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Abstract Calculating operators of continuously moving objects presents some
unique challenges, especially when the operators involve aggregation or the concept
of congestion, which happens when the number of moving objects in a changing
or dynamic query space exceeds some threshold value. This paper presents the fol-
lowing six d-dimensional moving object operators: (1) MaxCount (or MinCount),
which finds the Maximum (or Minimum) number of moving objects simultaneously
present in the dynamic query space at any time during the query time interval. (2)
CountRange, which finds a count of point objects whose trajectories intersect the
dynamic query space during the query time interval. (3) ThresholdRange, which
finds the set of time intervals during which the dynamic query space is congested. (4)
ThresholdSum, which finds the total length of all the time intervals during which the
dynamic query space is congested. (5) ThresholdCount, which finds the number of
disjoint time intervals during which the dynamic query space is congested. And (6)
ThresholdAverage, which finds the average length of time of all the time intervals
when the dynamic query space is congested. For these operators separate algorithms
are given to find only estimate or only precise values. Experimental results from
more than 7,500 queries indicate that the estimation algorithms produce fast, efficient
results with error under 5%.
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1 Introduction

Safety can often be reduced to a problem of congestion. The safety of flight depends
on separation of airplanes or more generally the maximum number of airplanes
that a particular airspace can safely contain, and the maximum number of airplanes
that air traffic controllers responsible for directing airplanes can safely track. When
considering epidemics, the presence of a single animal with Bird Flue does not
indicate the start of an epidemic. Instead the presence of a certain number of
instances of the disease indicates a high risk of starting an epidemic, or actual
epidemic conditions. Consequently, we see that congestion often links to safety and
can predict high risk or even dangerous conditions.

Congestion is defined differently depending on the application. Hence it is neces-
sary to provide moving object operators that take a threshold value as a parameter
to define congestion.

In relational databases, Max, Min, Count, Sum and Average form the set of
natural aggregation operators. Spatiotemporal databases containing continuously
moving objects can not apply these operators in the same way. However, these
operators may still function in interesting ways for moving objects. For example,
one can ask how many moving point objects exist within a moving and changing
(or dynamic) rectangular area at a certain time, or what is the maximum distance
between two moving points during a time interval. Obviously, when we are interested
in discrete time instances, then the moving point object database can be reduced to
a relational database and the above queries can be expressed as simple Count or
Max queries.

Moving object databases naturally suggest new aggregate operators that have
no equivalents in relational databases. For example, one may ask what is the
maximum number of moving-point objects that exist simultaneously within a dy-
namic rectangular area at any time during a time interval T? We call this the
MaxCount operator. One also may ask during what time intervals in T does there
exist more than M moving objects within a rectangular area? We call this the
ThresholdRange operator. We show that a strong relationship exists between
MaxCount and ThresholdRange, and we show that ThresholdRange forms
the bases for a family of threshold operators that include: ThresholdCount,
ThresholdSum, and ThresholdAverage. A related, though less complex, operator
answers the question: what is the number of moving objects that exist within or
intersect a dynamic rectangular area at any time instance during interval T. We call
this the CountRange operator.

Throughout this paper we use the concept of a dynamic query space, which is a
3-dimensional space that may move and change size or shape over a continuous time
interval T. In most papers, including ours, the query space is considered to be some
cube, whose corner vertices are defined by two moving points. (We define query
space more precisely later in Definition 26.) The moving object operators described
in this paper are defined as follows:

Definition 1 (MaxCount (MinCount)) Let S be a set of moving points. Given a
dynamic query space R defined by two moving points Q1 and Q2 as the lower-left
and upper-right corners of R, and a time interval T, the MaxCount (Min-Count)
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operator finds the time tmax(min) and maximum (or minimum) number of points
Mmax(min) in S that R can contain at any time instance within T.

Definition 2 (CountRange) Let S be a set of moving points. Given a dynamic query
space R defined by two moving points Q1 and Q2 as the lower-left and upper-right
corners of R and a time interval T, the CountRange query returns the total number
of points that intersect R in T.

Definition 3 (ThresholdRange) Let S be a set of moving points. Given a dynamic
query space R defined by two moving points Q1 and Q2 as the lower-left and upper-
right corners of R, a time interval T, and a threshold value M, the ThresholdRange
operator finds the set of time intervals TM where the count of objects in R is larger
than M.

Definition 4 (ThresholdCount) Let M and TM be as in ThresholdRange. Then
ThresholdCount returns the number of time intervals in TM.

Definition 5 (ThresholdSum) Let M and TM be as in ThresholdRange. Then
ThresholdSum returns the total length of time Ts during which the count is above
M. That is, for each Ti ∈ TM, ThresholdSum returns:

Ts =
∑

i

|Ti| (1)

where |Ti| means the length of the interval Ti.

Definition 6 (ThresholdAverage) Let M and TM be as in ThresholdRange. Then
ThresholdAverage returns the average length of the intervals in TM.

The following examples illustrate the use of the new moving object operators.

Example 7 Airplanes are commonly modeled as linearly moving objects with
preestablished flight plans. Suppose, at any time, at most a constant number M of
airplanes is allowed to be in the O’Hare airspace to avoid congestion. Suppose also
a new airplane requests approval of its flight plan for entering the O’Hare airspace
between times ta and tb . The air traffic controllers can avoid congestion as follows. If
after adding a new flight plan, the MaxCount between ta and tb is still less than M,
then they can approve the flight. Otherwise, they need to find some alternative path,
and check it again against the database.

Air traffic controllers try to direct airplanes as linearly moving objects for fuel
efficiency, among other reasons. If they recognize a developing congestion too
late, then they often must direct the airplane to fly in circles until the congestion
has cleared. That solution wastes fuel. On the other hand, if they recognize the
developing congestion early, then they can often simply tell the airplane to change its
speed, which saves fuel. Therefore, it is important to identify congestions as early as
possible. We may identify congestions by using a MaxCount query where a moving
box around the airplane and a time interval [ta, tb ] define the query. If the MaxCount
predicts congestion, then the airplane’s speed can be adjusted early in the flight.
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Example 8 Suppose we want to alert pilots if their current flight path takes them
through at least one congested region.

A Traffic Alert/Collision Avoidance Systems is a system that provides similar
functionality. TCASs only provide alerts for current congestion, not predictive
congestion. Although TCASs were implemented in 1986, we continue to have mid-
air collisions and near misses indicating that the system still needs improvement.
ThresholdRange is a modification of MaxCount that returns all predicted time
intervals on the flight path where the Count exceeds a given threshold. Hence using
ThresholdRange we can alert a pilot of predicted congestions where more than
M other airplanes will be within the space B around the airplane. Predicting and
avoiding these areas can significantly reduce the chances of mid-air collisions.

Example 9 Suppose we are especially concerned about a rush-hour period [ta, tb ]
that is particularly stressful to air traffic controllers. Suppose controllers can direct at
most M airplanes safely. We can determine the number of controllers needed during
the rush-hour time by executing the CountRange query over the controlled airspace
during the rush-hour and dividing by M. By ensuring that a sufficient number of
controllers are present, safety is achieved and controllers are not over stressed.

The rest of this paper is organized as follows. Section 2 introduces novel data
structures used to build buckets. These buckets can then be used in various
indexing algorithms to fit the type of application used. Section 3 develops the
MaxCount estimation algorithm using a running example. Section 4 develops algo-
rithms for the CountRange and the threshold operators. Both CountRange and
ThresholdRange are based on MaxCount. Based on ThresholdRange,
algorithms are given for the other threshold operators ThresholdCount,
ThresholdSum, and ThresholdAverage. Section 5 gives the experimental results
of the implementation. Section 6 reviews the related work. Finally, Section 7 suggests
some future work and conclusion.

2 Bucket data structures

This section presents an updatable skew-aware bucket for indices that models the
skewed point distributions in each bucket. The skew-aware technique allows the
index structure to perform inserts, deletes, and updates in fast constant time using a
HashTable to store the buckets. Many spatiotemporal applications, such as tracking
clients on a wireless network, particularly need these fast updates and no other
MaxCount presented prior to this can meet that requirement. Because the buckets
are spatially defined, the bucketing technique also easily adapts to other spatial and
spatiotemporal indices such as the R-tree [13]. Hence the technique performs well
for applications where search operations or update operations occur more frequently
by using an appropriate index.

Our algorithm uses a sweeping method to evaluate the threshold aggregation
operators similar to previous approaches from Chen and Revesz [5], Revesz and
Chen [25] and Anderson [1]. The algorithm differs in that the sweeping algorithm
integrates a skew-aware density function over the spatial dimensions of the bucket
to obtain the time dependent count function. The density function in the bucket
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increases accuracy over methods given in Anderson [1], Chen and Revesz [5] while
maintaining the same number of buckets. This idea is a crucial improvement because
we model the point distribution skew in a bucket, whereas previous methods adapted
to skew by increasing the number of buckets or changing their shape and contents.
We also present a precise algorithm for evaluating the threshold aggregation opera-
tors that requires no index and runs in O(N) + O(n log n) time and O(n) space where
N is the number of points in the database and n is the value of a CountRange query
using the same query space and time. Both the threshold aggregation algorithms and
the skew-aware bucket data structure presented are implemented and analyzed in
3-dimensional space. We show that the approximation achieves good results while
significantly reducing the running times.

