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Naked mole rat (MR) Heterocephalus glaber is a rodent model
of delayed aging because of its unusually long life span (>28
years). It is also not known to develop cancer. In the current
work, tissue imaging by x-ray fluorescence microscopy and
direct analyses of trace elements revealed low levels of selenium
in the MR liver and kidney, whereas MR and mouse brains had
similar selenium levels. This effect was not explained by uniform
selenium deficiency because methionine sulfoxide reductase
activities were similar in mice and MR. However, glutathione
peroxidase activity was an order of magnitude lower in MR liver
and kidney than in mouse tissues. In addition, metabolic labeling
of MR cells with 7>Se revealed a loss of the abundant glutathione
peroxidase 1 (GPx1) band, whereas other selenoproteins were pre-
served. To characterize the MR selenoproteome, we sequenced its
liver transcriptome. Gene reconstruction revealed standard sel-
enoprotein sequences except for GPx1, which had an early stop
codon, and SelP, which had low selenocysteine content. When
expressed in HEK 293 cells, MR GPx1 was present inlow levels, and
its expression could be rescued neither by removing the early stop
codon nor by replacing its SECIS element. In addition, GPx1
mRNA was present in lower levels in MR liver than in mouse liver.
To determine if GPx1 deficiency could account for the reduced
selenium content, we analyzed GPx1 knock-out mice and found
reduced selenium levels in their livers and kidneys. Thus, MR is
characterized by the reduced utilization of selenium due to a spe-
cific defect in GPx1 expression.

Naked mole rat (MR)?> (Heterocephalus glaber) is a unique
organism in the mammalian order rodentia. It is an attractive
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model to study aging due to an extraordinary life span (more
than 28 years), which is unprecedented for rodents of similar
body size. Aging in MRs is characterized by very slow age-re-
lated declines that do not significantly affect breeding capacity,
social behavior, and daily activity (1-3). MR evolved a unique
eusocial lifestyle with strictly determined social roles and coop-
erative breeding within the colony. The anatomy of MR has
several specific features, which probably evolved as an adapta-
tion to living underground in oxygen-limiting conditions,
including underdevelopment of the visual system (4), skin
insensitivity (5), and the ability to tolerate low temperature (6)
and low oxygen levels (7). MRs are also characterized by a
decreased metabolic rate, which is associated with reduced lev-
els of thyroid hormones (3). One of the most remarkable fea-
tures of MR is that none of the autopsies of dead animals in
several colonies revealed cancer incidence (1). Moreover, pri-
mary fibroblasts derived from MR were sensitive to contact
inhibition (8), resistant to experimentally induced tumorigen-
esis, and unable to form xenograft tumors (9).

MR poses a challenge to the theories that link aging, cancer,
and oxidative stress. Because MR lives in low oxygen condi-
tions, it is expected to have low levels of oxidative stress. How-
ever, research showed that MR is characterized by significant
oxidative damage. Compared with mice, MRs have a lower
GSH/GSSG ratio, higher rate of lipid peroxidation, higher rate
of DNA oxidative damage, and higher protein carbonylation
(10). It was also demonstrated that MR proteins possess higher
levels of protein thiols, increased protein stability, increased
resistance to urea-induced denaturation, and elevated protea-
somal activity while also showing lower levels of protein ubiq-
uitination. Moreover, unlike the mouse proteome, the MR pro-
teome did not show significant age-related susceptibility to
oxidation and ubiquitination (11). A separate study did not
detect age-related changes in the activities of antioxidant
enzymes, including Mn-superoxide dismutase, Cu/Zn-super-

MsrA, methionine-S-sulfoxide reductase; MsrB, methionine-R-sulfoxide
reductase; Sec, selenocysteine; SECIS, selenocysteine insertion sequence;
SelP, selenoprotein P; XFM, x-ray fluorescence microscopy; contig, group
of overlapping clones; EGFP, enhanced green fluorescent protein; BisTris,
2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol.
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Reduced Selenium Utilization by Naked Mole Rats

oxide dismutase, and catalase, and also observed low glutathi-
one peroxidase (GPx) activity (12).

Mammals have eight GPxs, including five selenoproteins.
GPxl1 is the first identified and one of the best studied seleno-
proteins (13). This and other selenoprotein GPxs have seleno-
cysteine (Sec) residues in their active sites. GPx1 is a cytosolic
enzyme and the most abundant selenoprotein in mammals.
Other GPxs show different cellular localizations and/or tissue
and substrate specificities (14, 15). GPx1 is not an essential
enzyme (i.e. GPx1 knock-out mice are viable and fertile). How-
ever, GPx1 knock-out mice are more susceptible to oxidative
stress (16, 17) and viral myocardites (18). Expression of GPx1 is
decreased in prostate cancer and breast cancer cell lines (19) as
well as in the mouse model of liver cancer (20). A single nucleo-
tide polymorphism that changes Pro to Leu at codon 198 of
human GPx1 is associated with lung (21) and bladder (22)
cancers.

Currently, there is no information on the utilization of sele-
nium by MR; however, this is an essential trace element in
mammals, and its supplementation may be beneficial in cancer
chemoprevention (23). Selenium functions mostly through
incorporation into proteins in the form of Sec. Mice and
humans have 24 and 25 selenoprotein genes, respectively (24).
However, nothing is known about the composition of the MR
selenoproteome.

In this study, we observed low levels of selenium in MR tis-
sues. This observation led to the finding that the reduced utili-
zation of selenium by this organism was due to a specific defect
in GPx1 expression.

EXPERIMENTAL PROCEDURES

Animals—Animal experiments were approved by institu-
tional animal care and use committees at the University of Illi-
nois (Chicago, IL) and University of Nebraska (Lincoln, NE). To
carry out inductively coupled plasma mass spectrometry (ICP-
MS) analyses, Western blotting, activity assays, and other anal-
yses, animals were sacrificed, and their tissues were frozen in
liquid nitrogen and stored until use. To prepare extracts, tissues
were homogenized in PBS supplemented with a protease inhib-
itor mixture (Sigma). Cellular debris was removed by centrifu-
gation at 13,000 rpm for 15 min at 4 °C, and protein concentra-
tions were determined by the Bradford assay.

Tissue Samples for X-ray Fluorescence Microscopy (XFM)—
Tissues from C57BL/6 mice and MRs were extracted and pre-
pared at the same time to match preparation conditions. Mice
were fed a standard rodent chow diet. MRs were fed either a
sweet potato or carrot diet. Tissues from a 1-year-old MR were
compared with the corresponding samples of a 2-month-old
mouse to adjust for life span differences. All freshly extracted
tissues were washed in PBS and placed in 4% neutral buffered
formaldehyde in PBS for fixation. After 12 h, tissues were trans-
ferred to PBS, paraffin-embedded, and cut using a standard
microtome into 5-pum sections. Sections were mounted on silicon
nitride windows (2 X 2 mm, 200-nm thickness; Silson, Blisworth,
UK). Light microscopy images were taken using a Leica DMXR
microscope (Leica Microsystems, Bannockburn, IL).

XFM—Trace elements in mouse and MR tissue samples were
imaged with XFM at the Advanced Photon Source, Argonne
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National Laboratory (Argonne, IL). For each pixel, the full x-ray
fluorescence spectrum was recorded using a single-element sil-
icon drift detector (Vortex EX, SII Nanotechnology,
Northridge, CA). Dwell time varied from 1.1 to 4 s/pixel. For
quantification, each set of experiments was followed by record-
ing x-ray fluorescence spectra of thin film standards NBS-1832
and NBS-1833 (National Bureau of Standards). X-ray fluores-
cence spectra for each sample were fitted and quantified using
data derived from standards. Image processing and analysis
were performed using MAPS software (25). Each x-ray fluores-
cence image represents two-dimensional distribution of the
element.

Activity Assays—Total GPx activity was measured using a
GPx activity kit (Sigma) according to the manufacturer’s
instructions. Methionine-S-sulfoxide reductase (MsrA) and
methionine-R-sulfoxide (MsrB) activities were measured in an
HPLC assay as described (26). Briefly, 200 g of total protein
were added to a reaction mixture that was kept at 37 °C for 30
min in the presence of 20 mm DTT and either 200 um dabsyl-
methionine-S-sulfoxide (to assay for MsrA activity) or 200 um
dabsyl-methionine-R-sulfoxide (to assay for MsrB activity).
After stopping the reaction by adding 200 ul of acetonitrile, it
was centrifuged at 4 °C for 15 min at 13,000 rpm, and the super-
natant (50 pl) was injected onto a C;3 column (ZORBAX
Eclipse XDB-C18) to quantify the resulting dabsylated
methionine.

Splenocyte Isolation and 7>Se Metabolic Labeling— After dis-
section, spleen was immediately transferred into ice-cold
DMEM and mashed through a 45-um cell strainer into the
50-ml tube. Cells were centrifuged at 800 X g for 5 min. The
pellet was resuspended in 5 ml of ASK buffer (Invitrogen) and
incubated at room temperature for 5 min. Cells were then
diluted with DMEM and pelleted at 800 rpm for 5 min. The
resulting pellet was resuspended in 15 ml of DMEM supple-
mented with 10% fetal bovine serum (Invitrogen), antibiotic/
antimicotic (Invitrogen), 0.4 mMm glutamine, and freshly neu-
tralized “°Se selenious acid (specific activity 1000 Ci/mmol,
final concentration in the medium 1 nm) and pooled into a
15-cm plate. After 24 h, cells were washed three times with
ice-cold PBS and lysed in CellLytic buffer (Sigma). Protein
extracts were analyzed by SDS-PAGE followed by
autoradiography.

Whole Transcriptome Sequencing and Assembly of Seleno-
protein Genes—Extraction of the total RNA from MR liver was
carried out using an RNAqueous kit (Ambion) according to the
manufacturer’s instructions. DNA was removed by treatment
with DNase I (Ambion). Liver transcriptome was sequenced at
the University of Nebraska-Lincoln genomic facility on an Illu-
mina instrument. To assemble 35-bp reads into longer contigs,
three different strategies were used. First, mapping of reads to
reference sequence from mouse or guinea pig genomes was
performed using the MAQ package 0.7.1 (available from the
Sourceforge Web site). Second, SOAP package 1.03 (available
from the Short Oligonucleotide Analysis Package Web site) was
used for de novo assembly of short reads. Finally, we employed
an in-house program that was optimized for assembling seleno-
protein genes and utilized the variety of information available
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from MAQ and SOAP output as well as known sequences from
other rodents.

