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Introduction and Motivation

® Known issues of heat pumps are:
» Insufficient at low ambient temperature — auxiliary heat
» EXcess capacity at high ambient temperature — cycling

® Shen et al. (2014) mentions over-capacity as key to good
seasonal performance

® Previous presentation (paper #2111):

» Vapor injected compression increases low temperature capacity
and COP

» Hybrid control further increases capacity and COP, especially if
airside maldistribution occurs

® No good illustration available/found on the effect of vapor
injection onto heating seasonal performance for vapor injected
compression, hybrid control, and influence of system parameters
» Starting point for this work
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Calculation Method

® Based on heating seasonal performance factor calculation
(HSPF) of ANSI/AHRI 210/240

® Consideration of auxiliary heat and part load degradation
® Consideration of low temperature cutout

® Inter/extrapolation based on measured temperature instead
of test plan temperature

® Addition of Minneapolis TMY3 data (NREL, 2013)

® Design heating requirement set to yield a heat pump
balance point of -10°C for baseline single stage system

July 15, 2014 Refrigeration and Air Conditioning Conference



Capacity and Building Heating Requirement

® Single stage, single speed CEC system opposite trend of required
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% Capacity and Building Heating Requirement

® Single stage, single speed CEC system opposite trend of required

® 3Single stage, variable speed DOE system reduces overcapacity
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Capacity and Building Heating Requirement

Normalized Capacity in [kW/kW g _44e(]

Single stage, single speed CEC system opposite capacity trend of required
BO: Single stage, variable speed DOE system reduces high temp. overcapacity

B1 opt: Single stage, variable speed vapor injected DOE system reduces low
temp. undercapacity
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Heating Coetficient of Performance (COP)

COP in [-], Part load factor in [-],
Heating requirement covered by HP in [-]

w
n

w
o

g
wn

N
o

=
wn

=
o

o
U

o
o

July 15, 2014

® Exemplarily shown for BO: DOE single stage system
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% Heating Coefficient of Performance (COP)

® Exemplarily shown for BO: DOE single stage system
® Part load degradation toward building balance point (18.3°C)
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Heating Coefficient of Performance (COP)

COP in [-], Part load factor in [-],
Heating requirement covered by HP in [-]

® Exemplarily shown for BO: DOE single stage system
® Part load degradation toward building balance point (18.3°C)
® System COP degraded below HP balance point due to aux. heat
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Heating Seasonal Performance Factor (HSPF)

HSPF [Btu/W-h] >

® Vapor injection (VI) benefit depends on compressor speed
»  B1: match single stage speed,
»  B1: matched single stage capacity or
» combination of both (e.g. B1: optimum)

® Largest HSPF improvement for colder climates (climate zone 5 and Minneapolis)

® Hybrid control increases HSPF by 1% relative to same speed VI case

» Increased capacity
— Part load degradation for higher ambient temperatures
— Reducing compressor speed would further increase benefits

»  Does not include additional benefits for airside maldistribution (!)
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Parametric Studies:
Design Heating Requirement and Balance Point

® All subsequent parametric studies for Minneapolis temperature data

® Change of design heating requirement @ -10°C amb. temp.
» Optimum value = 15 kW

® Heat pump (HP) balance point more intuitive measure
» Optimum for both configurations = 15°C
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Parametric Studies:
Share of Heating Requirement and Energy Consumed

® Optimum HP balance point for both configurations = 15°C
» Some coverage of annual heating requirement by aux. heat
» Approx. 10% of consumed energy for BO
» Tradeoff: Part load losses <« Auxiliary heat
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Parametric Studies:

Part Load Losses - Cyclic Degradation Coefficient

HSPF [Btu/Wh]

® Cyclic degradation coefficient

» Estimate part load degradation due to cycling

» Shift of opt. design heating requirement to lower temperatures

» Shift of optimum HP balance point to lower temperatures
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Parametric Studies:
Influence of External Static Pressure (Indoor Fan Coil)

® External static known to negatively affect se asonal cooling performance
® Fan curve of actual test setup constant flow rate
® Include increased fan power consumption in HSPF
® Relatively small penalty even for higher external static pressures
® 187 Pa average external static of field study (Proctor, 2011)
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Parametric Studies:
Influence of Cutout Temperature

® Discharge temperature/ambient temperature:
» Assumed offset of 12 K, max discharge temperature of 135°C
» No cutout for vapor injected system
» -27°C cutout for baseline system — approx. 1 % HSPF penalty (baseline)
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Conclusions and Future Work

® Low ambient temperature capacity most important factor for a
high HSPF.

» Part load degradation sets upper limit

» Compressors with extremely wide frequency range (e.g. 10-100 Hz)
should be investigated to overcome the above issue

» Benefit of vapor injected system result of increase in low ambient
temperature capacity

® Low ambient temperature cutout no serious concern for the HSPF
of the tested system - even for cold climates

® External static pressures as observed in practice do not lead to a
large degradation of seasonal heating performance
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