Section 2.1 describes the problems related to creating buckets and a specific
solution for creating 6-dimensional buckets for 3-dimensional linearly moving points.
In all cases, we can extend our method to d-dimensions. Section 2.2 describes the
method for inserting and deleting a point from a bucket and shows that updates take
constant time. Section 2.3 applies two different data structures to contain the buckets
suited for applications where either inserts and deletes or threshold operations
dominate.

2.1 Bucket data structure

Definition 10 (Hex Representation) Given a linearly moving point in three
dimensions

Q(t) =
⎧
⎨

⎩

qx = vxt + x0

qy = vyt + y0

qz = vzt + z0

(2)

the corresponding hex representation of Q(t) is the tuple (vx, x0, vy, y0, vz, z0).

If we divide the 6-dimensional space into axis-aligned hyper-rectangles, then each
hyper-rectangle becomes a bucket Bi that contains the moving points whose hex
representations fall inside the hyper-rectangle. For each such bucket Bi, we define
the following.

Definition 11 (Bucket Dimension) Given a bucket Bi, its dimensions can be de-
scribed by inequalities of the form:

vx,Li ≤ vx < vx,Ui

∧
x0,Li ≤ x0 < x0,Ui

∧

vy,Li ≤ vy < vy,Ui

∧
y0,Li ≤ y0 < y0,Ui

∧

vz,Li ≤ vz < vz,Ui

∧
z0,Li ≤ z0 < z0,Ui (3)

where the subscripts with L indicate lower and the subscripts with U indicate upper
bound constants. Similarly to the hex representation of Definition 10, we denote the
bucket lower bound as:

(
vx,Li , x0,Li , vy,Li , y0,Li , vz,Li , z0,Li

)
(4)
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Table 1 The hex
representation of a set
of moving points

vx x0 vy y0 vz z0

5.345 7.543 5.345 8.158 5.345 5.488
6.354 9.023 6.354 5.488 6.354 5.159
7.159 8.885 7.159 6.685 7.159 7.346
7.645 9.117 7.645 5.159 7.645 8.885
8.153 7.346 8.153 6.335 8.153 7.543
8.156 6.335 8.156 7.346 8.156 9.023
9.125 5.159 9.125 9.117 9.125 9.117
9.118 6.685 9.118 8.885 9.118 6.335
9.688 5.488 9.688 9.023 9.688 8.158
9.874 8.158 9.874 7.543 9.874 6.685

and the bucket upper bound as:
(
vx,Ui , x0,Ui , vy,Ui , y0,Ui , vz,Ui , z0,Ui

)
. (5)

A pair of lower and upper bounds is a concise description of the dimensions of Bi.

Definition 12 (Histogram) Given a bucket Bi and a constant s, we build histograms
hi,1,...,hi,6. Each histogram hi, j is built using the following three steps: (1) Project the
points in bucket Bi onto the jth dimension. (2) Subdivide the projection into s equal-
size intervals. (3) Record separately the number of points within each subdivision.

Example 13 Supose bucket Bi has lower bound (5, 5, 5, 5, 5, 5) and upper bound
(10, 10, 10, 10, 10, 10) and contains the points shown in Table 1. Also suppose the
number of subdivisions is s = 5.

Figure 1a shows hi,1. It is built as follows. The projection onto velocity vx is the
first column of Table 1. Since in the vx dimension bucket Bi ranges from 5 to 10, the
five subdivisions are 5 < vx ≤ 6, 6 < vx ≤ 7, 7 < vx ≤ 8, 8 < vx ≤ 9, and 9 < vx ≤ 10.
The first bar of histogram hi,1 rises to level 1 because the first subdivision 5 < vx ≤ 6

(a) (b)

Fig. 1 Two histograms of the points in Bi. The x-axis is the subdivision left-endpoint and the y-axis
is the number of points



Geoinformatica (2009) 13:355–396 361

contains one point. The second bar of histogram hi,2 rises to level 1 because the
second subdivision 6 < vx ≤ 7 also contains one point. The other values of hi,1 can
be determined similarly.

Figure 1b shows hi,2. It is built using the projection onto position x0, which is the
second column of Table 1. Here we use the subdivision 5 < x0 ≤ 6, . . . , 9 < x0 ≤ 10.
In this case the first bar of histogram hi,2 rises to level 2 because the subdivision
5 < x0 ≤ 6 contains two points. The other values of hi,2 can be determined similarly.

Further, in this example hi,1 = hi,3 = hi,5 because all the points listed in Table 1
have the same velocities in the x, y, and z directions. Also, hi,2 = hi,4 = hi,6 because
the columns for x2, x4, and x6 all have the same values but in different orders.

Definition 14 (Trend Function) Given a bucket Bi and axis j, the axis trend function
fi, j is some polynomial function such that the following hold:

1. fi, j ≥ 0 over the j-dimension of Bi.
2. f ′

i, j, the derivative fi, j, does not change sign over the j-dimension of Bi.

The bucket trend function fi for bucket Bi is the product of the axis trend functions,
that is:

fi =
6∏

j=1

fi, j (6)

Condition 1 ensures that the bucket trend function, built from the axis trend
functions, does not contain a negative probability region. Condition 2 requires that
the bucket density increase, decrease, or remain constant when considering any
single axis.

Example 15 Histograms hi,1 and hi,2 in Example 13 can be represented as the
following set of points:

hi,1 = {(5, 1), (6, 1), (7, 2), (8, 2), (9, 4)} (7)

hi,2 = {(5, 2), (6, 2), (7, 2), (8, 2), (9, 2)} (8)

where the first coordinate is vx in hi,1 and x0 in hi,2, and the second coordinate is y,
the number of points.

To find a trend function, we can choose a least squares method to fit each of these
histograms to a line. The least square line for hi,1 is:

y = 0.7vx − 2.9

The least square line for hi,2 is:

y = 0x0 + 2

We need to ensure that Condition 1 in Definition 14 holds. A simple way to ensure
that is to find the minimum of the line in the range of the histogram and if it is
a negative value, then shift the line upward by that amount. For a line segment
the minimum occurs always at one of the end points. Taking the minimum of the
lease square line equations at the histogram range end points 5 and 10 gives for
hi,1 the value min(y(5) = 1, y(10) = 4.3) = 4.3, and for hi,2 the value min(y(5) = 2,
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y(10) = 2) = 2. Since in this case Condition 1 is satisfied by the least square lines,
they do not need to be shifted upward. Condition 2 also is satisfied by line segments.
Hence the least square lines can be taken as axis trend functions.

Further, since in Example 13 hi,1 = hi,3 = hi,5 and hi,2 = hi,4 = hi,6 the other axis
trend functions can be found similarly to those of hi,1 and hi,2. Hence the trend
function becomes:

fi = (0.7vx − 2.9)(0x0 + 2)(0.7vy − 2.9)(0y0 + 2)(0.7vz − 2.9)(0z0 + 2)

= 8(0.7vx − 2.9)(0.7vy − 2.9)(0.7vz − 2.9)

Note: Normally the least square line does not have a negative value in the range of
the histogram. If it is negative, it is an indication that the distribution of points in the
bucket is unusual. In that case the bucket may be broken into smaller ones, or we
may try to find another polynomial axis trend function.

The next lemma considers some properties of axis trend functions in general.

Lemma 16 Given a bucket Bi with axis trend functions fi, j, let r1 and r2 be identically
sized regions in bucket Bi. If the density in Bi along each axis monotonically increases
from r1 to r2, then the following holds:

∫

r2

fi dφ ≥
∫

r1

fi dφ (9)

Proof Increasing densities from r1 to r2 translates into histograms that also increase
from r1 in the direction of r2 along each axis. The translation from histograms to the
axis trend functions gives the following conditions:

fi, j(x2, j) ≥ fi, j(x1, j) (10)

where x1, j and x2, j are the j th coordinates of the points in r1 and r2 respectively, and
are located the same distance from the j th coordinates of the lower bounds of r1 and
r2 respectively. Since this constraint holds for each j and fi, j ≥ 0 we have:

fi(x2) ≥ fi(x1) (11)

Hence by the properties of integration we conclude
∫

r2

fi dφ ≥
∫

r1

fi dφ (12)

��
Note: Definition 14 and Lemma 16 allow other polynomial functions beside the least
square line. In Example 15, we chose the least square line only as a simple example.
As the experimental results in Section 5 show, the least square line is a good practical
approximation. The approximation works well because the buckets have small sizes.
Adjacent buckets can have very different trend functions. While the entire range of
the space in which all the points lie would be poorly approximated by a single least
square line, the series of least square lines associated with a sequence of small buckets
in each spacial dimension serves as a good piecewise linear approximation.

In the following, we assume that the trend functions are polynomial functions
derived from the product of linear functions, which are obtained by using the least
squares method for each histogram as in Example 15.
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Definition 17 (Normalized Trend Function) Let n be the number of points in the
database, bi the number of points in bucket Bi, and fi be given by Eq. 6. The
normalized trend function Fi for bucket Bi is:

Fi = bi fi

n
∫

Bi

fi dφ

(13)

and the percentage of points in bucket Bi is:

p =
∫

Bi

Fi dφ. (14)

Example 18 Assume that bucket Bi in Example 13 is only a part of an index that con-
tains n = 100,000 points. Then calculating Fi from Eq. 13 requires integrating fi over
the bucket dimensions where

∫
Bi

≡ ∫ 10
5 ...