ICP-MS—Quantitative analyses of trace elements in animal
tissues were performed using ICP-MS. Freshly frozen mouse
and MR tissues were homogenized and sonicated in PBS with
Complete protease inhibitor mixture (Roche Applied Science)
(1 tablet in 50 ml of PBS). Samples were normalized to protein
content in each lysate, as determined using the Bradford Pro-
tein Kit (Bio-Rad). Samples were digested in 15% nitric acid,
15% hydrogen peroxide for 2 h at 70 °C. 50 ppb gallium were
added as an internal control to the digestion mix. After diges-
tion, samples were diluted 10 times with deionized water and
analyzed by ICP-MS. Elemental analysis was performed at the
University of Nebraska-Lincoln Spectroscopy Core Facility
using an Agilent Technologies ICP-MS model 7500ce (Santa
Clara, CA) and an Elemental Scientific Inc. (Omaha, NE) SC4
autosampler. Each sample was analyzed in triplicate. The car-
rier and make-up gas flows were 0.95 and 0.15 liter/min of
argon, respectively. The collision cell operated with 3.5 ml/min
H, and 1.5 ml/min helium for reaction/collision mode. Dwell
times for all elements were 0.3 s except “Se, for which the dwell
time was set at 0.9 s. Gallium (m/z = 71) was added to all sam-
ples and standards as an internal standard at 50 ppb.

Expression Constructs for Mouse and MR GPx1 and Their
Mutants—Mouse and MR GPx1 c¢DNAs containing the
3'-UTRs, including SECIS elements, were amplified by a two-
step PCR with primers that introduced Myc tag into ORFs.
Primers were designed as follows: mouse first round (CTCAG-
AGGAGGATCTCTGTGCTGCTCGGCTCTCCG and GCA-
TACTCTAGACTGATATTCAGCACTTTATTCTTAGTA-
GTGAAACC) and second round (CTCAGAGGAGGATCTC-
TGTGCTGGTCGTTTGGCCGCGGCC and GCATACTCT-
AGACTGATATTCAGCACTTTATTCTTAGTAGTGAA-
ACCQC); MR first round (CTCAGAGGAGGATCTCTGTGCTG-
GTCGTTTGGCCGCGGCC and GCATACTCTAGAACA-
CCCAGCACTTTATTAGAGGGTAATCATTTTGG) and
second round (GCATACTCTAGAACACCCAGCACTTTA-
TTAGAGGGTAATCATTTTGG and ATGACATCTCGAG-
ATGGAGCAGAAGCTCATCTCAGAGGAGGATCTC). The
PCR products were digested with Xhol and Xba and ligated into
a similarly digested pClneo vector. In the case of mouse GPx1,
an early premature stop codon was introduced using site-di-
rected mutagenesis with the QuikChange kit (Stratagene) and
primers GAAACCCTGCTGTCCTAGCAGTCTGGCAAC and
GTTGCCAGACTGCTAGGACAGCAGGGTTTC. The result-
ing mutant was designated as the M-short form. To rescue the
early stop codon in MR GPx1, we performed site-directed
mutagenesis with primers AAGCCCTACTCACTCAGGGG-
CGCGGCCCTG and CAGGGCCGCGCCCCTGAGTGAGT-
AGGGCTT, and the resulting mutant was designated as the
MR-long form. To obtain cysteine mutants of mouse and MR
GPx1, we used site-directed mutagenesis with primers TCGC-
GTCTCTCTGCGGCACCACGAT and ATCGTGGTGCCG-
CAGAGAGACGCGA for mouse GPx1 and GAATGTGGCA-
TCCCTCTGCGGCACCACGGTC and GACCGTGGTGCC-
GCAGAGGGATGCCACATTC for MR GPx1. To obtain a
pBudGE/GFP construct, EGFP was amplified from pEGPFN3
vector with primers ATGACAAGCTTATGGTGAGCAAGG-
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GCGAGG and GGACATTCTAGATTACTTGTACAGCTC-
GTCC. The resulting PCR product was ligated into a similarly
digested pBudCE4.1 vector. Mouse and MR GPx1 mutants
were amplified from pClneo constructs with primers GGTAC-
CATGGAGCAGAAGCTCATCTCAGAGG/GCATACGCA-
TACAGATCTCTGATATTCAGCACTTTATTCTTAG and
GGTACCATGGAGCAGAAGCTCATCTCAGAGG/AGAT-
CTACACCCAGCACTTTATTAGAGG, respectively, and
inserted into the second multiple cloning site of the
pBudCE4.1/GFP vector at Bglll/Kpnl restriction sites. Cys
mutants were amplified with GGTACCATGGAGCAGAAGC-
TCATCTCAGAGG and GCATACAGATCTTTAGGAGTT-
GCCAGACTGC (mouse) and GGTACCATGGAGCAGAAG-
CTCATCTCAGAGG and GCATACAGATCTCTATGCAG-
GGCCGCGCCCC (MR) and inserted into the vector without
the 3'-UTR. To express mouse and MR GPx1 mutants in a ba-
cterial expression system, GPx1 mutants were amplified with
primers ATGCATCATATGGAGCAGAAGCTCATCTCA-
GAGG and GCATGCTCGAGTTAGGAGTTGCCAGA-
CTGC (mouse) and ATGCATCATATGTGTGCTGGTCGT-
TTGGCCG and GCATGCTCGAGCTATGCAGGGCCGCG-
CCCC (MR) and cloned into pET28a expression vector at Ndel
and Xhol sites.

To clone mouse and MR GPx1 into pSelExpress1, mouse and
MR GPx1 coding sequences were amplified with ATGAC-
ATAAGCTTATGGAGCAGAAGCTCATCTCAGAGG and
GCATACTCTAGATTAGGAGTTGCCAGACTGC (mouse)
and ATGACATAAGCTTATGGAGCAGAAGCTCATCTC-
AGAGG and GCATACTCTAGACTATGCAGGGCCGCG-
CCCC (MR) primers, digested with HindIII and Xbal restric-
tion endonucleases, and ligated into pSelExpressl vector. To
swap mouse and MR 3'-UTRs, we prepared the corresponding
constructs on the basis of the pBudCE4.1/GFP vector, which
expressed Myc-tagged GPx1 and GFP from separate sites in the
construct.

Cell Culture, Transfections, Metabolic Labeling, Immunopre-
cipitation, and Western Blot Analyses—HEK 293 and HeLa
cells were cultured in DMEM supplemented with 10% FBS, 100
units/ml penicillin, and 100 units/ml streptomycin. All trans-
fections were performed with Lipofectamine transfection rea-
gent (Invitrogen), according to the manufacturer’s manual
Eighteen hours after transfection, medium was replaced with
one containing freshly neutralized 7>Se selenious acid (specific
activity 1000 Ci/mmol, final concentration in the medium 1
nMm). Cells were labeled for 24 h, and cellular extracts were ana-
lyzed by SDS-PAGE followed by autoradiography. For immu-
noprecipitation, HEK 293 cells were grown on 10-cm plates,
transfected with various GPx1 constructs, and metabolically
labeled with 7>Se. Cells were resuspended in PBS, supple-
mented with protease inhibitor mixture (Sigma), and treated
with a tissue homogenizer. 600 ug of total protein were sub-
jected to immunoprecipitation with the Protein G immunopre-
cipitation kit with mouse anti-Myc antibodies (Invitrogen),
according to the manufacturer’s instructions. For Western blot
analyses, samples were separated on 10% BisTris gels, trans-
ferred onto PVDF membranes, and incubated with mouse anti-
Myc (Invitrogen) or anti-GFP (Sigma) antibodies.

JOURNAL OF BIOLOGICAL CHEMISTRY 17007
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FIGURE 1. XFM and ICP-MS analysis of selenium in mouse and MR tissues. Shown are XFM scans of mouse and MR livers (A) and testes (B). Each element and
its maximum and minimum threshold values are given above each image in ng/cm?. The rainbow-colored scale bar relates to the signal intensity measured as
ng/cm?in each spot, with dark pixels representing areas of low concentration and a gradient to bright pixels depicting increasing concentrations. A scale bar is
shown below the elemental maps. C, selenium was analyzed by ICP-MS in mouse and MR tissues. Values are means = S.D. (error bars). Organs in which trace

elements were analyzed are shown below each panel.

RNA Isolation and Quantitative PCR—To compare GPx1
expression levels in mice and MRs, total liver RNA was isolated
by TRIzol extraction according to the manufacturer’s instruc-
tions. Genomic DNA was removed using a DNA removal kit
(Ambion). RNA concentration was measured spectrophoto-
metrically, and cDNA was obtained with Superscript Il reverse
transcriptase (Invitrogen) using the oligo(dT) primer. Real-
time PCR was performed using a Fast SYBR Green master mix
(Applied Biosystems). Primer sequences for the GPx1 expres-
sion analysis were as follows: mouse, CAGGAGAATGGCAA-
GAATGAAG and GAAGGTAAAGAGCGGGTGAG; MR,
GACACCAGGAAAACGCAAAG and AAGGTGAAGAGCG-
GATGTG (primers were based on the assembled transcrip-
tome sequences). GPx1 expression was normalized to that of
aldolase. Primers for aldolase expression were as follows:
mouse, GTGATCCTTTTCTACGAGACCC and ACCACA-
ATTCCCTTCTCCTTG; MR, AAGATGGGTGTGACTT-
TGGG and GGTACTAGCCCATTCTGTTGAC.

Additional Analyses of mRNAs—RNA was isolated from cells
transfected with various GPx1 constructs inserted into
pBudCE/GFP vector. It was then treated with RNase-free
DNase I (Fermentas). The resulting RNA samples were reverse
transcribed with a SuperScript VILO cDNA synthesis kit (Invit-
rogen). Quantitative PCR was performed using a Fast SYBR
Green Master Mix (Applied Biosystems). To distinguish

17008 JOURNAL OF BIOLOGICAL CHEMISTRY

recombinant GPx1 from the endogenous form, we used the
direct primer specific for Myc-tag (TCATCTCAGAGGAG-
GATCTC) and reverse primers as follows: TGAGCCTTCT-
CACCATTCACTTCG (mouse) and CGAGCACTACCAG-
GCCTCTGG (MR). Expression of GPxl mutants was
normalized to EGFP expressed from the same vector. Primers
for EGFP were as follows: TCAAGGACGACGGCAACTAC
and TTGTGCCCCAGGATGTTGCC.

Protein Isolation and Activity Assays—Recombinant cysteine
GPx1 mutants were expressed in BL21(DE3) cells (Novagen).
E. coli cells were transformed with various GPx1 constructs,
and the cells were grown until an OD of 0.6 at 600 nm. Protein
expression was induced overnight with 1 mm isopropyl 1-thio-
B-p-galactopyranoside. Cells were harvested by centrifugation,
homogenized in 50 ml of PBS supplemented with Protease
Inhibitor Mixture EDTA-free (Roche Applied Science), and
sonicated on ice for 20 min. The suspension was centrifuged at
9000 rpm, and the resulting lysates were assayed for protein con-
centration and fractionated on a TALON™ column (Clontech).
Fractions containing GPx1 mutants were dialyzed against PBS and
subjected to activity assays using a GPx kit (Sigma).

