefore we have

G(P ) =


G(σ) where |G(P )| ≤ 7

G(λ) where |G(P )| > 7

In Chapter 3, we design the algorithm Const optRST for generating the rectilinear

trees for a given graph with n ≤ 7 terminals. However, for a graph larger than that, we

need to partition it into a set of subgraphs. If a subgraph is not small enough to be a G(σ),

then we further divide it until each subgraph of the subgraph is a G(σ). By recursively

dividing a G(λ) into a set of G(σ)s, that is, G(λ) = {G(σ1), G(σ2), ..., G(σr)}, the

optRSTs of all subgraphs can be easily generated by the algorithm Const optRST .

There are two kinds of partitioning, one is lossless partitioning which divides a G(λ)

into a set of G(σ)s and the optRST of G(λ) can be achieved by connecting all the

optRSTs of G(σ)s. The other one is loss partitioning which means when a G(λ) is

split into a set of G(σ)s and the optRST of G(λ) is not achievable by connecting all the

optRSTs of G(σ)s.

If a G(λ) can be partitioned into two subgraphs G(σ1) and G(σ2) which are not inter-

sected with each other, then G(λ) can be optimally constructed by connecting G(σ1) and

G(σ2). This means when G(σ1) and G(σ2) are independent of each other, the optRST

of G(λ) can be achieved by bridging them. However, this does not always happen.

For instance, when two subgraphs G(σ1) and G(σ2) are overlapped in x-coordinate, y-

coordinate or both, the optRST of G(λ) can or cannot be found, depending on different

situations. For a graph G(λ) which cannot be split into any independent subgraphs, it is

hard to know whether the optRST of G(λ) can be achievable or not by combining the

subtrees of those subgraphs. And more importantly, we cannot predict which cases have

such a property. Therefore, only the partitioning which results in independent subgraphs

is guaranteed to be lossless.
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In this thesis, we partition a G(λ) in a way that each subgraph of G(λ) has a joint

terminal with its neighbor subgraph. When the optRSTs of two subgraphs G(σ1) and

G(σ2) are generated, the RST of subgraph {G(σ1), G(σ2)} is already formed so that

we do not need to bridge the two optRSTs of G(σ1) and G(σ2) into a single subtree.

Likewise, when all the subtrees of subgraphs are generated, the entire RST of G(λ) is

also constructed.

Here, we propose three partitioning ways:

1. Sequential partitioning

A simple way to divide a G(λ) is to line up all the terminals of G(λ) according

to their ascending/descending x-coordinates or y-coordinates, and then divide it into a

set of G(σ) sequentially. For instance, Figure 4.1 shows that G(λ) = {(1, 5), (5, 1),

(6, 3), (3, 2), (2, 4), (4, 6), (7, 7)} is sorted by their x-coordinates and then becomes G(

λ) = {(1, 5), (2, 4), (3, 2), (4, 6), (5, 1), (6, 3), (7, 7)}. In this case, G(λ) is partitioned

as G(λ) = {G(σ1), G(σ2)}, G(σ1) = {(1, 5), (2, 4), (3, 2), (4, 6), (5, 1)} and G(σ2) =

{(5, 1), (6, 3), (7, 7)}. And then we generate the optRSTs of G(σ1) and G(σ2) respec-

tively by the algorithm Const optRST . Finally, the rectilinear Steiner tree of entireG(λ)

is also constructed.

Figure 4.1: Sequential partitioning

However, this can only happen when splitting along with one direction - horizontal or

vertical. By sorting all the terminals horizontally/vertically, we can linearly divide a G(λ)

into a set of subgraphs (G(λ) = {G(σ1), G(σ2), ..., G(σr)}), starting from left/right side

to right/left side or from top/bottom side to bottom/top side (Figure 4.2). Therefore, there

is no dividing inside a subgraph, like Figure 4.3 shows.
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Figure 4.2: Sequential partitioning schemes

Figure 4.3: Sequential partitioning inside a subgraph

2. Median partitioning

Another partitioning way is to divide the graph G(λ) up into a set of subgraphs, each

containing at most 7 terminals. For the dividing, we always select the median terminal

for the splitting point, and this applies to each subgraph too unless it is already a G(σ).

Therefore, by recursively dividing subgraphs until each is small enough to fit into a G(σ)

of which optRST can be directly generated. And then the optRSTs of subgraphs are

connected as a rectilinear Steiner tree of G(λ). Suppose we divide a G(λ) into subgraphs

G(σ1) and G(σ2) as Figure 4.4 shows, first of all, we need to find the median terminal

according to their x-coordinates or y-coordinates, and then we further divide G(σ1) up

into G(σ11) and G(σ12) , and G(σ2) up into G(σ21) and G(σ22) so that each resulting

subgraph (G(σ11)/G(σ12)/G(σ21)/G(σ22)) is a G(σ) of which optRST can be generated

by the algorithm Const optRST .