∫ 10
5 and where dφ ≡ dvxdx0dvydy0dvzdz0

rounded to the nearest integer gives:
∫

Bi

fidφ = 8
∫

Bi

(0.7x0 − 2.9)(0.7x2 − 2.9)(0.7x4 − 2.9)dφ

≈ 1,622,234. (15)

In this case the number of points in bucket Bi is bi = 10. Hence we have:

Fi = bi fi

n
∫

Bi

fi dφ

≈ 10 × 8(0.7vx − 2.9)(0.7vy − 2.9)(0.7vz − 2.9)

100,000 × 1,622,234

≈ 49.312 × 10−11(0.7vx − 2.9)(0.7vy − 2.9)(0.7vz − 2.9)

Using Definition 17, we can calculate the number of points in a bucket in O(1)

time using the following lemma.

Lemma 19 Let Bi be a bucket, n the total number of points in the database, and p
be given by Definition 17. Then np is the number of points in bucket Bi and np is
calculated in O(1) time.

Proof By Eqs. 13 and 14 we have:

np = n
∫

Bi

Fi dφ

= n
∫

Bi

b i

n
fi∫

Bi

fi dφ

dφ
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= n
bi

n
·

∫

Bi

fi dφ

∫

Bi

fi dφ

= bi. (16)

Clearly the above calculations take only O(1) time. ��

Using the above definitions we can now define the bucket data structure used
throughout the rest of this paper.

Definition 20 (Skew Aware Buckets) A skew aware bucket is a hyper-rectangle
with dimensions given by Definition 11 and that maintains histograms given by
Definition 12, additional data for the least squares method, and the normalized trend
function given by Definition 17.

Throughout the rest of this paper we refer to skew aware buckets as simply
buckets.

2.2 Inserts and deletes

We can maintain the bucket (and hence the index) while deleting or inserting a point
for any bucket Bi by recalculating the trend function Fi for the bucket.

Lemma 21 Insertion and deletion of a moving point can be done in O(1) time.

Proof When we insert or delete a point, we need to update the histograms and the
normalized trend function. Let the point to insert/delete be Pa represented using the
hex representation as (a0, a1, a2, a3, a4, a5), let d j, for 0 ≤ j ≤ 5 be the bucket width in
the j th, and let s be the number of subdivisions in each histogram. The concatenation
of id0, . . . , id5 gives the I Di of bucket i to insert (or delete) Pa into where each idl

and 0 ≤ l ≤ 5 is defined by:

idl =
⌊

al

dl

⌋
. (17)

The calculation of I Di and retrieving bucket Bi takes O(1) time using a HashTable.

Let hwi, j be the histogram-division width for the j th calculated as hwi, j =
⌈

d j

s

⌉
.

Then p is projected onto each dimension to determine which division of the his-
togram to update. For the j th dimension the kth division of histogram hi, j is given
as follows:

k( j) =
⌊

a j − id j ∗ d j

hwk

⌋
(18)

Let hi, j,k be the histogram division to update for each histogram. Update hi, j,k and the
sums

∑
yi, and

∑
xi yi from the normal equations in the least squares method. N,

∑
xi and

∑
x2

i from the normal equations do not need updating since the number
of histogram divisions s is fixed within the database.
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We can now recalculate each fi, j in constant time by solving the 2 × 3 ma-
trix corresponding to the normal equations of the least squares method for each
histogram. For each fi, j calculate the endpoints to determine the required shift
amount (Definition 14, property 1) and calculate fi from Eq. 6. Now we calculate
Fi using Eq. 17. Each of these steps depends only on the dimension of the database.
Hence for any fixed dimension we can rebuild the normalized trend function Fi in
O(1) time. ��

2.3 Index data structures

There is no need to create a bucket unless it contains at least one point. We consider
two classes of data structures for organizing the buckets: HashTables and Trees.

For databases where inserts and deletes are the most common operation, the
HashTable approach allows these operations to run in constant time. However,
the MaxCount operation will require an enumeration of all the buckets and thus
at least a running time of O(B). As long as the number of buckets is reasonable, this
approach works well.

For databases where MaxCount is the most common operation, we may use an
R-tree structure [3], [13] where the elements to be inserted are the buckets. This
approach speeds up the MaxCount query to O(log |B| + R) where R is the number
of buckets needed to calculate the query. The insert and delete costs for these
R-trees are O(log |B|), because buckets do not overlap.

Since buckets do not change shape, the database is decomposable and allows each
type of aggregation to be calculated from simultaneous executions on subspaces of
the index space. We discuss the method and ramifications of this capability at the end
of Section 3.4.

3 The MAXCOUNT operator

Section 3.1 reviews point domination in higher dimensions. Section 3.2 examines
finding the percentage of points in a bucket that are in the query space as a function
of time. Section 3.3 puts the two previous sections together to create an efficient
approximate MaxCount algorithm for d-dimensions. Section 3.4 describes an in-
efficient exact MaxCount algorithm. The naive but exact MaxCount algorithm is
useful as a comparison tool with the efficient but approximate MaxCount algorithm
in Section 3.3. The comparison is presented later in Section 5.

3.1 Review of point domination

Definition 22 (Point Domination) Given two linearly moving points in three
dimensions

Q(t) =
⎧
⎨

⎩

qx = vxt + x0

qy = vyt + y0

qz = vzt + z0

and P(t) =
⎧
⎨

⎩

px = x1t + x2

py = x3t + x4

pz = x5t + x6

(19)

Q(t) dominates P(t) at time t if and only if the following condition holds:

px < qx
∧

py < qy
∧

pz < qz (20)
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Further, the dominating lines of Q(t) at time t are the following:

lx is th; line x2 = −x1t + (vxt + x0).

ly is th; line x4 = −x3t + (vyt + y0).

lz is th; line x6 = −x5t + (vzt + z0).

For convenience in visualizing the hex representations, we introduce the following
definition.

Definition 23 (x-view, y-view and z-view) The projection of a 6-dimensional space
of hex representations onto the first two dimensions is the x-view, onto the second
two dimensions the y-view, and onto the third two dimensions the z-view.

It is now easy to prove the following lemma.

Lemma 24 Let Q(t) and P(t) be moving points, and let lx, ly, and lz be the dominance
lines of Q(t) at time t as in Definition 22. Let x-view, y-view, and z-view be the
projections of the hex representations of moving points as in Definition 23. Then Q(t)
dominates P(t) at time t if and only if (x1, x2) lies below lx in the x-view, (x3, x4) lies
below ly in the y-view, and (x5, x6) lies below lz in the z-view.

Proof We rewrite the condition (20) in Definition 22 as follows:

px < qx

∧
py < qy

∧
pz < qz

= x1t + x2 < vxt + x0

∧
x3t + x4 < vyt + y0

∧
x5t + x6 < vzt + z0

= x2 < −x1t + (vxt + x0)
∧

x4 < −x3t + (vyt + y0)
∧

x6 < −x5t + (vzt + z0)

(21)

Clearly, this condition is satisfied if (x1, x2) lies below lx in the x-view, (x3, x4) lies
below ly in the y-view, and (x5, x6) lies below lz in the z-view. ��

Example 25 Suppose that in the hex-representation Q(t) = (4, 6, 5, 6, 9, 10). Then
Q(t) dominates which points P(t) = (x1, x2, x3, x4, x5, x6) at time t = 1?

Applying condition (20) in Definition 22 and substituting we obtain:

x2 < −x1t + (vxt + x0)
∧

x4 < −x3t + (vyt + y0)
∧

x6 < −x5t + (vzt + z0)

= x2 < −x1 + 10
∧

x4 < −x3 + 11
∧

x6 < −x5 + 19 (22)

Hence at time t = 1, the point Q(t) dominates those points P(t) which satisfy the
above condition.

Unlike in Example 25, in many applications we are interested in two moving points
Q1(t) and Q2(t), which define the query space as follows.
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x–view y–view z–view

Q 2x Q 1x Q 2y Q 1y Q 2z Q 1z

lx2 lx1 ly2 ly1 lz2 lz1Position PositionPosition

Velocity VelocityVelocity

Fig. 2 Views

Definition 26 (Query Space) Given two moving points Q1(t) and Q2(t) with respect-
ing dominating lines lx1, ly1, lz1, and lx2, ly2, lz2 at time t, the query space within the
6-dimensional space of hex representations is a hyper-tunnel formed by the cross
product of the areas between lx1 and lx2 in the x-view, between ly1 and ly2 in the
y-view, and between lz1 and lz2 in the z-view as shown in Fig. 2.

Two moving objects Q1(t) and Q2(t) define a query space at any time t. The query
spaces are similar to each other. At any time t the projection of a query space onto
each view is an area between two parallel lines with slopes −t and passing through
points Q1(t) and Q2(t). Hence we can visualize the query space as it changes over
time as a moving region sweeping through space as the slopes of the lines change
with time.