RESULTS

Low Levels of Selenium in MR Tissues—We analyzed the lev-
els and distribution of selenium in various tissues of MR,

VOLUME 286+NUMBER 19-MAY 13,2011
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H. glaber. Mouse tissues were used for comparison because
mice are rodents of similar size. Paraffin-embedded tissue sec-
tions were first imaged using synchrotron XFM. Selenium was
uniformly distributed in liver (Fig. 1A), heart, and lung tissues
in both organisms. Mouse testes are known to accumulate sele-
nium in elongating spermatids (28). However, such selenium
enrichment was not observed in MR testes (Fig. 1B). We esti-
mated selenium content in specific areas of MR and mouse
tissues (supplemental Fig. S1). Most MR tissues had consider-
ably lower selenium levels (30 -75% lower). However, MR and
mouse brain samples had similar selenium contents. The brain
is known to retain selenium during deficiency (29).

To verify the XFM observation of low selenium in MR tis-
sues, we measured selenium in MR and mouse tissues using
ICP-MS. All MR tissues analyzed, except the brain, had lower
selenium levels than the corresponding mouse tissues (Fig. 1C).
The major selenium pool in mice is in the liver; however, MR
liver had low amounts of selenium. Thus, MR is characterized
by apparent selenium deficiency.

Low GPx Activity in MR Tissues—Because selenium mostly
occurs in the form of Sec in proteins, the low selenium in MR
tissues suggested a decreased expression of selenoproteins. To
test this hypothesis, we assayed methionine sulfoxide reductase
and GPx activities. Mammals have three MsrBs, including the
selenoprotein MsrB1, which is the major MsrB in mouse liver
(30). Because it is responsible for MsrB activity in the cytosol
and nucleus (MsrB2 and MsrB3 are mitochondrial and endo-
plasmic reticulum proteins, respectively), it is probably the
main MsrB in all mammals. MsrB1 expression and activity (as
well as total MsrB activity) depend on dietary selenium. Mam-
mals also have a single MsrA, which is not a selenoprotein. We
found that both MsrA and MsrB activities were similar in mice
and MRs (Fig. 2, A and B). Thus, low selenium in MR tissues
cannot be explained by uniform selenoprotein deficiency.

GPx1 is a major mammalian GPx, which is, like MsrB1, easily
regulated by dietary selenium. We found extremely low GPx
activity in MR liver compared with the corresponding mouse
tissue (Fig. 2C). Low selenium in the liver correlated with low
GPx activity, which was suggestive of low GPx1 expression.

Sequencing and Analysis of the MR Liver Transcriptome—
Several rodent genomes were sequenced in recent years, but the
genome of MR is not available. To characterize selenoprotein
occurrence in MRs, we performed sequencing of the MR liver
transcriptome using Illumina technology. Overall, 25,011,515
36-bp-long reads were obtained and assembled into contigs. The
length distribution of assembled contigs is shown in Fig. 3A. The
best results were obtained using k-mer size of 23, wherein 395,038
contigs were generated, with 40,073 contigs longer than 100 bp
and 379 contigs exceeding 1000 bp.

Occurrence of selenoprotein genes was then examined, and
we detected 15 selenoprotein sequences. This analysis sug-
gested that the MR selenoproteome is similar to that of other
mammals. Schematic representation of the human selenopro-
teome (which contains 25 selenoproteins) is shown in Fig. 3B,
with MR orthologs identified in the current study highlighted.
The lack of some selenoprotein genes was probably due to
insufficient sequencing depth, but it also could be an indicator
of their low expression in MR liver. Overall, although selenium
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FIGURE 2. MR tissue extracts have low GPx1 expression and activity. Total
MsrB (A), MsrA (B), and GPx (C) activities were measured in the indicated
mouse and MR tissues. D, primary splenocytes derived from MR and mice
were metabolically labeled with 7°Se, and protein extracts were analyzed by
SDS-PAGE followed by autoradiography. The band corresponding to GPx1 is
shown with an arrow on the right. E, relative expression of GPx1 mRNA in MR
and mouse liver (¥, p < 0.05). Error bars, S.D.

levels and GPx activity were low in MR liver, this organ
expressed many selenoprotein mRNAs, and the majority of
these sequences had no unusual features (supplemental Figs.
$2-S16).

SelP is the only mammalian selenoprotein that contains
more than one Sec, and it has two SECIS elements in the
3’-UTR. Mammalian SelPs generally have 10—15 Sec residues
(e.g. 10 Sec residues in human, mouse, and rat SelPs) (31). How-
ever, we found only 7 Sec residues in MR SelP (supplemental
Fig. S2). Together with SelP from Cavia porcellus, this is the
lowest Sec content of any vertebrate SelP.

In addition, we detected an unusual feature in MR GPx1: an
early stop codon present five codons upstream of the position
terminating GPx1 synthesis in other mammals (Fig. 3C and
supplemental Fig. S3). Thus, MR GPx1 was predicted to be 5
amino acids shorter than other mammalian GPx1s. SECIS ele-
ments in MR selenoprotein genes satisfied the requirements of
a canonical eukaryotic SECIS model. Overall, it is likely that the
MR selenoproteome is not significantly different from that of
other mammals, with the exception of SelP and GPx1
sequences.

Low GPx1 Expression in MR—To test for GPx1 expression
levels, we isolated mouse and MR splenocytes and metaboli-
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an early termination codon (see “Results”). C, schematic representation of MR GPx1 in comparison with mouse GPx1.

cally labeled the cells with 7>Se, and they were analyzed by SDS-
PAGE followed by autoradiography (Fig. 2D). It appeared that
the GPx1 band was missing in MR splenocytes. To test if low
GPx1 expression and activity were due to a low mRNA expres-
sion, GPx1 mRNA levels were examined by real-time PCR. We
found that the MR GPx1 mRNA was expressed at much lower
levels than mouse GPx1 mRNA in the liver (Fig. 2E). Thus, the
low GPx1 activity was, at least in part, due to low GPx1 mRNA
levels.

Reduced Expression of MR GPx1 in Transfected Mammalian
Cells—An early stop codon in MR GPx1 could also contribute
to the low expression and activity of GPx1. To test this possi-
bility, we prepared constructs containing MR GPx1 with the
early UAG stop codon and the one where UAG was replaced
with CAG (encoding glutamine present in mouse GPx1 at this
position). As a control, we prepared mouse GPx1 and its
mutant, in which the CAG codon was changed to UAG (Fig.
4A). The constructs were transfected into HEK 293 cells,
which were then labeled with 7Se and analyzed for seleno-
protein expression patterns (Fig. 4C, top). The same mem-
brane was also subjected to Western blot analysis with anti-
Myc antibodies (Fig. 4C). To distinguish exogenous
selenoproteins from the endogenous GPx1, proteins were
immunoprecipitated with anti-Myc antibodies and analyzed
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ona gel (Fig. 4C, bottom). Expression levels of MR GPx1 were
much lower than that of mouse GPx1. Introduction of CAG
in place of UAG further decreased MR GPx1 expression. At
the same time, substitution of CAG with UAG in mouse
GPx1 did not decrease GPx1 expression.

In addition, mouse and MR GPx1 forms were cloned into a
pBudCE4.1 vector, containing GFP under the CMV promoter.
In further experiments, GFP was used as an internal control for
transfection and protein loading. Inhibition of proteasome in
HEK 293 cells did not rescue MR GPx1 expression (Fig. 4D). In
addition, real time PCR analysis revealed no difference between
mouse and MR GPx1 mRNA after transfection (Fig. 4B). Thus,
MR GPx1 expression was suppressed regardless of the early
stop codon. However, substitution of Sec with cysteine partially
rescued expression of MR GPx1 (Fig. 4E). These data suggest
that incorporation of Sec may limit GPx1 synthesis. We also
checked if the early stop codon in MR GPx1 affects peroxi-
dase activity of this enzyme by expressing Cys-containing
His-tagged MR and mouse GPx1s in bacteria. These mouse
and MR GPx1 proteins had similar activities (supplemental
Fig. S17). The data suggest that the early stop codon affects
neither expression nor activity of the enzyme and that the
low expression of MR GPx1 is due to a combination of low
mRNA levels and decreased Sec insertion. These two factors
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may be linked (e.g. inefficient Sec insertion may destabilize
GPx1 mRNA).

SECIS Element in MR GPx1 Is Not Responsible for Low GPx1
Expression—Sec insertion includes recognition of the SECIS
element in the 3'-UTR of selenoprotein mRNAs by SBP2 and
subsequent recruitment of additional factors, such as EFSec
and Sec-tRNAS15¢¢ which insert Sec in response to the UGA
codon. Efficiency of Sec incorporation may depend on addi-
tional features, such as the position of the UGA codon within
the ORF and the type of SECIS element (32—34). Alignment of
GPx1 SECIS elements revealed a nucleotide substitution in the
conserved SBP2 binding site (Fig. 54). However, comparison of
MR (Fig. 5B) and mouse (Fig. 5C) SECIS elements in GPx1 did
not show unusual features in the MR SECIS element, suggest-
ing that the predicted structure may support Sec incorporation.

To directly test if the MR GPx1 SECIS element is responsible
for the low GPx1 expression, we cloned coding sequences of
mouse and MR GPxl1s into pSelExpressl vector containing a
highly efficient eukaryotic SECIS element (27). Analysis of

AV N
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these expression constructs (containing the same SECIS ele-
ment) by metabolic 7>Se labeling of transfected HEK 293 cells
showed that the MR GPx1 was still expressed at a low level
compared with mouse GPx1 (Fig. 5D). To further examine the
role of SECIS elements as well as the entire 3'-UTRs in GPx1
expression, we prepared constructs that swapped the 3'-UTRs
between mouse and MR GPxls. These constructs were
expressed in HEK 293 cells, followed by “>Se labeling and West-
ern blot analysis (Fig. 5E). Substitution of the MR GPx1 3'-UTR
with that of the mouse did not increase MR GPx1 expression; in
addition, replacement of the mouse GPx1 3'-UTR with that of
the MR did not decrease the expression of mouse GPx1. Thus,
neither the SECIS element nor the 3'-UTR were responsible for
the reduced MR GPx1 expression. It is an attractive possibility
that the overall GPx1 mRNA structure modulates the rate of
Sec incorporation.

Absence of GPx1 Decreases Selenium Levels in Mice—GPx1 is
the most abundant selenoprotein in mouse liver and kidney.
We tested if removal of this protein could affect selenium levels
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in tissues by examining WT and GPx1 knock-out mice. Sele-
nium levels in GPx1 knock-out mice were almost twice as low as
those in WT livers (Fig. 6) (»p = 0.00387) and kidneys (p =
0.0409). However, in tissues characterized by lower GPx1 lev-
els, such as spleen, heart, lung, and brain, selenium levels were
not affected by GPx1 knock-out. Thus, the absence of GPx1
could indeed be responsible for the reduced selenium use by
MRs.