The differences between this partitioning and sequential partitioning are that firstly
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the former allows you to divide a subgraph in a different direction. For instance, Figure

4.5 shows that a G(λ) is divided into G(σ1) and G(σ2) horizontally, and then G(σ1) is

further divided into G(σ11) and G(σ12) vertically. Secondly, any subgraph may be split

into a G(σ) with 1 ≤ |G(σ)| ≤ 7, not necessarily to be |G(σ)| = 7, and this brings more

flexibility to the dividing.

Figure 4.4: Median partitioning

Figure 4.5: Median partitioning with different directions

However, the dividing points cannot be arbitrarily chosen, because they are always

the median terminals of the subgraphs. In addition, for most cases, we cannot fully utilize

the function of algorithm Const optRST . For example, only when the subgraph has 13

terminals it will be divided into two subgraphs with |G(σ)| = 7, otherwise the generating

function of 7 terminals will never be employed.

3. Group partitioning

Here we introduce a partitioning way to divide a G(λ) into a set of groups. We firstly

recursively partition a G(λ) into a set of G(ω) (|G(σ)| < |G(ω)| < 2|G(σ)|). And then

we further split each G(ω) into two subgraphs G(σ1) and G(σ2).

Suppose G(ω) = {B,F,A,D,G,C,E}, as Figure 4.6 shows, we partition G(ω) into

G(σ1) = {D,E, F ,G} and G(σ2) = {A,B,C,D}. It can be obviously observed that

G(σ1) ∩G(σ2) = {D}. And then we generate the optRSTs of G(σ1) and G(σ2) respec-

tively. Finally, the rectilinear Steiner tree ofG(ω) is already constructed by the connecting
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function of terminal D. As we can see, in the beginning of partitioning, an appropriate ω

is needed to be given. ω is a parameter and we confine it to be ranging between σ to 2σ ,

eliminating the situation when |ω| = |σ| and ω = 2|σ|, and different ω yields a different

accuracy of constructing rectilinear Steiner tree.

Figure 4.6: Group partitioning

For instance, for splitting G(ω) = {D,A, F,B,E,C} as Figure 4.7 shows, suppose it

is divided into G(σ1) = {A,B,C}, G(σ2) = {D,F,E,C}, and G(σ1) ∩ G(σ2) = {C}.

As Figure 4.7 shows, two optimal subtrees optRST1 and optRST2 are generated. And

then a suboptimal RST of G(ω) is formed by the common point C.

However, the RST in Figure 4.7(a) is not an optimal RST for G(ω). In fact, we have

another way to build an RST for G(ω). By splitting G(ω) into G(σ1) = {A,D,B,C},

G(σ2) = {D,F,E}, and G(σ1)∩G(σ2) = {D} , we have two optimal subtrees optRST ′1

and optRST ′2 generated, and finally an RST ′ for G(ω) is also built by the connecting

terminal D.
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Figure 4.7: (a) Selection of partitioning point; and (b) Alternative selection of partitioning
point.

Figure 4.8: Group partitioning with different directions

Figure 4.7(b) illustrates the process above. At this point, we surprisingly find that

RST ′ is better than RST , because RST ′ is optimal but RST is not. Therefore, the
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accuracy of computing anRST for aG(ω) is significantly related to the common terminal

of two subgraphs G(σ1) and G(σ2) we select. However, the perfect junction point of two

subtrees is not predictable. Hence we need to try different combinations. For instance,

for a G(ω) with |G(ω)| = 10, there are five ways to split: (1) |G(σ1)| = 7, |G(σ2)| =

3; (2) |G(σ1)| = 6, |G(σ2)| = 4; (3) |G(σ1)| = 5, |G(σ2)| = 5; (4) |G(σ1)| = 4,

|G(σ2)| = 6; and (5) |G(σ1)| = 3, |G(σ2)| = 7. Each way may yield a different accuracy

of constructing a subtree of G(ω), and we need to try all of them to decide an appropriate

separating point to split the G(ω).

For each step of partitioning a G(λ) or G(ω), it can be implemented by horizontally

or vertically. Therefore, for a particular graph, partitioning at a different direction may

yield a different rectilinear Steiner tree. Figure 4.8 shows that two different RSTs are

generated by partitioning horizontally and vertically.

However enumerating all the possible combinations will significantly increase the run-

time, therefore a reduced way is sought. For example, let |G(ω)| = 10, |G(σ1)| = 7 and

|G(σ2)| = |G(ω)|−|G(σ1)| , and horizontally divide aG(λ) and vertically divide aG(ω).