Intuitively, when at time t a moving point P(t) is in the query space of moving
points Q1(t) and Q2(t) as in Definition 26, then it dominates Q1(t) and is dominated
by Q2(t) in the hex representation. Simultaneously, in the three dimensional space in
which the objects move, P(t) is in the box whose corner vertices are Q1(t) and Q2(t).
In the following sections, like many other authors, we use the hex representation as a
useful dual or alternative representation that is more amenable to efficient indexing.
However, the exact indexing method presented in this paper is novel.

3.2 Approximating the number of points in a bucket

A basic query is to find the number of points that lie in the query space. To answer
this basic query we need to look at each of the buckets separately. When the query
space includes an entire bucket, then we need to count the every point in the bucket.
That can be done using the normalized trend function of the bucket as defined in
Definition 17. However, in many cases the query space includes only a part of a
bucket. In that case we need to count only the points that are in the intersection
of the bucket and the query space. In this section, we show how to do that using a
percentage function that estimates the percentage of total points in the query space to
be within the intersection of the bucket and the query space. This requires to extend
Definition 17 as follows.
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Definition 27 (Percentage Function) If only one boundary line of the query space
goes through a bucket, and r1 is the region of the bucket in the query space and is
above the boundary line, then the percentage function is:

p =
∫

r1

Fi dφ (23)

If two boundary lines go through the same bucket as in Fig. 2 and regions r1

and r2 correspond to regions above Q1 and Q2, respectively, then the percentage
function is:

p =
∫

r1

Fi dφ −
∫

r2

Fi dφ. (24)

The percentage function can be computed for each bucket as shown in the
next lemma.

Lemma 28 For any time t and query space, the percentage function can be computed
for each bucket that intersects the query space at time t.

Proof The proof requires a case analysis. In each of the three views the query space
intersects the plane giving the cases shown in Fig. 3.

For each case shown in Fig. 3, we describe the function that results from integra-
tion in one view. To extend the result to any number of views, we take the result

(a) Upper Left (b) Upper Right

(h) All (g) Both Upper
Increasing Slope Decreasing Slope

Lower Left Lower Right
(c) Except (d) Except

(e) Both Left (f) Both Right

Fig. 3 Eight cases of intersection of buckets and query space
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from the last view and integrate it in the next view. If the region below the line were
desired, plower = bi

n − p gives the percentage of points below the line.
For cases (a)–(h) below, let Q = (x1,q, x2,q, ..., x6,q). For the x-view, let the lower

left corner vertex be (x1,l, x2,l) and the upper right corner vertex be (x1,u, x2,u). In
addition each line denoted l is given by x2 = −t(x1 − xi,q) + xi+1,q and corresponds
to a line shown in the corresponding case in Fig. 3.

Case (a) For this case l crosses the bucket at x1,l and x2,u. The integral over the
shaded region is:

pa =
x2,u−x2,q

−t +x1,q∫

x1,l

x2,u∫

−t(x1−x1,q)+x2,q

Fi dx2dx1 (25)

Notice that the lower bound of the integral over dx2 contains x1. This dependence
within each view does not affect the integration in the remaining four dimensions.
The solution to Eq. 25 has the form:

at2 + bt + c + d
t

+ e
t2

. (26)

Case (b) For this case l crosses the bucket at x1,u and x2,u. The integral over the
shaded region is:

pb =
x1,u∫

− (x2,u−x2,q)

t +x1,q

x2,u∫

−t(x1−x1,q)+x2,q

Fi dx2dx1. (27)

The solution has the form of Eq. 26.

Case (c) For this case l crosses the bucket at x1,l and x2,l . The integral over the
shaded region is:

pc =
x2,l−x2,q

−t +x1,q∫

x1,l

x2,u∫

−t(x1−x1,q)+x2,q

Fi dx2dx1 +
x1,u∫

x2,l−x2,q
−t +x1,q

x2,u∫

x2,l

Fi dx2dx1. (28)

The solution has the form of Eq. 26.

Case (d) For this case l crosses the bucket at x1,u and x2,l . The integral over the
shaded region is:

pd =
x1,u∫

x2,l−x2,q
−t +x1,q

x2,u∫

−t(x1−x1,q)+x2,q

Fi dx2dx1 +
x2,l−x2,q

−t +x1,q∫

x1,l

x2,u∫

x2,l

Fi dx2dx1. (29)

The solution has the form of Eq. 26.
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Case (e) For this case l crosses the bucket at x1,l and x1,u. The integral over the
shaded region is:

pe =
x2,u∫

x2,l

x2−x2,q
−t +x1,q∫

x1,l

Fi dx1dx2. (30)

The solution has the form of

c + d
t

+ e
t2

(31)

which is like Eq. 26 with a = b = 0.

Case (f ) Similar to case(e), l crosses the bucket at x1,l and x1,u. The integral over the
shaded region is:

p f =
x2,u∫

x2,l

x1,u∫

x2−x2,q
−t +x1,q

Fi dx1dx2. (32)

The solution has the form of Eq. 31.

Case (g) For this case l crosses the bucket at x1,l and x1,u. The integral over the
shaded region is:

pg =
x1,u∫

x1,l

x2,u∫

−t(x1−x1,q)+x2,q

Fi dx2dx1. (33)

The solution has the form

at2 + bt + c (34)

which is like Eq. 26 with d = e = 0.

Case (h) The line l crosses below all the corner vertices hence the integral of the
function is:

ph =
x1,u∫

x1,l

x2,u∫

x2,l

Fi dx2dx1. (35)

The solution has the form of Eq. 34.
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The above cases have solutions for each view in the form of Eq. 26. Hence the
percentage function for a single bucket as a function of t is of the form:

p =
(

axt2 + b xt + cx + dx

t
+ ex

t2

)
×

(
ayt2 + b yt + cy + dy

t
+ ey

t2

)

×
(

azt2 + b zt + cz + dz

t
+ ez

t2

)
(36)

where t �= 0 when dx, dy, dz, ex, ey, ez �= 0. Finally, renaming variables gives the
general form:

p = a6t6 +a5t5 +a4t4 +a3t3 + a2t2 + a1t + c + d1

t
+ d2

t2
+ d3

t3
+ d4

t4
+ d5

t5
+ d6

t6
(37)

where t �= 0 when di �= 0 for 1 ≤ i ≤ 6. Since Eq. 37 is closed under subtraction, p
from Eq. 24 will also have the same form. ��

As in Lemma 19, we can still find the number of points in the bucket by multiplying
the percentage function by n, the total number of points in the database.

The MaxCount operator is more complex than just the basic operator that finds
the number of points in the query space at a specific time. By Definition 1, the
MaxCount operator needs to return the maximum number of moving points that
are in a query space at any time instance tmax during a time interval, and it also needs
to return the time tmax when the maximum occurs.

Hence for a time interval, we need to consider what happens to the query space
as time changes. The query space changes as the dominance lines through the
query points change, keeping always a slope of −t. As the dominance lines change
their clopes, the query space sweeps across space and through the buckets that
partition the space. As the query space sweeps through a bucket Bi, it may cross
the bucket corner vertices. Each time such a cross happens, the case within the
proof of Lemma 28 that applies to Bi may change in one or more of the views.
Hence handling large time intervals requires further case analysis. This motivates
the following definitions.

Definition 29 (Bucket Time-Interval) A bucket time-interval for bucket Bi is a
maximal time interval during which no vertex of bucket Bi enters or leaves the
query space.

Definition 30 (Index Time-Interval) An index time-interval for a set of buckets B of
an index structure is a maximal time interval during which no vertex of any bucket in
B enters or leaves the query space.

We follow the convention of denoting bucket and index time-intervals as half-
open intervals [l, u) where l is the lower bound and u is the upper bound time
instance. This allows a partition of large time intervals.
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Definition 31 (Time-Partition Order) Let B be the set of buckets in an index. Let
(t[, t]) be a time interval. The Time-Partition Order is the set of ordered time instances
t1, t2, ..., ti, ..., tk such that t1 = t[ and tk = t], and each [ti, ti+1) is an index time-interval.

Now we are ready to prove the following.

Lemma 32 For any time interval element of the Time-Partition Order, the MaxCount
operator can be approximately computed in O(1) time.

Proof For any element of the time partition order we compute the sum of the
percentage functions in each bucket as in Lemma 28. That gives a function of the
form of Eq. 37. We find the maximum of that function in the temporal dimension by
first taking the derivative:

p′ = 6a6t12+5a5t11+4a4t10+3a3t9+2a2t8+a1t7−d1t5−2d2t4−3d3t3−4d4t2−5d5t−6d6

t7

(38)

where t �= 0.
Solving p′ = 0 requires finding the roots of this 12-degree polynomial, which is not

possible using an exact method. Hence we use a common numerical method for an
approximate solution. We look at the graph of p′. We check some constant c intervals
of Eq. 38 for a change in sign. If there exists a sign change, use the bisection method
to find the root. If two points lie within a small ε of 0, we perform a check for each
of these intervals when no change of sign is found. If some roots exist, then we check
them for maximal values along with the end points.

