

2014 Purdue Conferences Compressor Engineering Refrigeration and Air Conditioning High Performance Buildings

Effects of Vapor Injected Compression, Hybrid Evaporator Flow Control, and Other Parameters on Seasonal Energy Efficiency.

Christian K. BACH*, Eckhard A. GROLL, James E. BRAUN, W. Travis HORTON

Purdue University Herrick Laboratories bachc@purdue.edu, groll@purdue.edu, jbraun@purdue.edu, wthorton@purdue.edu

- Introduction and Motivation
- Calculation Method
- Capacity, COP, and Building Heating Requirement
- Results for different system configurations
- Parametric Studies
- Conclusions and future work

- Known issues of heat pumps are:
 - » Insufficient at low ambient temperature \rightarrow auxiliary heat
 - » Excess capacity at high ambient temperature \rightarrow cycling
- Shen et al. (2014) mentions over-capacity as key to good seasonal performance
- Previous presentation (paper #2111):
 - » Vapor injected compression increases low temperature capacity and COP
 - » Hybrid control further increases capacity and COP, especially if airside maldistribution occurs
- No good illustration available/found on the effect of vapor injection onto heating seasonal performance for vapor injected compression, hybrid control, and influence of system parameters
 - » Starting point for this work

- Based on heating seasonal performance factor calculation (HSPF) of ANSI/AHRI 210/240
- Consideration of auxiliary heat and part load degradation
- Consideration of low temperature cutout
- Inter/extrapolation based on measured temperature instead of test plan temperature
- Addition of Minneapolis TMY3 data (NREL, 2013)
- Design heating requirement set to yield a heat pump balance point of -10°C for baseline single stage system

• Single stage, single speed CEC system opposite trend of required

- Single stage, single speed CEC system opposite trend of required
- Single stage, variable speed DOE system reduces overcapacity

- Single stage, single speed CEC system opposite capacity trend of required
- B0: Single stage, variable speed DOE system reduces high temp. overcapacity
- B1 opt: Single stage, variable speed vapor injected DOE system reduces low temp. undercapacity

• Exemplarily shown for B0: DOE single stage system

- Exemplarily shown for B0: DOE single stage system
- Part load degradation toward building balance point (18.3°C)

- Exemplarily shown for B0: DOE single stage system
- Part load degradation toward building balance point (18.3°C)
- System COP degraded below HP balance point due to aux. heat

Heating Seasonal Performance Factor (HSPF)

- Vapor injection (VI) benefit depends on compressor speed
 - » B1: match single stage speed,
 - » B1: matched single stage capacity or
 - » combination of both (e.g. B1: optimum)
- Largest HSPF improvement for colder climates (climate zone 5 and Minneapolis)
- Hybrid control increases HSPF by 1% relative to same speed VI case
 - » Increased capacity
 - Part load degradation for higher ambient temperatures
 - Reducing compressor speed would further increase benefits
 - » Does not include additional benefits for airside maldistribution (!)

Parametric Studies: Design Heating Requirement and Balance Point

- All subsequent parametric studies for Minneapolis temperature data
- Change of design heating requirement @ -10°C amb. temp.
 - » Optimum value ≈ 15 kW
- Heat pump (HP) balance point more intuitive measure
 - » Optimum for both configurations $\approx 15^{\circ}C$

Share of Heating Requirement and Energy Consumed

- Optimum HP balance point for both configurations ≈ 15°C
 - » Some coverage of annual heating requirement by aux. heat
 - » Approx. 10% of consumed energy for B0
 - » Tradeoff: Part load losses \leftrightarrow Auxiliary heat

- Cyclic degradation coefficient
 - » Estimate part load degradation due to cycling
 - » Shift of opt. design heating requirement to lower temperatures
 - » Shift of optimum HP balance point to lower temperatures

Parametric Studies: Influence of External Static Pressure (Indoor Fan Coil)

- External static known to negatively affect se asonal cooling performance
- Fan curve of actual test setup constant flow rate
- Include increased fan power consumption in HSPF
- Relatively small penalty even for higher external static pressures
- 187 Pa average external static of field study (Proctor, 2011)

- Discharge temperature/ambient temperature:
 - » Assumed offset of 12 K, max discharge temperature of 135°C
 - » No cutout for vapor injected system
 - » -27°C cutout for baseline system approx. 1 % HSPF penalty (baseline)

- Low ambient temperature capacity most important factor for a high HSPF.
 - » Part load degradation sets upper limit
 - » Compressors with extremely wide frequency range (e.g. 10-100 Hz) should be investigated to overcome the above issue
 - Benefit of vapor injected system result of increase in low ambient temperature capacity
- Low ambient temperature cutout no serious concern for the HSPF of the tested system even for cold climates
- External static pressures as observed in practice do not lead to a large degradation of seasonal heating performance

- Proctor, J., Chitwood, R., and Wilcox, B. A., 2011, *Efficiency Characteristics and Opportunities for New California Homes*, Proctor Engineering Group, Ltd.
- Shen, B., Abdelaziz, O., and Rice, C. K., 2014, Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps, 11th IEA Heat Pump Conference 2014, May 12-16 2014, Canadian GeoExchange Coalition, Montréal (Québec) Canada, Paper P.6.11.
- NREL, 2013, National Solar Radiation Data Base 1991- 2005 Update: Typical Meteorological Year 3 - List of Sites in Alphabetical Order by State and Site Name, location 726580, Minneapolis-St Paul Int'l Arp, downloaded 09/22/2013 from http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html.

 \rightarrow additional references cited in manuscript