4.1.2 Optimization

For a subgraph, when two or more subtrees are generated, the RST of the entire sub-

graph is also constructed, because any two subtrees share a common terminal between

them. However, this may bring the extra cost of the total length for merging two subtrees

together.

Suppose G(λ) = {G,F,D,E,C,B,A}, we split G(λ) into G(σ1) = {D,C,A},

G(σ2) = {G,F,E,B,A}, and G(σ1) ∩ G(σ2) = {A}. In Figure 4.9, (a) and (b) show

that two optRSTs are generated and then an RST is constructed in (c). As we can see,

there appear redundant edges in theRST . If we flip edge e(A,C) and edge e(A,B), a new

RST ′ can be formed. Finally, as (d) indicates, segment j and segment p are overlapped.

By removing the segment j, a better RST with less total length can be achieved in (e).
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Figure 4.9: Optimization of total length

4.2 Heuristic Algorithm

In this section, we propose an efficient heuristic for constructing any given n terminals in

the plane. We first map n terminals into a permutation, and then sequentially partition the

permutation into a set of districts. By generating the optimal subtree of each district, and

a suboptimal rectilinear Steiner tree can be finally constructed since every pair of subtree

have been connected per se.

First of all, the mapping of n terminals to a permutation is all about sorting n terminals
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according to their x-coordinates or y-coordinates, and it can be done by typical sorting

algorithms in (n log n) time.
Algorithm 4.1: RSTC

Input : Given n terminals in the plane

Output: The suboptimal MRST

1 sort n terminals and generate the corresponding permutation

2 transform the permutation to a G(P ) with a set of permutation points

3 divide G(P ) into a set of subgraphs and generate permutation for each subgraph

4 retrieve the optRST structures of each permutation

5 compute the RSTs of all permutations

6 return the minimal RST and its structure

In line 3, we first divide G(P ) into a set of subgraphs which contain no more than 7

points. Suppose the permutation of G(P ) is P = {7, 4, 6, 2, 5, 1, 3, 8} as shown in (a),

and assume the size of each subgraph is 3, then P is partitioned into 4 districts as (b)

illustrates. And then by counting-sort, the four districts of subgraphs is sorted as shown

in (c). Finally, by classifying each district, we can attain each permutation of each district.

For instance, the permutation of district 3 is 312. Therefore, permutations of all subgraphs

are generated. The time and space complexity of line 3 are both O(n).

In the algorithm RSTC, we compute the minimal length and return the RST con-

struction of G(P ). We first load all the topology structure of optRSTs of G(P ) with

|G(P )| ≤ 7 into memory with trivial time compared to the entire runtime of RSTC.

After sorting the terminals and attaining the permutation, we transform the permutation

to a G(P ) with a set of permutation points and then compute the optRSTs of G(P ),

and finally, accumulate all the RSTs together to achieve the total minimal length and the

topology of G(P ). The entire complexity depends on line 1 because line 2 line 6 are all

in O(n). Since line 1 is in O(n log n) time, therefore the complexity of algorithm RSTC

is O(n log n) with O(n) space.
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Figure 4.10: Permutation of each district

4.3 Results and Discussion

In this section, we describe the experimental setup, evaluate and compare the performance

of RSTC with RMST [32] which is a very efficient Prim’s algorithm for computing min-

imal rectilinear spanning trees. We report and compare performance in terms of CPU

runtime, accuracy in minimal length, and the Steiner ratio. The experiments we con-

ducted are based on sequential partitioning which is elaborated in Section 4.1. We denote

Per# to be the number of permutations, ρ =
total length of RMST

total length of RSTC
to be the Steiner

ratio, χ =
total length of RMST − total length of RSTC

total length of RMST
to be the improvement of

total length compared to RMST, η =
runtime of RMST

runtime of RSTC
− 1 to be the CPU-time com-

parison between RMST and RSTC, Ω to be the number of permutation points in each

partitioned district, and ∆ to be the number of partitioning for a large graph divided by

subgraphs.

We do not generate random points for the input of RSTC algorithm, but enumerate
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permutation points instead, because different groups of random points yield different total

lengths in each time. And all experiments were conducted on an Intel(R) Core(TM) i5-

3330 CPU @ 3.00GHz processor with 4GB memory. In addition, we use low-level Unix

interval timers to perform timing for CPU runtime.