The percentage function p is calculated in O(1) time. Finding p′ = 0 also takes
O(1) time. By placing a constant bound on the number of iterations in the bisection
method, we bound by a constant the time required in the numerical section of the
algorithm. Plugging in the solution found by the bisection method along with the
endpoints also takes O(1) time. Hence, the running time to find the maximum within
any time interval element of the time-partition order takes O(1) time. ��

Lemma 32 shows that a constant time is enough to find an estimate for MaxCount.
However, it is not clear from the lemma how close the estimate is to the actual
number of points. It is an interesting open problem to prove a constraint on the
approximation ratio (the estimated number divided by the actual number) or some
statistical confidence value for the estimation. Instead of a mathematical proof, this
paper investigates experimentally the accuracy of the estimation in Section 5.

Although Lemma 32 considers only one time interval element of the Time-
Partition Order, it is easy to see that all the other elements can be found easily
and handled similarly. At first we find the bucket time-intervals using the following
lemma.

Lemma 33 Given B buckets, all the bucket time-intervals can be found in O(B) time.

Proof The bucket time-intervals can be found by finding for each bucket the slopes
of the lines through its corner vertices and the query points. Any slope −t means a
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crossing at time t. Since each bucket has only a constant number of corner vertices,
and there are only two query points, finding the crossing times and bucket time-
intervals requires only a constant number of calculations for each bucket. Since there
are B buckets, this requires only O(B) total time. ��

We present the rest of the MaxCount algorithm in Section 3.3.

3.3 An efficient approximate MaxCount algorithm

MaxCount(H, Q1, Q2, t[, t])
input: A set of buckets H built by the index structure presented,

query points Q1(t) and Q2(t) and a query time interval (t[, t]).
output: The estimated MaxCount value.

01. TimeIntervals ← ∅ O(1)

02. for i ← 0 to |H| − 1 O(B)

03. CrossTimes ← CalculateCrossTimes(Q1, Q2, t[, t], Hi) O(1)

04. for j ← 1 to |CrossTimes| − 1 O(1)

05. Union(TimeIntervals, TimeInterval(t j−1, t j)) O(1)

06. end for
07. end for

08. TimeIntervals = BucketSort(TimeIntervals) O(B)

09. IndexTimeIntervals = Merge(TimeIntervals) O(B)

10. for each IndexTimeInterval ∈ IndexTimeIntervals O(B)

11. calculate(MaxCount, MaxTime, IndexTimeInterval) O(1)

12. end for

13. return (MaxCount, MaxTime)

The algorithm to compute MaxCount with each line labeled with its running time
is given above. Line 01 initiates a set of bucket time-interval objects to be empty.
Line 03 returns a list of ordered times when a line through Q1 or Q2 crosses a
bucket corner vertex. As in the proof of Lemma 33 this can be found in O(1) time.
Line 05 turns this list into a set of TimeInterval objects and adds them to the set of
TimeIntervals. We list this “for each” loop as O(1) because it consists of a constant
number of calculations bounded by the number of vertices in the bucket. Line 08
uses the linear time sorting algorithm BucketSort to sort the bucket time intervals.
Line 09 creates the time-partition order and index bucket time intervals from the
bucket time intervals in O(B). An additional pass adds the bucket time intervals to
the appropriate index time-intervals in O(B). Lines 10-12 perform the MaxCount
calculation discussed above.

In order to use the linear time BucketSort algorithm, we need the following
definition and lemmas.
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Definition 34 (Time-Interval Ordering) The lexicographical ordering ≺ of time in-
tervals A and B is:

A.l < B.l ⇒ A ≺ B (39)

A.l = B.l ∧ A.u < B.u ⇒ A ≺ B (40)

A.l = B.l ∧ A.u = B.u ⇒ A = B (41)

The distribution of time interval objects created in Line 08 of the MaxCount
algorithm may not be uniform across the query time interval T = [t[, t]]. However,
we can still prove the following.

Lemma 35 If the distribution of buckets is uniform, then the distribution of bucket
time-interval objects can be uniformly distributed within the sorting buckets of the
bucket sort.

Proof Consider the relationship between successive slopes measured as the angles
between lines through a query point Q with slopes si = −ti and si+1 = −ti+1. Suppose
�t = 1 with t0 = 0 and t1 = 1, then the angle between the two lines is �s = π

4 . The
solid lines in Fig. 4 show that half of the bucket corner vertices are swept by the
line sweeping through Q between s0 = 0 and s1 = −1. Consider a query time interval
[0, 10]. Half of the corner vertices, and thus half of the time intervals, are between
time t = 0 and t = 1. Thus, we conclude that the time interval objects created by
sweeping will not be uniformly distributed throughout the query time interval.

Let Q′ be the midpoint between Q1 and Q2. Let S = {t1, ...tk} where t1 = t[, tk = t]
and ti+1 − ti = L for some positive constant L and 1 ≤ i ≤ k − 1. Let DB be a bucket

Fig. 4 Areas of successive
slopes

Q

A = 1
2

A = 1
4

A = 1
12
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that contains the space in the 6-dimensional index. Model the normalized bucket
function for DB as a constant F = 1. Thus p, the bucket probability, from Eq. 36
becomes the hyper-volume of the space swept by the line through Q′. By Lemma 32,
we can find the area for a specific time interval in S in constant time. The percentage
of sorting buckets, posbi, needed in any time interval Ti = [ti, ti+1] ∈ S within the
query time interval is given by:

posbi = p(ti+1) − p(ti)
p(t]) − p(t[)

(42)

Let N be the number of sorting buckets. The number of sorting buckets, nosbi,
assigned to interval i is:

nosbi = N · posbi (43)

If nosbi < 1 we can combine it with nosbi+1. If the query time interval is very large,
then we may need to include multiple time intervals from S to get one sorting bucket.
Thus, we create more sorting buckets (with smaller time intervals) in areas where
the expected number of bucket time intervals is large. Conversely, we create fewer
sorting buckets (with larger time intervals) in areas where the expected number of
bucket time intervals is small. Hence we model each sorting bucket so that its time
interval length directly relates to the percentage of bucket time intervals that are
assigned to it. Thus, we conclude that we will uniformly distribute the time interval
objects across all sorting buckets. ��

Lemma 36 Insertion of any bucket time-interval object TO into the proper sorting
bucket can be done in O(1) time.

Proof The distribution of sorting buckets is determined by k time intervals in
Lemma 35. Call these sorting time interval objects where each object contains: the
lower bound l, the upper bound u, the number of sorting buckets assigned to this
interval b s, the length of the time interval for the sorting bucket w and an array
Bp containing pointers to these sorting buckets. Let A be the array of sorting
time interval objects, and L be the length of each time interval where the time
intervals are as in Lemma 35. Then, finding the correct sorting bucket for TO requires
two calculations:

SortingTimeInterval = A
[ ⌊

TO.l
L

⌋ ]
(44)

SortingBucket = Bp

[ ⌊
TO.l − SortingTimeInterval.l

w

⌋ ]
. (45)

Each of these calculations requires constant time, hence TO can be inserted into the
proper sorting bucket in O(1) time. ��

Now we can prove the following.
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Theorem 37 The running time of the MaxCount algorithm is O(B) where B is the
number of buckets.

Proof Let H be the set of buckets where each bucket Bi contains the normalized
trend function Fi. Let Q1 and Q2 be the query points and [t[, t]] be the query
time interval. (Lines 01-07): Calculating the time intervals takes O(B) time because
the cross times for each bucket can be calculated in constant time. (Line 08): By
Lemmas 35 and 36, we have an approximately even distribution of time interval
objects within the sorting buckets where we can insert an object in constant time.
This result fulfills the requirements of the BucketSort, [9], which allows the intervals
to be sorted in O(B) time. (Lines 09-12): Calculate the MaxCount and time for each
time interval in constant time using Lemma 32. These lines take O(B) time because
there are O(B) time intervals. Finding the global MaxCount and time requires
retaining the maximum time and count at line 11. Returning the MaxCount and time
takes O(1) time. Thus, the running time is given by O(B) + O(B) + O(B) + O(1) =
O(B). ��

3.4 An inefficient exact MaxCount algorithm

ExactMaxCount(D, Q1, Q2, t[, t])
input: D is the database of points. The query is made up of a

hyper-rectangle Q defined by points Q1 and Q2 and the time
interval T = [t[, t]]

output: The exact MaxCount and time at which it occurs.

01. Times ← ∅ //of CrossTime objects O(1)

02. for each point pi ∈ D O(N)

03. if pi ∈ Q during T O(1)

04. EntryTime ← CalculateEntryTime(pi, Q, T) O(1)

05. ExitTime ← CalculateExitTime(pi, Q, T) O(1)

06. if EntryTime ∈ Times O(1)

07. Times.get(EntryTime).Count++ O(1)

08. else
09. Times.add(newCrossTime(EntryTime)) O(1)

10. end if
11. if ExitTime ∈ Times O(1)

12. Times.get(ExitTime).Count- - O(1)

13. else
14. Times.add(newCrossTime(ExitTime)) O(1)

15. end if
16. end for
17. Sort(Times) O(n log n)

18. traverse(Times, time, Max-Count) //tracking time O(N)

//and MaxCount
19. return (time,MaxCount) O(1)
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While the efficient approximate MaxCount algorithm described in Section 3.3 is
our main contribution, it is worth to compare it with a naive MaxCount algorithm
(see above) which finds the exact MaxCount value. It is easy to see that the exact
algorithm is inefficient. More precisely, its running time is:

O(N) + O(n log n) (46)

where N is the number of moving points and n is the number of moving points in the
query space.