GPx1 Expression in Long Lived Rodents—To examine if the
aberrant expression of MR GPx1 has evolutionary aspects, we
analyzed its levels in primary skin fibroblasts derived from long
lived rodents, including white footed mouse, chipmunk, vole,
single fox squirrel, beaver, and porcupine, and also examined
fibroblasts from another long lived mammal, the little brown
bat (35). Cells were metabolically labeled with 7*Se, and pro-
teins were analyzed by SDS-PAGE followed by autoradiography
(supplemental Fig. S184). HEK 293 cells were used as a positive
control, and mouse embryonic fibroblasts were derived from
GPx1 knock-out mice as a negative control. All analyzed spe-
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cies, except for the porcupine, had a strong band corresponding
to GPx1. In the case of the porcupine, we observed a weak "°Se
signal in the GPx1 position and a stronger band that migrated
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faster than GPx1. Sequence analysis of GPx1 in these rodents
should await the availability of their genome sequences. How-
ever, examination of the phylogenetic tree indicated that MR
and porcupine share a common ancestor (supplemental Fig.
S18B), whereas other examined mammals are more distant.
Thus, it appears that the defect in GPx1 expression may not be
limited to MR and may occur in a subset of rodents.

DISCUSSION

GPx1 is an abundant glutathione peroxidase in mammals. It
plays an important role in the protection of cells from oxidative
stress by reducing hydrogen peroxide with glutathione. Sur-
prisingly, we found that GPx1 is essentially absent in MR tis-
sues, whereas other selenoproteins are expressed at normal lev-
els and/or are enzymatically competent. Sequencing and
analysis of the MR liver transcriptome detected GPx1 mRNA,
but it was present at low levels and had an early termination
codon. Further analyses revealed that the low expression was
probably due to a combination of low mRNA levels and
decreased insertion of Sec rather than due to compromised
GPx1 activity caused by premature termination.

It was reported that GPx1 is the most abundant liver seleno-
protein. In rat liver, it accounts for 63% of the total selenium
(36). Selenium deficiency induces rapid degradation of GPx1
mRNA (and several other selenoprotein mRNAs), whereas the
expression levels of several additional selenoproteins are pre-
served under these conditions (37). GPx1 was proposed as a
biomarker of selenium utilization because its activity is very
sensitive to selenium dietary status. It was also suggested that
GPx1 is a “selenium buffer,” wherein this enzyme stores sele-
nium and provides this element for biosynthesis of selenopro-
teins during selenium deficiency (38). On the other hand, GPx1
knock-out does not affect expression of other selenoproteins
(39, 40). This enzyme is also not essential. GPx1 knock-out
animals are viable; however, they are more susceptible to oxi-
dative stress and show defects in redox signaling (41). These
data correlate with previously reported increases in oxidative
stress parameters in MR, including a low GSH/GSSG ratio, high
rate of DNA oxidative damage, and increased protein carbony-
lation and lipid peroxidation (10). Moreover, both GPx1 knock-
out mice and MRs showed abnormal blood glucose regulation
(39, 40). These mice had a normal fasting glucose but reduced
blood insulin levels (41, 42). However, unlike GPx1 knock-out
mice, MR also showed abnormal glucose tolerance (glucose lev-
els remained elevated for prolonged periods of time) and insu-
lin sensitivity (glucose levels immediately decreased upon insu-
lin administration and remained low for prolonged periods of
time) (10, 43). In addition, GPx1 knock-out mice had reduced
islet B-cell mass in pancreatic tissue (42), whereas MR had dif-
ferent abundances of the four distinct types of islet cells.
Although the abnormal glucose regulation may be relevant to
MR adaptation to its specific lifestyle, it could be, at least in part,
due to an abnormal GPx1 function.

Selenium levels in animal tissues vary depending on many
factors, including the requirements of the organism for this
trace element and the diet. Numerous studies have reported on
the role of dietary selenium in human health. For example, sele-
nium deficiency may cause endemic cardiomyopathy (Keshan
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disease), liver degeneration observed in rats and pigs, and white
muscle disease in ruminants and turkeys (23, 44). None of the
selenium deficiency-induced pathologies have been reported
for MR. In this regard, it is particularly interesting that MRs
have never been observed to develop cancer (2). We compared
trace element profiles in control and GPx1 knock-out mice and
found a significant decrease of tissue selenium levels in liver and
kidney. Somewhat similar differences in selenium levels were
observed between mouse and MR. GPx1 is the most abundant
selenoprotein, especially in liver and kidney, and the GPx1
knock-out data suggest that this protein accounts for approxi-
mately half of selenium in these organs.

We also observed significant differences in selenium in
spleen, lungs, and testes (these tissues depend on selenium pro-
vided by SelP). This selenoprotein is the only mammalian pro-
tein that contains multiple Sec residues (31). Previously, we
suggested that the number of Sec residues in SelP might be used
as an indirect genetic marker of selenium utilization (45). In
rodents and primates, the Sec content of SelP is almost twice as
low as in aquatic vertebrates. Comparison of rodent SelPs
shows that C. porcellus and MR SelPs have 7 Sec residues,
which is the lowest number of SelP Sec residues in vertebrates.
MR, porcupine, and C. porcellus are closer to each other and are
more distant from other rodents, such as mice, rats, and rabbits
(46). Our analysis of GPx1 expression suggested a decreased
GPx1 expression in MR and porcupine, and previous research
revealed low GPx1 activity in C. porcellus (47). Overall, these
data suggest a possible loss of GPx1 function in this specific
group of rodents and, as a consequence, a reduced requirement
for selenium by these organisms. It is remarkable that such an
important selenoprotein is compromised in these animals,
which survived for tens of millions of years essentially without
GPx1.
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Figure S1. Quantification of Se in mouse and MR tissues. Se was quantified in XFM scans of similar
areas of mouse and MR tissues. At least 3 representative XFM images were used for each quantification.
Organs in which trace elements were analyzed are shown below each panel.



Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

I =

Homo sapiens

Sus scrofa LCILQASRLEDLRVKLEKEGYSNISYIVVNHQGIASOLKYNMMLKEINVSEHIPVYQQEENQ
Canis familiaris LCILOQASRLEDLRVKLEKEGENISYMVVNHQOGISISOLKYMMLKNINVSEHIPVYQQEENQ
Mus musculus LCLLQASRLEDLRIKLE QG YgNISYIVVNHOGSESOLKERH LKReVSEH IRV YROEERE
Rattus norvegicus LCLLQASRLEDLRIKLE GYFNISYIVVNHQGSPSQLK AHLKIN®VSDH TRV YIROBEIO]

Heterocephalus glaber

Homo sapiens AT DVIWT LLNGEKDDFLIYDRCGRLVYHLGLPESFLTFPYVEEAIKIAYCEIKCGNCSLTTL
Sus scrofa 121 TDVWTLLNGNKDDFLIYDRCG!LVYHLGLPYSFLTFPYVEEAIK YCENKCGNCSLKTL
Canis familiaris 121 TDVWTLLNGEKDDFLIYDRCGRLVYHLGLPYSFLTFPYVEEAIK‘AYCEEKCGNCSLTEL
Mus musculus 121 IDVWTLLNGNKDDFLIYDRCGRLVYHLGLPYSFLTFPYVEEAIKIAYCEERCGNCNLTSL

Rattus norvegicus 121 TDVWTLLNGNKDDFLIYDRCGRLVYHLGLPYSFLTFPYVEEAIKIAYCEKRCGNCSETSL
Heterocephalus glaber 121 SIMBNENISRIBINMBSDINCGIEIINASS:INCINDFSIPNCINDAINNNNGVN (O HH(SIC)\[SISHF- e

Homo sapiens 181 V]

Sus scrofa 181 Kinnejgeley YLATEEKTTEAPQPHHHHDHHHHRHHHHHHGHQH————LG LSEf
Canis familiaris SN D= B c <MV SEETVEFTTEA ple pRiziinE i sl H HEIHEH HGELSENQQP
Mus musculus AR D= D FCKN VA TINYK TR EERN NRGEOEE - - - -MeERK pigaNele):le
Rattus norvegicus 181 I I

Heterocephalus glaber 181

Homo sapiens 231
Sus scrofa 237
Canis familiaris 240
Mus musculus 231
Rattus norvegicus 231

Heterocephalus glaber 229

Homo sapiens 285

Sus scrofa VLT 1. CKGPRYSEAMRSUCEHCRAL I FEK TS AN TUQCEENLPSLC SUQGLMAEENVIESUQ
Canis familiaris VAWM [ CKLPRDSELAPS SUCHHERHLIFEKTGSAI TUQCIERLPSLC SUQGLHAEENVIESUQ
Mus musculus 285 APSSCCCHCRHLIFEKEGSAIMUQCHENLPSLCSUQGLEAEERVAESCQ
Rattus norvegicus 290 AJjSSCCCHCRHLIFEKSGSAITUQCAENLPSLCSUQGLEAEERVIESCO

Heterocephalus glaber 286

Homo sapiens 345

Sus scrofa 354 SQOLIPIEASIBNUSUKNKIXERUKUP SN
Canis familiaris 357 ASQOLIP TEASINU S UK KK MUK Ui
Mus musculus 345 PINPMEANPNUS IBNORIRKUK
Rattus norvegicus 350 g

Heterocephalus glaber 346

Figure S2. Protein sequence alignment of SelP. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (AAH58919.1); Canis familiaris
(NP_001108590.1); Sus scrofa (NP_001128295.1); Mus musculus (AAH01991.2); and Rattus norvegicus
(NP_062065.2). Selenocysteine residues are highlighted in red, and cysteines in the positions corresponding
to selenocysteine are shown in blue.



Homo sapiens
Sus scrofa
Canis familiaris

Mus musculus YAFSARPLEGGEPMSLGSLRGKVLLIENVASLUGTTERDYT
Rattus norvegicus YAFSARPLAREEPMSLGSLRGKVLLIENVASLUGTT§RDYT
Cavia porcellus YEFSARPLAGGE PEMGS LRGKVLLIENVASLUGTTVRDET
Heterocephalus glaber YSFSARPLI§GGEPHSLGSLRGKVLLIENVASLUGTTVRDET
Homo sapiens OMNELORRLGPRGLVVLGFPCNQFGHOENAKNEEILNSLKYVRPGGGFEPNFMLFEKCE
Sus scrofa QMNELQRRLGPRGLVVLGFPCNQFGHQENAKNEILNLKYVRPGGGFEPNF&LFEKCEV
Canis familiaris OMNELORRLGPRGLVVLGEFPCNQFGHOENAKNEEILNSLKYVRPGGGFEPNFTLFEKCEY

Mus musculus IMNDLOKRLGPRGLVVLGEFPCNQFGHQENGKNEEILNSLKYVRPGGGFEPNFTLFEKCEYV]
Rattus norvegicus JIIMNDLOKRLGPRGLVVLGEFPCNQFGHQENGKNEE ILNSLKYVRPGGGFEPNFTLFEKCEVY
Cavia porcellus

Heterocephalus glaber

Homo sapiens T

Sus scrofa NAHPLF‘FLREALPEPSDD‘TALMTDPKFITWSPVCRNDIAWNFEKFLVGPDGVPL'
Canis familiaris QAHPLF‘FLREELPAPSDDTTALMTDPKFITWSPVCRNDVAWNFEKFLVGPDGVPVR
Mus musculus NGRIKAHPLEFTFEL ALPEPSDDPTALMTDPKYIIWSPVCRNDIAWNFEKFLVGPDGVPV'
Rattus norvegicus NGRKAHPLEFTFEFL ALPAPSDDPTALMTDPKYIIWSPVHRNDI WNEFEKFLVGPDGVPVR
Cavia porcellus NGAKAHPLFTFLREALPAPSDDPEALMTDPKFIIWSPVCRND WNFEKFLVGPDGVPVR
Heterocephalus glaber NGAKAHPLFTFLREALPAPSDEPTALMTDPKFIIWSPVCRNDVAWNFEKFLVGPDGVPVR
Homo sapiens RYSRRE@TIDIEPDIEALLSQGIZS[@®A]

Sus scrofa RYSRRFMTIDIEPDIEALLSQINESSA

Canis familiaris RYSRREETIDIEPDIEALLSQGIZS[E®A]

Mus musculus RYSRRF'TIDIEPDIEELLSQQSGNS

Rattus norvegicus RYTRRF'TIDIEPDIEALLSKQSENP

Cavia porcellus RYSRRFPTIDIEPDIEALLSQGSGPﬂ

Heterocephalus glaber RYSRREFTIDIEPDIIMALLE

Figure S3. Protein sequence alignment of GPx1. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_000572.2); Sus scrofa (NP_999366.1);
Canis familiaris (NP_001108591); Rattus norvegicus (AAB95647.2), Mus musculus (CAA27558) and
Cavia porcellus (AAKN02012894.1). The selenocysteine residue is highlighted in red and indicated by an
asterisk. The early stop codon in the MR sequence is also highlighted in red.