Table 4.1: Comparison of total length for 8 ∼ 10 terminals (∆ = 2)
Terminal Per# RMST RSTC ρ χ(%)

8 40,320 924110 833280 1.10 9.83 %
9 362,880 9915402 8902656 1.11 10.21 %

10 3,628,800 115908944 104068992 1.11 10.21 %

Table 4.2: Comparison of runtime for 8 ∼ 10 terminals (∆ = 2)
Terminal Per# RMST RSTC η

8 40,320 4.31s 0.96s 3.45
9 362,880 39.31s 9.27s 3.23
10 3,628,800 385.37s 115.39s 2.33

In Table 4.1, we can observe that with ∆ = 2, the Steiner ratio ρ of 8 ∼ 10 terminals

varies from 1.1090 to 1.1138, and the improvement of total length χ varies from 9.83 %

to 10.21 %. In Table 4.2, we can observe that with ∆ = 2, RSTC is 3.45, 3.23 and 2.33

times faster than RMST for 8, 9 and 10 terminals respectively.

Table 4.3: Comparison of total length for 15 ∼ 100 terminals (Per# = 10, 000, Ω = 6)
Terminal Per# RMST RSTC ρ χ(%)

15 10,000 3983363 3708724 1.07 6.89 %
20 10,000 4983363 4708724 1.05 5.51 %
25 10,000 5983363 5708724 1.04 4.59 %
30 10,000 6983363 6708724 1.04 3.93 %
35 10,000 7983363 7708724 1.03 3.44 %
40 10,000 8983363 8708724 1.03 3.06 %
45 10,000 9983363 9708724 1.02 2.75 %
50 10,000 10983363 10708724 1.02 2.50 %

100 10,000 20983363 20708724 1.01 1.31 %

In Table 4.3, we randomly selected 10,000 permutations for conducting the experi-

ment. We can observe that with Ω = 6, the Steiner ratio of 15 ∼ 100 terminals varies

from 1.01 to 1.07, and the improvement from 1.31 % to 6.89 %. In Table 4.4, we can

observe that with Ω = 6, RSTC is 2.58, 2.00, 1.91, 1.74, 1.59, 1.50, 1.41, 1.38 and 1.06

times faster than RMST for 15, 20, 25, 30, 35, 40, 45, 50 and 100 terminals respectively.
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Table 4.4: Comparison of runtime for 15 ∼ 100 terminals (Per# = 10, 000, Ω = 6)
Terminal Per# RMST RSTC η

15 10,000 11.89s 3.31s 2.58
20 10,000 11.81s 3.92s 2.00
25 10,000 13.34s 4.58s 1.91
30 10,000 14.17s 5.16s 1.74
35 10,000 14.87s 5.72s 1.59
40 10,000 15.85s 6.33s 1.50
45 10,000 16.61s 6.87s 1.41
50 10,000 17.18s 7.21s 1.38

100 10,000 25.48s 12.36s 1.06

From the experiment results, we can clearly see that RSTC is excellent both in the

accuracy of total length and CPU runtime. Compared to RMST, the improvement of total

length varies from 3.93 % to 10.21 % and it is 1.74 to 3.45 times faster for the size of 30

terminals. In addition, the improvement of total length is 1.31 % and 1.06 times faster for

the size of 100 terminals.
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Chapter 5

Conclusion and Future Work

In this chapter, we conclude the thesis and summarize our future directions for research.

5.1 Conclusion

This thesis introduces a new heuristic to efficiently and accurately construct minimum

rectilinear Steiner trees which are the shortest interconnections of a set of points in the

plane. Previous research work about this topic shows that exact solutions for this prob-

lem only exist in exponential time complexity, and approximation solutions with good

accuracy also have a long running time. Therefore this thesis seeks a new way to address

this problem with good performance both in worst-case running time and accuracy. To

achieve this goal, we propose an exact solution for a few points. We first split a plane into

a set of sub-planes which only contain a few points, and then employ the exact algorithm

to grow optimal rectilinear Steiner trees for all the sub-planes. By connecting the optimal

rectilinear Steiner tree of each sub-plane, we finally achieve an approximated minimum

rectilinear Steiner tree.

To reduce the runtime, we compute all the topologies of rectilinear Steiner trees in

which n ≤ 7 points into a data file and load it into memory in hashing fashion. Therefore

for constructing the rectilinear Steiner tree of a given plane, we only need to retrieve its

optimal rectilinear Steiner trees of all sub-planes, and then multiply the real distances by

the topology units. We conducted our experiments which show that the heuristic demon-
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strates a good performance both in runtime and accuracy for up to 100 terminals.

5.2 Future Work

Below we identify two directions for further research:

1. The optimal algorithm const optRST addresses the rectilinear Steiner problem

with up to 7 points, and it may be expanded to 12 points to construct rectilinear Steiner

trees for larger instances.

2. More sophisticated partitioning approaches are needed for the heuristic algorithm

RSTC. With better ways for dividing a plane, more accuracy in total length can be

achieved. However, it may also bring overhead in time complexity.
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