It is possible to slightly improve the algorithm below. First, divide the index space
into k subspaces and maintain separate partial databases for each. Assign processes
on individual systems to each database to calculate the MaxCount query and return
the time intervals to a central process. Merging the time interval lists into a global
time interval list saves time on the sorting part of the algorithm. The running time for
each of k partial databases would be close to O( n

k log n
k ). This result is an approximate

value because we do not guarantee an even split between partial databases. Placing
buckets for each partial database in a Tree structure may be reasonable and could
cut down the average running time to O(log N + n log n/k).

4 The CountRange and threshold operators

Next we describe the CountRange operator in Section 4.1 and the threshold opera-
tors ThresholdRange, ThresholdCount, ThresholdSum, and ThresholdAvg in
Section 4.2.

4.1 The CountRange operator

The CountRange algorithm is an adaptation of MaxCount in that it is the Count
portion of the MaxCount query. Using the equations for the cases described in Fig. 3,
we calculate the CountRange as follows.

For each bucket we determine if the bucket is completely in or completely out of
the query space. First we find the beginning and ending time intervals. For each time
interval, we get the associated function �p given in Eq. 24 and its components. The
components �p given in Eq. 23 define the area above a line through Q1 and Q2 at
times t[ and t]. Figures 5 and 6 show these four lines. Figure 5 shows the shaded area
defined by:

�←−p = pQ2,t[ − pQ1,t] . (47)

Figure 6 shows the shaded area:

�−→p = pQ2,t] − pQ1,t[ . (48)

If �←−p or �−→p for bucket i is equal to the count of the bucket, then bucket i is
completely contained in the query. If �←−p and �−→p for bucket i are equal to 0, then
bucket i is not contained in the query. If neither of these is true, we approximate the
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Fig. 5 CountRange Q1 at t]
to Q2 at t[

Q 1

Q 2

lQ 2,t[

lQ 2,t]

lQ 1,t[

lQ 1,t]

(x0,l,υx,l)

(x0,u,υx,u)

count for bucket i as the max(�←−p ,�−→p ). That is, we calculate the number of points
in bucket i that contribute to the CountRange as:

counti =
⎧
⎨

⎩

bi if �←−p = bi ∨ �−→p = bi

0 if �←−p = �−→p = 0
max(�←−p ,�−→p ) otherwise

(49)

Fig. 6 CountRange Q1 at t[
to Q2 at t]

q1t2

Q 1

Q 2

lQ 2,t[

lQ 2,t]

lQ 1,t[

(x0,l,υx,l)

(x0,u, υx,u)
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This calculation requires that we keep the single dimension equations for Q1 and Q2

available and not discard them after finding �p (see Eq. 24).
Hence, we have the following algorithm for CountRange:

CountRange(H, Q1, Q2, t[, t])
input: A set of buckets H built by the index structure presented,

query points Q1(t) and Q2(t) and a query time interval (t[, t]).
output: the estimated CountRange.

1. Count ← 0 O(1)

2. for each bucket Bi ∈ D O(B)

3. Calculate(�←−p ,�−→p ) //using Eqs. 47–48 O(1)

4. Calculate(counti) //using Eq. 49 O(1)

5. Count ← Count + counti O(1)

6. end for
7. return Count O(1)

Theorem 38 The CountRange query runs in O(B) time.

Proof Consider two different data structures for our buckets: HashTables and R-
trees. In the case of indexing using an R-tree, the worst case requires that we
examine all buckets used in generating CountRange. It is possible that this list could
include all B buckets giving a worst case of O(B). In the case of using a HashTable,
we must examine all B buckets. By Lemma 19, and because Eqs. 37 and 49 are
calculated in constant time, each bucket can be examined to determine the count
that contributes to the CountRange query in constant time. Therefore, the algorithm
runs in O(B) time. ��

We note that CountRange is a simplification of the MaxCount operator in that
we do not examine every time interval. Further we have a slightly different form of
�p from Eq. 24 to find the count.

4.2 The threshold operators: range, count, sum and average

We implemented the ThresholdRange algorithm as shown below. The algorithm
relates to MaxCount in the way we calculate the aggregation. We maintain a running
count to find time intervals that exceed the threshold value M. If we set the threshold
value near the MaxCount value (M → MaxCount), ThresholdRange finds a small
interval containing the MaxCount. We demonstrate this in the experimental results,
Section 5.
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ThresholdRange(H, Q1, Q2, t[, t], M)

input: A set of buckets H build by the index structure presented,
query points Q1(t) and Q2(t), a query time interval [t[, t]],
and M is the threshold value

output: The estimated set of time intervals where R contains more
than M points.

01 - 08 are the same as the MaxCount algorithm.
09. TimeIntervals ← ∅ O(1)

10. for each TimeInterval ∈ TimePartitionOrder O(B)

11. CMaxCount ← calculate(MaxCount, MaxTime, TimeInterval) O(1)

12. if CMaxCount > M O(1)

13. TimeIntervals ← TimeIntervals
⋃

TimeInterval O(1)

14. end if
15. end for
16. Merge(TimeIntervals) O(B)

17. return TimeIntervals

We can analyze the running time of ThresholdRange similarly to the running
time of MaxCount and prove the following theorem.

Theorem 39 The estimated ThresholdRange query runs in O(B) time.

Proof The ThresholdRange algorithm differs from the MaxCount algorithm only
in lines 09-17. Lines 11-14 run in O(1) time. Line 10 executes lines 11-13 O(B)

times. In line 16, Merge(TimeIntervals) is a linear walk of the time intervals that
joins adjacent time intervals Ta and Tb when Ta

⋃
Tb would form a continuous

time interval. The calculation is trivially O(1) time for joining the adjacent intervals.
Hence, we conclude by Theorem 37 that the ThresholdRange runs in O(B) time.

��

Based on ThresholdRange, we give the following three operators:

ThresholdCount:
By adding a line between 14 and 15 in the ThresholdRange algorithm that counts
the merged time intervals, we can return the count of time intervals during the query
time interval where congestion occurs. This count of time intervals gives a measure
of variation in congestion. That is, if we have lots of time intervals, we expect that we
have a large number of pockets of congestion. Since ThresholdCount does not give
information relative to the entire time interval, it may need to be examined in light
of the total time above the threshold.

ThresholdSum:
By summing the times instead of using the

⋃
operator in line 13 of the

ThresholdRange algorithm, we can return the total congestion time during the
query time interval. This total gives a measure of the severity of congestion that may
be compared to the length of query time.
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ThresholdAverage:
By adding a line between lines 14 and 15 in the ThresholdRange algorithm that
finds average length of the merged time intervals, we can return the average length of
time each congestion will last. This average gives a different measure of the severity
of each congestion.

It is easy to see that and none of the changes to the ThresholdRange algo-
rithm affects the running time. Hence the ThresholdCount, ThresholdSum, and
ThresholdAverage algorithms run also in O(B) time.

5 Experimental results

We collected data from over 7,500 queries that were selected from a set of randomly
generated queries. The selection process weeded out most similar queries and kept
a set that represents narrow queries, wide queries, near corner or edge queries, and
queries outside the space contained in the database. Throughout our experiments,
we did not see significant accuracy fluctuation due to any of these types of queries.

Each experimental run consists of running all of the queries at several different
decreasing bucket sizes on a single data set. We made experimental runs against data
sets ranging from 10,000 points to 1,500,000 points.1

In the following experimental analysis, we measure the percentage error of the
estimation algorithm relative to the exact-count algorithm as follows:

ErrorRelative = |Exact Operator − Estimated Operator|
Exact Operator

(50)

Equation 50 provides a useful measure if the query returns a reasonable number of
points. Queries that return a small number of points indicate that we should use the
exact method.

For ThresholdRange, we measure the percentage of intervals given by the
accurate algorithm not covered by the estimation algorithm using the operator UC
for uncovered. That is, UC(a, b) returns the sum of the lengths of intervals in a not
covered by intervals in b . We divide the result by the accurate ThresholdSum to
determine the ThresholdRange error:

error = UC (Ext. ThresholdRange, Est. ThresholdRange)

Ext. ThresholdSum
(51)

We also measure the percentage of intervals given by the estimate algorithm not cov-
ered by the exact algorithm. We divide the result by the estimated ThresholdSum
to determine the ThresholdRange excess-error.

excess-error = UC (Est. ThresholdRange\Ext. ThresholdRange)

Est. ThresholdSum
(52)

We performed all the data runs on a Athlon 2000 with 1 GB of RAM. During each
of the queries the program does not contact the server tier and, thus, minimizes the
impact of running a server on the same computer. The program pre-loads all data
into data structures so that even the exact algorithms do not contact the server tier.