Homo sapiens EKVDENTFRGRAVLIENVASLUGTTTRDFTQLNELQ]

Sus scrofa EKVDENTFRGRAVLIENVASLUGTTTRDFTQLNELQ
Canis familiaris EKVDENTFRGRAVLIENVASLUGTTTRDFTQLNELQ
Oryctolagus cuniculus MANAE sl YEs 2By L Bcer BV ENESER CREEL 1 ENVAS LUGT TR DETOMNELQ)
Mus musculus MAYIAKSFYDLSA EKEDFNTFRGRAVLIENVASLUGTTTRDYJOLNELQ
Rattus norvegicus EKEDFNTFRGRAVLIENVASLUGTTTRDYTQLNELQ]
Heterocephalus glaber L, DGREKVDFNTFRGREVLIENVASLUGTTTRDF TQLNELQ)
Homo sapiens CREQPRRLVVLGFPCNQFGHOENCONEEILNSLKYVRPGGGYQPTFTLYMQKCEVNGQNEH
Sus scrofa CREQPRRLVVLGFPCNQFGHQENCQNEEILNSLKYVRPGGGFQPTFTLHOKCHVNGONEH
Canis familiaris CREQPRRLVVLGFPCNQFGHOENCONEEILNSLKYVRPGGGFQPTFTLMQOKCEVNGQNEH
Oryctolagus cuniculus E

Mus musculus CREQPRRLVVLGFPCNQFGHOENCONEEILNSLKYVRPGGGEQPTFSLMOKCBVNGONEH
Rattus norvegicus CREQPRRLVVLGFPCNQFGHQENCQNEEILNSLKYVRPGGGFQPTFSLOKCHVNGON@H
Heterocephalus glaber CREQPRRLVVLGFPCNQFGHOENCONEEILNSLKYVRPGEGFQPTFTLYQKCEVNGONEH
Homo sapiens ARFW-YFAYLKDKLPYPYDDPFSLMTDPKLI INSPVRRS DVBWNFEKFLIGPEGEPFRRY SRTE
Sus scrofa ARFW - FAYLKDKLPYPYDDPFSLMTDPKGI IWSPVRRSDVSWNFEKFLIGPEGEPFRRY SRTE
Canis familiaris SRFW - P2 YLKDKLPYPYDDP@SLMTDPKII IWSPVRRS DVIWNFEKFLIGPEGE PFRRY SRTE
Oryctolagus cuniculus 121 [gigilsio Al Pl Sieeia T AWMYUENIZN i TR/ClaY CIANIBRIY S iyleail Vekz vle vz v NS Rig
Mus musculus ARFW - A Y LKDKLPYPYDDPFSLMTDPKLI IWSPVRRSDVSWNFEKFLIGPEGE PFRRY SREF
Rattus norvegicus ARFW - FAYLKDKLPYPYDDPFSLMTDPKLI IWSPVRRS DVSWNFEKFLIGPEGE PFRRY SRTE

Heterocephalus glaber 100 |RVAFNEGNEENG4DIDIISHNVUNDIEME " INSI2AVAN NoVEAWNFEKFLEGPBGlPERR Y SREF|

Homo sapiens ISP T INTEPDIKRLLKVAT gt
Sus scrofa IR P T INIEPDIKRLLKVAT gk
Canis familiaris IWE/P T INTEPDIKRLLKVAT gl
Mus musculus IR T TNTEPDIKRLLKVAT gl
Oryctolagus cuniculus 181 PTIEIEPDI@LLG

Rattus norvegicus IR0 T INIEPDIKRLLKVAT ik
Heterocephalus glaber 160

Figure S4. Protein sequence alignment of GPx2. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_002074.2); Sus scrofa (NP_001108608.1);
Canis familiaris (NP_001108607.1); Oryctolagus cuniculus (NP_001078913.1); Rattus norvegicus
(NP_899653.2) and Mus musculus (NP_109602.2). The MR sequence is incomplete. The selenocysteine
residue is highlighted in red and indicated by an asterisk.



Homo sapiens

Homo sapiens

Mus musculus

Rattus norvegicus
Cavia porcellus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Mus musculus

Rattus norvegicus
Cavia porcellus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Mus musculus

Rattus norvegicus
Cavia porcellus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Mus musculus

Rattus norvegicus
Cavia porcellus
Heterocephalus glaber

MSWGRLORLLKPALLCGALAAPGLAGTMCASRDDWRCARSMHEFSAKDI DGHMVINLDKYR
MSEFRLGRLLK PILLCGRLAPGLAGTMCASRDDWRCARSMHE FSAKDI DGHMVYLDK YR
MSWGRLSRLLKPALLCGALAAPGLAGTMCASRDDWRCARSMHEFSAKDIDGHMVCLDKYR

MSWGRLSRLLKPALLCGALAPGLAGTMCASRDDWRCARSMHEFSAKDI DGHMVCLDKYR
CASRDDWRCARSMHEFJMKDIDGHMVCLDKYR
SRLLKPALLCGALJAPGLAGTMCASRDDWREABISMHEFSAKDI DGHMVELDKY

GEVCIVTNVASQUGKTEVNYTQLVDLHARYAECGLRILAFPCNQFGKQOEPGSNI#EIKEFA
GYVCIVTNVASQUGKTEVNYTQLVDLHARYAECGLRILAFPCNQFGRQEPGSRAEIKEFA
GEVCIVTNVASQUGKTDVNYTQLVDLHARYAECGLRILAFPCNQFGRQEPGSNQEIKEFA
G@VCIVTNVASQUGKTBVNYTQLVDLHARYAECGLRILAFPCNQFGRQEPGSNQEIKEFA
GEVCIVTNVASQUGKTDVNYTQLVDLHARYAECGLRILAFPCNQFGRQEPGSNQEIKEF‘
GEVCIVTNVASQUGKTEVNYTQOWVDLHARYAECGLEILAFPCNQFGKQEPGENIRENKIEEA

AGYNVKEDMESKICVNGDDAHPLWKWMKEQPKGKGELGNAIKWNEFTKFLIDKNGCVVKRY]
AGYNVKEFDMESKICVNGDDAHPLWKWMKVQPKGRGMLGNAIKWNEFTKEFLIDKNGCVVKRY]
AGYNVKEDMYSKICVNGDDAHPLWKWMKVQPKGRGMLGNAIKWNETKEFLIDKNGCVVKRY|
AGYNVREDMYSKICVNGDDAHPLWKWMKVQPKGRGMLGNAIKWNETKEFLIDKNGCVVKRY]
AGYNVREDMYSKICVNGDDAHPLWKWMKVQPKGRGMLGNAIKWNEFTKFLIDKNGCVVKRY]
AGYNVKEDMESKICVNGDDAHPLWKWMKVQPKGKGMLGNAIKWNFTKFLIDKNGCVVKRY]

GPMEEPQVIEKDLPCYI
GPMEEPQVIEKDLPCYI
GPMEEPQVIEKDLPCYI
GPMEEPQVIEKDLPCYI

Figure S5. Protein sequence alignment of GPx4. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_002076.2); Sus scrofa (NP_999572.1);
Mus musculus (NP_032188.3); Rattus norvegicus (AAC52503.2); and Cavia porcellus (BAA92142.1). MR
and C. porcellus sequences are incomplete. The selenocysteine residue is highlighted in red and indicated
by an asterisk.



Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

|
MGVAVRVVYCGAUGYKEKYLOLKIMKLEDEEPG LDICGEGTPQVTGFFEV&VAGKLVHSK
MALAVRVVYCGAUGYKSKYLQLKKKLEDEFPGCLDICGEGTPQETGFFEVTVAGKLVHSK
MALAVRVVYCGAUGYKIFKY LOLKIKLEBIEFPGCLDICGEGTPQVTGFFEVTVAGKLVHSK
MALAVRVVYCGAUGYKPKYLQLKEKLEA

EFPGCLDICGEGTPQVTGFFEVTVAGKLVHSK]

KKGDGYVDTESKEMKLVAATKAALAQGH
KEGDGYVDTESKFKLVAAIKAALAQGH
KRGDGYVDTESKEMRLVAATKHNALAQGH
KRGDGYVDTESKFRKLVI§A TKAALAQES)

KL\\;EQIKAALAQ

KRGDGYVDTESKE]
KIEGDGEVDTINSKFIRKLVAATKAALAQG

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Figure S6. Protein sequence alignment of SelW. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_003000.1); Sus scrofa (NP_999142.1);
Canis familiaris (NP_001108484.1); Mus musculus (NP_033182.1); and Rattus norvegicus (NP_037159.3).

The selenocysteine residue is highlighted in red and indicated by an asterisk.