1Threshold aggregation runs go only to 1 million points at which we already achieve acceptable error.
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5.1 Data generation

Data for the experiments was randomly generated around several cluster centers.
The ith point generated for the database is located near a randomly selected cluster
at a distance between 0 and d, where d is proportional to i. This method is similar
to the Ziggurat [16] method of generating Gaussian (or normal) distributions used in
the GSTD [33] and G-TERD [35] spatiotemporal data generators [18]. However, our
method does not generate strictly Gaussian distributions since the distributions may
stretch and compress along an axis. Our goal was to generate a cluster that represents
a source location and velocity that has most elements starting near a center point
and decreasing as one moves to a boundary for the cluster. This method models
source regions where the objects all head about the same direction. A secondary
goal was to make certain that clusters were random in size and shape. The program
is also capable of approximating a Zipf distribution used in [6], [25], [31]. However,
a single Zipf distribution does not test the adaptability of our algorithm well. I.e. our
algorithm is capable of modeling a Zipf distribution and as such we could use a single
bucket. Figure 7 shows a sample of a data set with points projected onto the three
views. The clusters look even more random, because they can overlay one another.
When one looks at these, they nearly resemble the lights of a city from the air.

Along with a single Zipf distribution, we also note that a randomly generated
uniform-distribution is not a good distribution to use for these types of experiments.
Uniform distributions do not test the ability of the algorithm to adapt. In fact from
earlier experiments in [1] we have found that using such a distribution gives great
(though meaningless) results. The problem resolves to a system capable (and willing
to) model a uniform distribution finding a nearly perfect uniform distribution to
model. Hence these results are neither realistic, nor meaningful.

5.2 Parameter effects

The index space ranges from 0 to 100 in each dimension. The number of points in the
different data sets ranges from 10,000 to 1,500,000. The following parameters were
used in creating the index and finding the MaxCount.

Size of Buckets: The size of the buckets determines the number of possible buckets
in the index. In the experiments, buckets divide the space up such that there are 5 to
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20 divisions in each dimension.2 These divisions equate to bucket sizes ranging from
5 to 20 units wide in each dimension. Relative to our previous work [1], this algorithm
puts much more space into each bucket creating bigger buckets.

Query Location: Locating the query near the lower or upper corners affects relative
accuracy because the query returns very few points. Queries in this region are not
interesting because they rarely involve many points and represent a query region that
moves away from points in the database or barely moves at all. The small number of
points returned indicates use of the exact algorithms.

Query Types: In [1], we considered queries with several different characteristics:
dense, sparse, and Euclidean distance as it related to bucket size. By modeling the
skew in buckets, we minimize the effect of these characteristics to the point that
they did not impact the query error. Queries where the distance between the query
points was small appeared to do as well as wider queries providing they returned a
reasonable number of points. This result is a clear improvement over previous work
that assumed uniform density within a bucket.

Cluster Points: Index space saturation determines the number of buckets necessary
for the index. The number of cluster points does not appear to affect error as much
as the space saturation. Further, we do not consider a larger number of cluster points
reasonable since the index space approaches a uniform distribution as the number of
cluster points increases. Gaps introduce difficult areas to model when they are not
uniform. And once again we reiterate, uniform distributions are not useful. In our
experiments cluster points number between 10 and 50.

Histogram Divisions: Increasing histogram divisions to s > 5 had no affect on the
accuracy. This result is not unexpected because histograms are used to define a
trend function relative to trend functions on other axes. Increasing the histogram
divisions has a tendency to flatten the lines. However, normalization flattens the
trend function while maintaining the relationships between trends and hence this
behavior is easily explained. Thus, increasing histogram divisions only increases the
running time without increasing accuracy.

Threshold Value: The threshold value determines the accuracy when set to low
values compared to the number of points in the database. As expected, these extreme
point values produce accurate estimations. High values also follow this trend.

Time Endpoints: When dealing with either small time end points or small buckets,
the method is susceptible to rounding error. In particular, Eq. 37 contains both t6

and 1
t6 terms. For very small values, on the order of 1 × 10−54 for 64-bit doubles, these

calculations are extremely sensitive and care must be given to guard against rounding
error. Those errors showed in two ways. First, by a direct warning programmed into
the solution, and second, by a series of fairly stable time values for the MaxCount

2Some MaxCount runs included up to 40 divisions increasing accuracy, but not enough to warrant
the extra running time.
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Fig. 8 Ratio of the number of
buckets in the index to the
width of the space measured in
buckets
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followed by unstable variations when increasing the number of buckets. At some
point, smaller bucket sizes increase the likelihood of errors in both time and count
values. Also smaller buckets contain fewer points, which impacts the size of the
constants in Eq. 37. Hence, as the bucket size becomes smaller in successive runs, the
existence of instability in the time values after a series of stable values predicts that
an accurate MaxCount may be found in the previous larger bucket size. Throughout
our experiments, this condition was an excellent predictor of an accurate MaxCount.

The experiments demonstrated that 6-dimensional space compounds the problem
when creating small buckets. Creating an index with unit buckets would result in the
possibility of having 1 × 1012 buckets. Clearly this number is unrealistic for common
moving object applications where we may be dealing with million(s) of objects. In
practice the number of buckets needed to reach acceptable error levels was between
78,000 and 227,000 buckets. These numbers reflect the ability to reach error levels
under 5% and were roughly related to the saturation of the space by the points.
It should be clear that a higher saturation of the space by points would require
a larger number of buckets. Figure 8 shows that we had a roughly linear increase
in the number of buckets for an exponential increase in the space. This pleasant
surprise indicates that for unsaturated data sets, the exponential explosion of space
is manageable.

5.3 Running time observations

Figure 9 shows the average ratio of the exact MaxCount running time to the
estimated MaxCount running time as a function of the number of points in the
database. This result shows a nearly exponential growth when comparing the values
between 10,000 and 1,000,000. The leveling off occurs because the number of points
returned by the queries of 1 million points nearly equals the number of points
returned by the queries of 1.5 million points. This result precisely matches our
running-time analysis of the exact and estimation algorithms.

A natural question is when to use the exact versus the estimated methods. In runs
with a small number of points that need to be processed, the exact and estimation
methods run about equally fast. However, when the result size reaches values greater
than 40,000 (our experiments returned sets as large as 331,491), the estimation
algorithms run up to 35 times faster than the exact algorithms. Further, we note that
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Fig. 9 Ratio of exact running
time to estimated running time

the error is less predictable at smaller results sizes. Hence for small databases or in
queries that return small result sets, efficiency and accuracy both indicate using the
exact method. However, for large data sets greater than or equal to 1 million points,
the estimation method greatly out-performs the exact method.

5.4 Operator observations

As expected, we noticed that each operator runs in about the same time as
MaxCount. Only error values seemed to be different when studying different
types of aggregation (e.g., when studying overlap error in ThresholdRange versus
count error in MaxCount). Never-the-less, we have similarities between the results.
Almost all the figures in this section look like a view of mountains from a valley. That
is what we expected to see and the lower and flatter the terrain the better. Buckets
increase from back to front and point set sizes increase from left to right.

5.5 MaxCount

Figure 10 shows that increasing the number of buckets to the indicated values
dramatically decreases the MaxCount error. As the number of points increases we
also see a decrease in the error. Note that for larger buckets (e.g. smaller values on
the “Buckets per Dimension axis”), the error decreases at a slightly faster rate.

Fig. 10 MaxCount error
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Fig. 11 CountRange error

The exact MaxCount provided the values against which our estimation algorithm
was tested for accuracy. Since the method does not rely on buckets, and has zero
error, we note only that on queries with small result sizes, this method performs as
well, or better than the estimation algorithm.

5.6 CountRange

Other CountRange algorithms have achieved error values between 2% and 3%.
Using our method we conjecture that we could reduce the error because our method
of approximation, although much more complicated, theoretically adapts to skewed
distributions better than other methods. Figure 11 shows that we achieved errors
under 2% for 20 buckets across all the data sets, and in some cases, under 1%.

Count range also performs about the same speed as the threshold operators due
to its similar implementation.

5.7 ThresholdRange

Figures 12 and 13 give the ThresholdRange error and ThresholdRange excess
error respectively for T = 10. ThresholdRange error gives the percentage of the
exact intervals not covered by the estimation value, and ThresholdRange excess
error gives the percentage of the estimation not covering the exact. These figures
show that our method acts conservatively in covering more than is needed. However,

Fig. 12 ThresholdRange
error
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Fig. 13 ThresholdRange
error

at larger point-set sizes, we still achieve under 5% error. Figure 12 shows 0% error
caused by the point count staying above 10% in data sets containing more than 30,000
points. Figure 13 shows that we covered at least 10% more time in the query time
interval than needed until we reach larger point sets. Still, we showed improvement
with more buckets.

At T = 1,000, we see 0% error until we reach point sets of 500,000 and greater.
Figure 14 shows excellent results with buckets above 10. Also, Fig. 15 shows that the
excess error drops to near 0% as well.

Figures 16 and 17 show what happens when we find an interval near the
MaxCount value. The two figures show the consequences of the estimation intervals
being offset from the exact intervals by small amounts. The error decreases with
more buckets.

5.8 ThresholdCount

This operator is the only operator that does not have relative error measurements.
Instead we report the average number of intervals the estimation method differs from
the exact method. As you can see, we differ by two from the correct number.

Figure 18 shows the average error at T = 10 where the errors are small. Figure 19
(T = 1,000) looks much worse, but in reality we are still below two intervals off.