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris
Mus musculus
Rattus norvegicus

Heterocephalus glaber 61 ADRON: IR EECERIRpN-~ K HESE - MR e Sy os (o -
Homo sapiens 121
Sus scrofa 121
Canis familiaris 121
Mus musculus 115
Rattus norvegicus 115
Heterocephalus glaber 121 [P

Figure S7. Protein sequence alignment of SelH. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_734467.1); Sus scrofa (NP_001171877.1);

I = = WS S S R

61
61
61
55
55

*
AP RGRKRKAZ AAGY QAT KREK LA CRENF EATVY T EHCTSURVY GRNAAALSOALR )
B GRrR iy e W R Ml o A T T SURVY CRINARATS0R TR
R GRRRIA = A7 g KR g RN =, T T T SURVY GRNARALORLR]
0 R R - R - DN e (RN 0
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EAPELPVINWWNPEKPRRGSFEVTLLRPDGSSIMELWTGIKKGPPRKLKFPEPQEVVEELKKY

EAPELPVIRVNPEKPRRGSFEVTLMRPDGS SIELWTGIKKGPPRKLKFPEPQEVVEELKKY
Fl§PE L PVEIVNERIKPRRGS FEVT LLRPDGS S LWTGTKKGP PRKLKF PE POEV VT Kol
EAPELP VgV K PRRGS FEVTL LGOI LW TG IR KGE PRKLKF PEPQEVVEELKKY
2P oS8 B PRRGS FEVTL LR P D SlF LW TG TRKGE PRKLKF PEPQENVEELRKY

Mus musculus (NP_001028338.1); Rattus norvegicus (NP_001108411.1); and Canis familiaris
(NP_001157978.1). The selenocysteine residue is highlighted in red and indicated by an asterisk.



Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus _scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

MAAGEEGLIYPARGLRLLLATIYLOAVSAFGAEF SSEACRELGFSSNLLCS SCDLLGQFNL
MAABPGGWLGPALGLRLLLATILOMIVSAFGAEFSSEJCRELGFSSNLLCESCDLLGOFREL
MARGPGGRLGPALRFLRLLLANYLOAVSHFGAEFSSEACRELGFSSNLLCSSCDLLGQFNL
MAAGGGWLEPALGLRLLLAT‘ QAVS:EGAEF@SEACRELGFSSNLLCSSCDLLGQFNL

QAVSAMGAEFSSEACRELGFSSNLLCSSCDLLGQFNL

LOLDPDCRGCCQEEAQFETKKLYAGAILEVCGUKLGREFPQVQAFVRSDKPKLFRGLQIKY]
LOLDPDCRGCCQEEAQFETKKLYAGAILEVCGUKLGRFPQVQAFVRSDKPKLEFRGLQIKY]
LQLDPDCRECCQEEAQFETKKLYAGAILEVCGUKLGRFPQVQAFVRSDKPKLFRGLQIKY

LELDPECRGCCQEEAQFETKKLYAGAILEVCGUKLGRFPQVQAFVRSDKPKLFRGLQIKY
L

LDPYCRGCCQEEAQFETKKLYAGAILEVCGUKLGRFPQVQAFVRSDKPKLFRGLQIKY]
LOLDPDCRGCCQEEAQFETKKLYAGAILEVCGUKLGRFPQVQAFVRSDKPKLEFRGLQIKY]

VRGSDPVLKLLDDNGNIAEELSILKWNTDSVEEFLSEKLERI
VRGSDPVLKLLDDNGNIAEELSILKWNTDSVEEFLSEKL@R

VRGSDPVLKLLDDNGNIAEELSILKWNTDSVEEFLSEKLERI
VRGSDPVLKLLDDNGNIAEELSILKWNTDSVEEFLSEKLERI
VRGSDPVLKLLDDNGNIAEELSILKWNTDSVEEFLSEKLERI
VRGSDPVLKLLDDNGNIAEELSILKWNTDSVEEFLSEKLERI

Figure S8. Protein sequence alignment of the 15 kDa selenoprotein. The following sequences were used
for alignment construction (Genbank accession numbers): Homo sapiens (NP_004252.2); Sus scrofa
(NP_001078912.1); Rattus norvegicus (NP_579831.2); Mus musculus (Q9ERR?7.3); and Canis familiaris
(NP_001108232.1). The selenocysteine residue is highlighted in red and indicated by an asterisk.



Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Figure S9. Protein sequence alignment of MsrB1. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_057416.1); Sus scrofa (NP_001090929.1);

e

MSEFCSFFGGEVEFQNHFEPGVYVCAKCGYELFSSRSKYAHSSPWPAFTETIHADSVAKINPE
MSFCSFFGGEVFQNHFEPGVYVCAKCGYELFSSHSKYAHSSPWPAFTETIHADSVAK PE]|
MSFCSFFGGEVFQNHFEPGVYVCAKCGHELFSSRSKYAHSSPWPAFTETIHADSVAK PE|

MSFCSFFGGEVFQNHFEPGVYVCAKCEYELFSSHSKYAHSSPWPAFTETIHADSVEKCPE

ENREFEALKVSCGKCGNGLGHEFLNDGPKGOSRFUIFSSSLKF|PKGKET SASQGH]
HNRPEALKVSCGRCGNGLGHEFLNDGPKRGQSRFUIFSSSLKF I PKGEEESESOCH
RNEPEALKVSCGKCGNGLGHEFLNDGPKEGRSRFUIFSSSLKE I PKGKET SES O

IKNRPEALKVSCGKCGNGLGHEFLNDGPKRGQSRFUIFSSSLKEIPKGKERNZASQG)
[RNRPEALKVSCGRCGNGLGHEFLNDGPKOGOSRFUIFSSSLKFIPKIRKETSASQGH

IKNRPEALKVSCGKCGNGLGHEFLNDGPKRGQSRFUIFSS SLKFVPKGKEE?S QGH

Canis familiaris (NP_001108221.1); Mus musculus (AAI41147.1); and Rattus norvegicus
(NP_001037750.2). The selenocysteine residue is highlighted in red and indicated by an asterisk.



Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Figure S10. Protein sequence alignment of SelT. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_057359.2); Sus scrofa (NP_001156880.1);

MRLLLLLLVAASAMVRSEASANLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYMR
MRLLLLELVAASAVVRSDASANMGGVPGKRLKMQYATGPLLKFQICVSUGYRRVFEEYM'
MRELLVLLVAASAVIRSDASANLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYM'
MRLLLLLLVAASAVVRSEASANLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYMR
MRLLLLLLVAASAVVRSEASANLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYMR

AASAVVRSEASGNLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYMR

VISQRYPDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFFGMQAPSIWQW
VISOQRYPDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFEFGMQAPSIWQW]
VISQRYPDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFFGMQAPSIWQW]
VISOQRYPDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFEFGMQAPSIWQW]
VISQRYPDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFFGMQAPSIWQW]
VISORYPDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFEFGMQAPSIWQW]

GOQENKVYACMMVEFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQOLVQILDNE|
GOQENKVYACMMVEFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQOLVQILDNE|
GOENKVYACMMVEFFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQLVQILDNE]
GOQENKVYACMMVEFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQLVQILDNE|
GOENKVYACMMVEFFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQLVQILDNE]
GOENKVYACMMVEFFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQOLVQILDNE|

MKLNVHMDSIPHHRS
MKLNVHMDS IPHHRS
MKLNVHMDSIPHHRS
MKLNVHMDS IPHHRS
MKLNVHMDSIPHHRS
MKLNVHMDSIPHHRS

Canis familiaris (NP_001157959.1); Mus musculus (NP_001035486.2); and Rattus norvegicus
(NP_001014275.2). The selenocysteine residue is highlighted in red and indicated by an asterisk.



MVYISNGQVLDSRSQSPWRLSLITDFFWGIAEFVVLEFFKTLLOQDVKKR

MVYISNGQELDSRSQSPWRLSEITDFFWGIAEFVVLFFRTLLQQDVKKRRGYGGSSDSRY

MVYISNGQVLDSRSQSPWRLSLITDFFWGIAEFVVLFFKTLLOQOQDVKKRRGYGNSSDSRY]

MVYISNGQVLDSEEQSPWRVSELTDFFWGIAEFVVEFFKTLLQQDVKKRRGYGESSDSRY
F] ] G

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Chinchilla lanigera
Heterocephalus glaber

MVYISNGQVLDSRNOSPWRLSHITDFFWGIAEFVVFFKTLLOODVKKRRGYGES SDSRY]
MVYISNGQVLDSRSQSPWRLSLITDFFWGIAEFVVLEFFKTLLOQODVKKERGYRNSSDSRY]
MVYISNGQVLDSRSQSPWRLSLITDFFWGIAEFVVLFFKTLLOODVKKERGYRNS SDSRY]

e =

Homo sapiens DDGRGPPGNPPRRMGRINHLRGPSPPPMAGGUGR
Sus scrofa DDGRGPPGNPPRRMGRINHLRGPNPPPMAGGUG'
Canis familiaris DDGRGPPGNPPRRMGRINHLRGPSPPPMAGGUGR
Mus musculus DDGRGPPGNPPRRMGRIBHLRGPSPPPMAGGUGR
Rattus norvegicus DDGRGPPGNPPRRMGRIBHLRGPSPPPMAGGUGR
Chinchilla lanigera DDGRGPPGNPPRRMGRISHLEIGPSPPPMAGGUGR

Heterocephalus glaber DDGRGPPGNPPRRMGRINHL@GPSPPPMEGGGUGR

Figure S11. Protein sequence alignment of SelK. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_067060.2); Sus scrofa (NP_001038018.2);
Canis familiaris (NP_001108350.1); Mus musculus (NP_064363.2); Rattus norvegicus (NP_997472.2); and
Chinchilla lanigera (AAR26540.1). The selenocysteine residue is highlighted in red and indicated by an
asterisk.
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Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Figure S12. Protein sequence alignment of SelS. The following sequences were used for alignment

ROEENLSARPALETEGLREFLHWTVGSLLATYGWY IMEFSCILLYVVFQKLSRRLRALRQ
ME@DGDQLSARPALETEGLRFLHVTVGSLLATYGWYIVFECILLYVVFQKLSTRLRALRQ
MERDEOOT. SARPALETEGLRYLHVTIVGSLLATYGWY IMFSCILLYVVFQKLSIRLRALRQ]
MDRDEEJALSARPALETESLRFLHVTIVGSLLASYGWY IHFSCILLYEVHMORLSIMRLRALRQ]
MDREEFIFL.SARPALETESLRFLHVTIVGSLLASYGWY IHFSCMLLYEVHMOKLSIMRLRALRQ]

EIMLSARPALETEGLRFLHVTVGSLLATYGWYIEFSCILLY]

ROLDINAINAAME PDVVVKRQEALAAARLKMOEELNAQVEKHKEKLEKQLEEEKRRQKIEMWD)
RHLDG"AALEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLRQLEEEKRRQKIEEWD
RQLD'AEAAVEPDVVVKRQEALAAARLKMQEELNAQVEKHKEKLRQLEE@KRRQKIEMWD
ROLDGAEIWI.EPDVVVKROQEALAAARLRMOEBLNAQVEKHKEKLRQLEEEKRRQKIEMWD)

OEEDSPGPSTSSVIPKRKSDKKPLRGGGYNPLEGEGGGACSWRPEG

EEDSPGPSTSSVEPKRKEDRKPLRGGGYNPLEGEGGGACSWREG

RPQEEDPGPSTSSVI PKKSDKKPLRGGGYNPLTGEGGGCSWRPG
€ T

BIERPOEEDEPGPSTSSVIPKEKSDKKPLRGGGYNPLAGEGGGICSWRPG

RRGPSSGGUG

construction (Genbank accession numbers): Canis familiaris (NP_001108229.1); Homo sapiens
(NP_060915.2); Mus musculus (NP_077759.3); Rattus norvegicus (NP_775143.2); and Sus scrofa