Fig. 14 ThresholdRange
error, T = 1,000
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Fig. 15 ThresholdRange
excess error, T = 1,000

Fig. 16 ThresholdRange
error, T = 100,000

Fig. 17 ThresholdRange
excess error, T = 100,000
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Fig. 18 ThresholdCount
error, T = 10

We also note that the estimation may split or combine an interval incorrectly when
the intervals are very close together without greatly affecting the error of other
operators. Given this possibility, the results are excellent.

5.9 ThresholdSum

ThresholdSum gives the total time above the threshold T. As one can see in Fig. 20,
at higher bucket counts we have excellent error rates at T = 10. We didn’t always
expect great results at this threshold level across all data sets, but ThresholdSum
gives this result consistently all the way across.

We do note that when the threshold approaches MaxCount, we see extremely
good accuracy as shown in Fig. 21.

5.10 ThresholdAverage

ThresholdAverage gives the average length of each time interval. Figure 22 shows
the now familiar mountains descending below 5% error at 20 buckets for T = 10.
The Figure also shows that even though a few of the data sets tended to have good
results at five and ten buckets, these results are not guaranteed in general. In Fig. 23,
the error reaches a plateau below 5% with only small bumps in the data.

Fig. 19 ThresholdCount
error, T = 100
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Fig. 20 ThresholdSum error,
T = 10

6 Related work

Our research fits into the general area of moving object and spatio-temporal
operators, which attracted a huge interest in recent years, shown by the recent
textbooks [12], [23], [26], and [29]. However, our research is still unique in several
respects. Section 6.1 discusses the background of the MaxCount operator, which was
developed by our research group. Section 6.2 discusses previous work that is related
to CountRange and the threshold operators.

6.1 The uniqueness of the MaxCount operator

To our knowledge, the MaxCount operator is a unique idea of the second author of
the present paper. The MaxCount operator was first described in [25] by the second
author and Yi Chen, a graduate student at the University of Nebraska-Lincoln.
Revesz and Chen [25] considered only 1-dimensional moving point objects, which
were represented in a 2-dimensional static point in a dual space. Their algorithm
generated for any N points in this dual space, an O(N2) size data structure that
divided the dual space into N regions, such that in each region all the possible

Fig. 21 ThresholdSum error,
T = 100,000
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Fig. 22 ThresholdAverage
error, T = 10

query points had the same MaxCount. Therefore the problem of MaxCount was
reduced to the problem of point location in a subdivision of the plane. It was not
a practical solution because of the quadratic size of the data structure. Moreover,
the data structure was static, that is, it had to be regenerated every time a point
was inserted into the database. Chen and Revesz [5] presented a second approach
to the MaxCount problem. This approach also was limited to 1-dimensional moving
objects, but it made a brake from an exact solution and was the first MaxCount
algorithm to consider estimation. Chen and Revesz [5] assumed that the points within
each bucket had a uniform distribution.

Later the first author, while a graduate student at the University of Nebraska—
Lincoln, and the second author developed a new approach to the MaxCount
operator. The distribution of the buckets was extended from uniform to the one
defined by trend functions as in Definition 14. A preliminary result for 2-dimensional
moving objects was presented in [1, 2]. That preliminary result did not consider
higher dimensions, and it also had only a static index structure.

The present work, which is a major extension of the techniques in [1] to make it
a dynamic algorithm and applicable to d-dimensional moving points, is the final and

Fig. 23 ThresholdAverage
error, T = 1,000
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Table 2 MaxCount operator summary

Max. Worst case Space Exact Static or Reference
dim. time or est. dynamic

1 O(log N) O(N2) Exact Static Revesz and Chen [25]
1 O(B log B) O(B) Est. Static Chen and Revesz [5]
2 O(B log B) O(B) Est. Static Anderson [1]
d O(B) O(B) Est. Dynamic present paper

N is the total number of moving points and B is the number of buckets in the index.

only journal article on MaxCount. The prior works on MaxCount were presented
only in conferences. Table 2 summarizes the history of the MaxCount operator.

The MaxCount operator is a new moving object operator that cannot be reduced
to other known operators. In particular, the Count and the Max operators have only
a titular relationship to the MaxCount operator because one cannot use the Count
and Max operators to implement the MaxCount operator with a continuously
moving query space. Hence Table 2 does not discuss Count and Max as related work.

6.2 The CountRange and the threshold operators

For the CountRange and the threshold operators we cannot make as strong claim
to uniqueness as in the case of the MaxCount operator. CountRange and various
Range operators were defined by other authors and studied in many prior papers,
which are summarized in Table 3. These operators are discussed in one table

Table 3 CountRange and Range operators summary

Max. Worst case Worst case Exact Reference
dim. time space or est.

2 O(N
3
4 +ε + k) O(N) Exact Kollios et al. [15]

2 O(log2 N + k) O(N2)3 Exact
2 O(N) O(N) Exact Papadopoulos et al. [19]
3 O(N) O(N) Exact Saltenis et al. [27]
3 O(N) O(N) Exact Cai and Revesz [4]
d O(N) O(N) Exact Porkaew et al. [22]
d O(Bd−1 logd

B N) O( N
B logd−1

B N) Exact Zhang et al. [36]
1 O(log2 N) O(N log N) Est. Revesz [24]
2 O(logB N + C

B ) O(N) Est. Kollios et al. [15]
2 O(B) O(B) Est. Choi and Chung [6]
d O(B) O(B) Est. Tao, Sun and Papadias [31]
d O(

√
N) O(N) Est. Tao and Papadias [30]

d O(B) O(B) Est. present paper

N is the total number of moving points and B is the number of buckets in the index. All algorithms
are dynamic, that is, allow insertions and deletions of moving objects into the index.
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because several Spatiotemporal-Range algorithms can be modified to return the
CountRange value by simply counting the number of objects returned.

The related works summarized in Table 3 use a variety of different techniques.
Kollios et al. [15] uses a simplex range method. Papadopoulos et al. [19] uses an
R∗-tree model. Saltenis et al. [27] and [4] define time-parametric R-trees. Cai and
Revesz [4] usually gives a tighter parametric bounding box than [27] gives for the
same set of moving objects in each node of the time-parametric R-tree. Porkaew
et al. [22] is another modification of the R-tree model, while Zhang et al. [36] uses
an ECDF-B-tree. Revesz [24] also uses a modified ECDF-B-tree and estimates the
points below a line in the dual space by a formula that reduces to a set of ECDF-
B-tree queries. Choi and Chung [6] seems to be the first spatio-temporal selectivity
estimation method with buckets. Tao and Papadias [30] give an MVRB-tree-based
estimation algorithm.

As can be seen, all the above methods differ in technique from our particular
approach to the CountRange and various threshold operators. Our approach is
related to our MaxCount algorithm, which we defined and solved first, only later
exploring the relationship between MaxCount and the other operators. Hence our
CountRange and threshold algorithms are novel approaches to known problems.
The new approaches yield algorithms that compare well to previous algorithms in
the worst case running time and space requirements, as shown in Table 3.

There are some additional related works which are not shown in Table 3 because
they use different assumptions than the above related works. These can be grouped
into three groups are follows.

The first group of related works restrict the movement of moving objects in
some way. Civilis et al. [7], [8] gave indexing methods that use networks, such
as roads. Pfoser and Jensen [21] also considered spatiotemporal range queries in
networks. Gupta et al. [11] gave a technique for answering spatiotemporal range
queries on objects that move along curves in a planar graph. de Almeida and
Güting [10] proposed the MON-tree to index moving objects in networks to find
the spatiotemporal range and windows queries.

The second group of related works consider only predicting the positions of
particular (non-linearly) moving objects at some future time. Mokhtar et al. [17]
queries the past, present, and future positions of moving objects in constraint
databases. Tayeb et al. [32] adapted the PMR-quadtree [28] for indexing moving
objects to answer time-slice queries, which they called instantaneous queries, and
infinitely repeated time-slice queries, called continuous queries. Search performance
is similar to quadtrees and allows searches in O(log N) time. Recently, Pelanis et al.
[20] proposed the RPPF -tree that indexes past, present and predictive positions of
moving points, and extends the previous work on TPR-trees [27] with a partial
persistence framework. Related to these papers, Trajcevski et al. [34] present a
method for generating pseudo-trajectories of moving objects about which only
limited information is known.

Finally, the third group of related works do not allow the query to move or change
shape over time. For example, Hadjieleftheriou et al. [14] works with this assumption
to find an efficient estimation method for the areas where the density of objects is
above a specific threshold during a specific time interval.
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7 Future work and conclusion

A practical future work may include implementing our algorithms in a grid com-
puting environment to further decrease the running time. An interesting and deep
theoretical open problem is to improve Lemma 32 by proving a constraint on the
approximation ratio or some confidence value for the estimation.

We started this research with the MaxCount problem naturally surfacing while we
looked at GIS applications regarding congestion, like the example problems of the
introduction. Those and related problems will surely play an in increasingly greater
role in GIS as mobile phones and wireless computers become even more ubiquous,
and there will be a major need to monitor and service them efficiently.

We hope our work inspires further interdisciplinary research and an appreciation
of various disciplines, new or old, in fashion or out of fashion, and with large
government funding or without. In particular, our work relies more than usual in
the indexing area on differential calculus. That is a cautionary tale in an era when
computer science departments are dropping introductory calculus courses. Successful
interdisciplinary research may involve more than expected.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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