(NP_001157585.1). The MR sequence is incomplete. The selenocysteine residue is highlighted in red and

indicated by an asterisk.
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Homo sapiens

Sus scrofa

Canis familiaris
Oryctolagus cuniculus
Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris
Oryctolagus cuniculus
Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris
Oryctolagus cuniculus
Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris
Oryctolagus cuniculus
Mus musculus

Rattus norvegicus
Heterocephalus glaber

MELPLPGLWLKRLWVLEQVALHVXMGKVLMTLFPGRVKQDILA

MGLP PMLWLRRLWVLLQVAVQVAVGKVELELFPERVKQ;IVA

MGLP) PGLWLKRLWVLVQVAVEVAVGKVLMTLFPERVKQNILAMGQKTGIAQNPNFAQDS
BRLovVABEVAVGKVLMTLFPERVKOF I LAMGOK T GMARN PREINZDN

MG WL KRYTFT OVAREVARGKVLMT LF PERVKON I LAMGOKTGMINRN PREENEDN|

QYFWFVLKVRWQRLEDKTEEGGLAPNCPVVELSGQRCHIWDFMQGNRPLVLN
WﬂPTEYSIQYFWFVLKV@WQRLEDRTEPGGLAPNCPVVRLSGQRCNIWDFMQGNRPLVLN
WIPTFFSTQYFWFVLKVRWQRLEDHTEPGGLAPNCSVVRLSGQ@CEVWDFMEGNRPLVLN
WVPTFFSIQYFWFVLKVRWQRLEDRHEFGGLAPNCTVVELSGQKCNIWDFIQGSRPLVLN
WMPTEESHOYFWEVLKVRWORLEDRIEMGGLAPNCEVVRLSGORCNMWDEFEQGSRPLVLN
WIPTEEFSIOYFWEELKVRWQORLED]

FGSCTUPSFMFKFDQFKRLIEDFESIADFLYIY IEEAHASDGWAFKNNMDIRNHENLODR
FGSCTUPSFEFKFDQFKRLIEDFESIADFLIIY IEEAHASDGWAFKNNVDIRNHENLODR
FGSCTUPSFLFKFDQFKRLIEDF@SHADFLIIYIEEAHASDGWAFKNN VI REHEELODR

FGSCTUPSFLSKFDQFKRLI@DFSSIADFLIIYIEEAHASDGWAFKNNVDIKNHRNLQD'
FGSCTUPSFLMKFDQFKRLMBDFIASMADFLITYIEEAHATDGWAFKNNVDIROHRMLOER
FGSCTUPSFLIKFDQFKRLMBDFINSIADFLIIYIEEAHATDGWAFKNNVDIROHRELODR
FGSCTUPSFMFKFDQFKRLIEDFEIADFLITIYIEEAHASDGWAFKNNMDIROHRNLODR

L®AAHLLLARSPQCPVVVDTMONQSSQLYAALPERLYEMOEGRILYKGKEGPWNYNPEE
LRAAHLLLBRSPOCPVVVDTMENOSSRLYAALPERLYVLOBGRI LYKGKEGPWNYBIPEE
L@AARLLLBRAPECPVVVDTMENOS SO YAALPERLEVLOEGRI LYKGKEGPWN YRIPEE
LRA LLLARSPQCPVVVDTMONQSSQLYAAL PERLY\/’L.GRI LYKGEGPWNYNPEE

129:\Valbaled C T PPGHMPOF
HIURNIREOPGOTPLL

Figure S13. Protein sequence alignment of DI1. The following sequences were used for alignment
construction (Genbank accession numbers): Oryctolagus cuniculus (NP_001093428.1); Homo sapiens
(NP_000783.2); Sus scrofa (NP_001001627.1); Mus musculus (Q61153.3); Rattus norvegicus
(NP_067685.5); and Canis familiaris (NP_001007127.1). The selenocysteine residue is highlighted in red
and indicated by an asterisk.
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Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens
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Figure S14. Protein sequence alignment of SelM. The following sequences were used for alignment
construction (Genbank accession numbers): Homo sapiens (NP_536355.1); Mus musculus (NP_444497.1);

1S PEL‘LLLLLAALVAPATAETAYRPDWNRLSGLTRARVETCGGUQLNRLKEVKAF

(HI PP LS LEARBARE:VNIA AT TERPDWNRLOGLARARVETCGGUQLNRLKEVKAF
(RIFP PPPLLLLLAALEA! TTERPDWNRLHGLARARVETCGGUQLNRLKEVKAF
IS SPPELLLLLAALVAPATSTTNYRPDWNRLRGLARGRVETCGGUQLNRLKEVKAF
IN] SMPPPLLLLLAALVAPATSMTTYRPDWNRLRGLARGRVETCGGUQLNRLKEVKAF

TCGGUQLNRLKEVKAF

TODIPRYHNLVMKHLPGADPELVLLGRRYEELERIPLSEMTREEINALVQELGEFYRKAAP
TODIPLYHNLVMKHLPGADPELVLLGEREEELERIPLSPMTREEINALVQELGEFYRKAAP
TQDIPLYHNLVMKHLPGADPELVLLGHHYEELERIPLSEMTREEINELVQELGFYRKAAP
TEDI LYHNLVMKHLPGADPELVLLSRNY@GELERIPLSEMTRBEINALVQELGEFYRKNAP
TODI@LYHNLVMKHLPGADPELVLLERNYOELERIPLSOMTRBE INALVOQELGEFYRKSAP
TIDIPLYHNLVMKHLPGADPELVLLNMRYEELERIPLSIEMTREEINALVQELGEYRK\WYAL

DAQVPPEYMWAPAKPPEENS DiEIADL
EREvPrEYMEAAPARPAEEABDRADI

‘VPPEYL'APARPEEGA DRADL
EAQVPPEYLWAPAKPPEEASEIZISDI,

EAEVPPEYLWAPAKPPEDASDRADL
DAQVPPEYLWAPAKIAP

Rattus norvegicus (NP_001108485.1); Canis familiaris (NP_001108486.1); and Sus scrofa

(NP_001155120.1). The MR sequence is incomplete. The selenocysteine residue is highlighted in red and

indicated by an asterisk.
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Homo sapiens
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Canis familiaris
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Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus
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Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus
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Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Homo sapiens

Sus scrofa

Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber

Figure S15. Protein sequence alignment of SPS2. The following sequences were used for alignment

[ R e

=

118
121
117
121
120

44

178
181
177
181
180

73

238
241
237
241
240
133

298
301
297
301
300
193

358
361
357
361
360
253

418
421
417
421
420
313

MAEARA TGASGERVAARNIGERES SGPAGLELGRSFSNYRPFEPQALGLSPSWRLTGFSGM
MAEAAATGAGENMAANINABE GESGPAGLS LGREF S€YRPFEPQALGLSPSWRLTGFSGM
MAEAAATGARGEWNA ALNICEEEES A G LS LGREF SEYRPFEPQALGLS PSWRLTGFSGM

MAEAAANGARGEWMA ARWARE G SWGPAGIISIMGRS FSNYRPFE PO GIS PSWRLTEFSGM
MAEAAANCEARGERMAARWARNEGSGPAGRSIGRSFSNYRPFE POMLGgS PSWRL TR FSGM

*
KGDGCKV QORI LKLLAGLTREVRP PLGFGLVGGOREAROEHGL FQEA G PR TF PLG
[KGUGCKVPOETLLKLLAGLTR PVRPPMGRGLYGCREEAROEAGT ERARIPRIPTFEILG T
KGUGCKVEQETLLKLLACLIR VR PLCHCL CRlgr e A dor oL oler e Ne T e C ]
KGUGCKVPQETLLKLLINGLTRPINHOP P LIMSIG LV GGQE ERYOE GG LIEMNRIEG PRI PS LI T

KGUGCKVPQETLLKLLIGLTRPINHOP PLIMSIG LV GGQE ERYOE GG LiMNRI=G PRI PS LI T

MDSCVIPLRHGGLSLVQTTDFFYPLVEDPYMMGRIACANVLSDLYAMGITECDNMLML
LDSCVIPLRHGGLSLVQTTDFFYPLVEDPYMMGRIACANVLSDLYAMGITECDNMLML
MDSCVIPLRHGGLSLVQTTDFEFYPLVEDPYMMGRIACANVLSDLYAMGITECDNMLML
MDSCVIPLRHGGLSLVQTTDFEFYPLVEDPYMMGRIACANVLSDLYAMGITECDNMLML
MDSCVIPLRHGGLSLVQTTDFEFYPLVEDPYMMGRIACANVLSDLYAMGITECDNMLML

VSO BECERERI TP LI IKGTROAREEGOTAY TGGOTVNPW I TGGVATVVCOPNE LT
SVS QoS JEREKV TP LITKGERDAREEGGTAY TGGOTVVNFWI 1 1GGVATVVCORNE LT
V5055 g REKV TPLITKGT ROAREEGGTAY TGGOTVVNPWI T TGGVATVVCORNE T
57S OB B EERERV TP LITKGF RDAREEGGTAY TGGQ TV VNP 1 TGGVATVVCOPNEE T

MPDSAVVGDVLVLTKPLGTQVAVNAHQWLDNPERWNKMKMVVSREEVELAYQEAMEFNMA

PDSAVVGDVLVLTKPLGTQVAVNAHQWLDNPERWNKIKMVVSREEVELAYQEAMFNMA
PDSAVVGDVLVLTKPLGTQVAVNAHQWLDNPERWNKINMVVSREEVELAYQEAMFNMA
MPDSAVVGDVLVLTKPLGTQVARWNAHQWLDNPEKWNKIKMVVSREEVELAYQEAMEFNMA

MPDSAVVGDVLVLTKPLGTQVARNAHQWLDNPEKWNKIKMVVSREEVELAYQEAMEFNMAT)
MPDSAVVGDVLVLTKPLGTQVAVNAHQWLDNPERWDEEN VVSREEVELAYQEAMENMAT

=1 L= =1 L=

LNRTAAGLMHTFNAHAATDITGFGILGHSONLAKQQRNEVSFVIHNLPITAKMAAMSKA

NRTAAGLMHTFNAHAATDITGFGILGHSQONLAKQQORNEVSEFVIHNLPIIAKMAATISKA

0]

||
0]

NRTAAGLMHTFNAHAATDITGFGILGHSONLAKQQORNEVSFVIHNLPIIAKMAATISKA
NRTAAGLMHTFNAHAATDITGFGILGHSQONLAKQQOKNEVSEFVIHNLPITIAKMAATISKA
NRTAASJLMHTFNAHAATDITGFGILGHSQONLAKQOKNEVSFVIHNLPIIAKMAATISKA
NRTAAGLMHTFNAHAATDITGFGILGHSQONLAKQORNEVSFVIHNLPIIAKMAATISKA

=
2

(0]

|!
0]

[9)

REFGLLOQGTSAETSGGLLICLPREQAARFCSEIKSSKYGEGHQAWIVGIVEKGNRTARI
REFGLLOQGTSAETSGGLLICLPREQAARFCSEIKSSKYGEGHQAWIVGIVEKGNRTARI
REFGLLOQGTSAETSGGLLICLPREQAARFCSEIKSSKYGEGHQAWIVGIVEKGNRTARI
REFGLLOGTSAETSGGLLICLPREQAARFCSEIKSSKYGEGHQAWIVGIVEKGNRTART
RFGLLOGTSAETSGGLLICLPREQAARFCSEIKSSKYGEGHQAWIVGIVEKGNRTART
RFGLLOGTSAETSGGLLICLPREQAARFCSEIKSSKYGEGHQAWIVGIVEKGNRTARII

KPRV LEVLPRGAN ML A PDESNASSE PSS

KPRV IEVLPRGUNAASEINAT APENSEASSEPSHH
[DKPRVIEVLPRGATAREINA T APDNSNASSEPSS
DKPRVIEVTPRGASAGANEAPDNSNARSEPSS
PKPRVIEVLPRGASA SR PN SN AR PSS
DR -1 DV O O

-

|||||
=1 IS IS

[9)
—

[9)

i

[}

construction (Genbank accession numbers): Canis familiaris (NP_001108208.1); Homo sapiens

(NP_036380.2); Sus scrofa (NP_001087204.1); Rattus norvegicus (NP_001073358.2); and Mus musculus
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(NP_033292.2). The naked mole rat sequence is incomplete. The selenocysteine residue is highlighted in

red and indicated by an asterisk.
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Sus_scrofa
Oryctolagus cuniculus
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Homo_ sapiens
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Heterocephalus glaber
Homo_ sapiens

Sus_scrofa
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Heterocephalus glaber
Homo_ sapiens

Sus_scrofa
Oryctolagus cuniculus
Canis familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber
Homo sapiens

Sus scrofa
Oryctolagus cuniculus
Canis_ familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber
Homo sapiens

Sus scrofa
Oryctolagus cuniculus
Canis_ familiaris

Mus musculus

Rattus norvegicus
Heterocephalus glaber
Homo sapiens

Sus scrofa
Oryctolagus cuniculus
Canis familiaris
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Rattus norvegicus
Heterocephalus glaber
Homo sapiens

Sus scrofa
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109

87
105
118
120

118

169
147
165
178
180

42
178

229
207
225
238
240
102
238

289
267
285
298
300
162
298

349
327
345
358
360
222
358

409
387
405
418
420
252
418

469
447

-—-MSSCEFAPALT SIPLS
MVAAMVARNRNE P SRREPRR

-MAATVARNANE S SGR

AAQLGRKVAVLDYVEPSPRGTRWGLGGTCVNVGCIPKKLMHQAALLGGEIRDAG'YGWE
AAQLGKKVAVVDYVEPSPRGTKWGLGGTCVNVGCIPKKLMHQAALLGEMIRD‘PHYGWD

RiEkMAEARONHVES LNWGHRVQLOBRKVK YNVK ARFEREH TVl VEKBRKET]
BWREMAEAVONHVKS LNWGHRVOLODRK VY FNMKASFVNEHTVCGV]
IWWEIMAEAVONHVKS LNWGHRVQLQDRKVKY FNIKASFVBEHTVE 2
NWEMAEAVONHVKS LNWGHRVQLQDRKVKY FNIKASFVNEHT i

KMAEAVONHVKSLNWGHRVQ IKAS FVNTVCGI IWKGGKE

LLSAEHIVIATGGRPRYPRHIEGAMEYGITSDDIFWLKESPGKTLVVGASYVALECAGFEL
LLSADHIVIATGGRPRYPT!I@GAEEYGITSDDIFWLKESPGKTLVVGASYVALECAGFL
LLSAEHIVIATGGRPRYPTHIEGALEYGITSDDIFWLKESPGKTLVVGASYVALECAGFEL
LLSAEHIVIATGGRPRYPT GALEYGITSDDIFWLKESPGKTLVVGASYVALECAGFL
QLSAEHIVIATGGRPKYPT GALEHGITSDDIFWLKESPGKTLVVGASYVALECAGFL
LLSAEHIVIATGGRPRYPTHIEGALEYGITSDDIFWLKESPGKTLVVGASYEALECAGFEL
LLSADHIBIATGGRPRYPTHIEGALEYGITSDDIFWLKESPGKTLVVGASYVALECAGEFET

AS LVIE HMAYHGTRINLKGCMPIRRVIRKLPDGQLQVTW\§
TGHGLDTTIMERSIPLRGFDQOMIISTLVTBHMASHGTRIMLRGCINPSR iRLPDGELQVTWE
TGLGLDTTIMIRSIPLRGFDQQMSSLVTEEMAS@GTRFLRGCTPSRVRRLPDGQLQVTWE
TGIGLDTTVMMRSIPLRGFDQQMSSLVTEHMESHGT@FLKGC PSEITKKL Pjk QLQVTWE
TGIGLDTTVMMRSVPLRGFDQQMHSLVTEHMESHGTRFLKGCVPSLIRKLP INOLOVTWE]
TGIGLDTTMMMRSIPLRGEFDQOMSSLVTEHMBSHGTREFLRGCIP SEIERKLPDGQLOVTWE
TGIGLDTTIMMRSIPLRGEFDQOMSSMVMEHMASHGTREFLRGCIPSRVRRLPDGQLQVTWE]

ERTCGKEDSGEFNTVLWAIGRVPETR@LNLEQAGVETNPESQKILVDAﬁDﬁTSVPHIYAI
5 S GKE DG TFDTVLWAIGREPETRS LNLEKAGVNTNPNSOK I LVJAQEATSEPHIYAT
DER\S GKEDGTFDTVLWAIGRVPETRELNLEKAGHE TN PRNOK IEVDAQEATSVPHIYAT
DS GKE DJJGTFDTVLWAIGRVPETRYLNLEKAGVNTNPRNOK I EVDAQEATSVPHIYAT
DS GKEDGTFDTVLWAIGRVPETRS LNLEKAGVINTNEIONOK I§vDBOEATSVPHIYAT
DEMEGKEDEGTFDTVLWAIGRVPHTRSLNLEKAGVIRTEPEOK I LVDEEATSVPHIYAT

GDVAEGRPELTPTAMMAGRLLAQRL®G]

GDVAEGRPELTPTAIMAGKLLAQRLFGESSDLMDYSNVPTTVEFTPLEYGCVGLSEEEAVA
GDVAEGRPELTPTAIMAGRLLAQRLEGQASDVMDYDNVPTTVFTPLEYGCVGLSEEEA T
GDVAEGRPELTPTAINAGKLLAQRLEGINS SILMDYSNVPTTVEFTPLEYGCVGLSEEEAVA
GDVAEGRPELTPTAI!AGKLLAQRLFGKSSTLMNYSNVPTTVFTPLEYGCVGLSEEEAV‘
GDVAEGRPELTPTAIMAG ACVGLSEEEAVA
GDVEGRPELTPTAIMAGRLLMYORLFGESSDLMDYBNVPTTVFTPLEYGCVGLSEEEAVA

RHGIEIE[@VEVYHAYYKPLEFTVI§FERDASQCY IKMVCLREPPQLVIRGLHFLGPNAGEVTQGE]
RHGQEQIEVYHAYYKPLEFTVAE@DASQCYIKMVCLRHPPQEVLGLHFLGPNAGEVTQGF
RHGEEHVEVYHAYYKPLEFTVAERDASQCYVKMVCLRKPPQLVLGLHFLGPNAGEVTQGF
IFHGOEHVEVYHAYYKPLEFTVAPRDASQCY IKMVCMREPPQLVLGLHFLGPNAGEVTQGE]
IRHGOEHEEVYHAYYKPLEFTVADRDASQCYIKMVCMREPPOQLVLGLHFLGPNAGEVTQGE]
RHGOQEHVEVYHAYYKPLEFTVAERDASQCYIKMVCLREPPQLVLGLHFLGPNAGEVTQGE]
RHGQEHVEVYHARBIYKPLEFTVAGRDASQCYMKMVCLREPPQLVLGLHFLGPNAGEVTQGE]

*

ALALKCGASYI@OVMRTVGIHPTCAEEVIRKLRISKRSGLDPTVTGCUG
ALGIKCGASYMOVERTVGIHPTCAEEMVKLRISKRSGLDPTVTGCUG
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Canis familiaris LIS .GTKCGASYAQVMRTVGIHPTCAEEVIIKLRIBKRSGLDPTVTGCUG

Mus musculus MRS/ | GTKCGASYAQVMETVGIHPTCEEEVVKLBII SKRSGLEPTVTGCUG
Rattus norvegicus 480 Z—\LGI@CGASYZ—\QV TVGIHPTCSEEVVKLEBIISKRSGLDPTVTGCUG
Heterocephalus glaber 312 TIHEARNGELSNENOUINRVENN NG VHATAZENNRSNIEIN)SRANEle)s (€
Homo_ sapiens YR | GTKCGASYAQVMRTVGIHPTCHEEVVKLRI SKRSGLDPTVTGCUG

Figure S16. Protein sequence alignment of mitochondrial thioredoxin reductase. The following
sequences were used for alignment construction (Genbank accession numbers): Homo sapiens
(BAAT77601.2); Canis familiaris (XP_850181.1); Mus musculus (Q9JLT4.4); Rattus norvegicus
(NP_072106.1); Sus scrofa (NP_001162173.1); and Oryctolagus cuniculus (XP_002722800.1). The MR
sequence is incomplete. The selenocysteine residue is highlighted in red and indicated by an asterisk.
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Figure S17. Expression of mouse and MR GPxL1 in E. coli. Cysteine mutants of MR and mouse GPx1
were cloned into pET28a and expressed in E. coli. (A) Proteins were isolated from identical amounts of
bacterial culture and aliquots were analyzed by SDS-PAGE. (B) Glutathione peroxidase activity of MR and
mouse GPx1 was measured and normalized to the amount of protein in each sample. Results are given +/-
SD.

17



]
(%)
3 a
(5]
A o E & B
¥ B SO .
- B o 2k o Fox Squirrel
o & ©°F 25 £ 4‘:
& o g ¢ mo g g Chipmunk
] [} (2] >
Xk £E22 g x82
© £ 0o o 0
I = 26> Sctma Beaver
98 ] —
— House mouse
62 — -
a9 | W — -
| Norway rat
28 —| || Vole
GPx1 —> - . .
. . Guinea Pig
14 —| - —[ .
.. Porcupine
o — MR
3 —

Figure S18. Expression of GPx1 in skin fibroblasts of rodents and long lived mammals. (A) Cells were labeled
with °Se followed by SDS-PAGE and autoradiography. HEK 293 cells and MEFs derived from GPx1 KO mice were
used as positive and negative controls, respectively. Migration of the band corresponding to GPx1 is shown with an
arrow. (B) Schematic representation of the phylogenetic tree of rodents (adapted from (46)).
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