
Purdue University
Purdue e-Pubs
School of Aeronautics and Astronautics Faculty
Publications School of Aeronautics and Astronautics

2012

Nonlinear Effects in Squeeze Film Gas Damping
on Microbeams
S Chigullapalli
Purdue University

A Weaver
Purdue University

Alina A. Alexeenko
Purdue University - Main Campus, alexeenk@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/aaepubs

Part of the Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Chigullapalli, S; Weaver, A; and Alexeenko, Alina A., "Nonlinear Effects in Squeeze Film Gas Damping on Microbeams" (2012). School
of Aeronautics and Astronautics Faculty Publications. Paper 4.
http://dx.doi.org/10.1088/0960-1317/22/6/065010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77946309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Faaepubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/aaepubs?utm_source=docs.lib.purdue.edu%2Faaepubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/aaepubs?utm_source=docs.lib.purdue.edu%2Faaepubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/aae?utm_source=docs.lib.purdue.edu%2Faaepubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/aaepubs?utm_source=docs.lib.purdue.edu%2Faaepubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=docs.lib.purdue.edu%2Faaepubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


Nonlinear Effects in Squeeze Film Gas Damping on

Microbeams

S Chigullapalli, A Weaver and A Alexeenko

School of Aeronautics & Astronautics, Purdue University, West Lafayette, IN 47907

E-mail: alexeenk@ecn.purdue.edu

Abstract.

We consider squeeze film gas damping during microbeam motion away and toward

a substrate as occurs during opening and closing of RF switches and other MEMS

devices. The numerical solution of the gas damping problem in two-dimensional

geometries is obtained based on the Boltzmann-ESBGK equation. The difference in

damping force between downward and upward moving beams is shown to vary from

as little from as 5% for low beam velocities of 0.1m/s to more than 200% at 2.4m/s.

For a constant velocity magnitude of 0.8m/s, this difference increases from 60% to

almost 90% when the pressure is reduced by an order of magnitude. The numerical

simulations are consistent with earlier observations of a significantly higher damping

force during the closing of a capacitive RF MEMS switch reported by Steeneken et

al. (JMM, 15, 176-184, 2005). The physical mechanism leading to this non-linear

dependence of the damping force on velocity has been attributed to the differences in

the flow rarefaction regime for the gas in the microgap.
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1. Introduction

Various micro-electro-mechanical system (MEMS) devices involve microstructures in

large-displacement motion. Examples include accelerometers, RF switches and filters

[1]. The dynamics these devices is governed by coupled mechanical, electrical and flu-

idic phenomena. As the device size decreases the surface forces such as fluid damping

dominate over the volume forces such as inertia due to the large surface to volume ratio.

Prediction of the gas damping force therefore is important for design of such moving

microstructures. Of specific interest is the squeeze film damping, which is the force gen-

erated when gas is pushed to or pulled out in a thin gap of fluid between two structures

in relative motion.

At low speeds, the gas flows is incompressible and can often be described by the

Reynolds equation, a simplified form of the Navier-Stokes equations with negligible con-

vective terms. Reynolds equation is often used to describe fluidic effects in microsystems

with gas confined in long gaps. However, the Reynolds and Navier-Stokes description

breaks down when the characteristic size decreases and the flow transitions to rarefied

regime. The flow rarefaction is characterized by the Knudsen number, the ratio of the

molecular mean free path (about 60nm at the standard atmosphere conditions) to the

characteristic size of the problem, i.e. the gap between the moving structures. There

are a number of gas-damping models[2, 3] developed for a variety of geometries and

ranges of Knudsen numbers. Squeeze-film damping experiments conducted by Andrews

et al. [4] and Sumali [5] were used to validate models based on the continuum Reynolds

equation for rigid structures. Similarly, Nayfeh and Younis [6] developed a model for

a flexible clamped-clamped beam and their calculations agreed well with experimental

data obtained by Legtenberg and Tilmans [7]

Martin et al. [8] presented simple models for determining the damping of micro-

cantilever, bridge, and paddle resonators in vertical, horizontal, and torsional motion,

operating in the free-molecular-flow regime with validity up to velocities approaching

20% of thermal speed. The Boltzmann equation is a general form of the gas transport

equation based on the kinetic theory and can be reduced to Navier-Stokes equations in

the near-continuum, small Knudsen number limit. Based on the numerical solution of

the Boltzmann ES-BGK equation, Guo and Alexeenko [9] developed a simple expression

for damping coefficient that is valid through slip, transitional and free-molecular regime.

However, all of these models are developed based on the assumption that the direction

of beam motion does not affect the magnitude of resistance from the fluid.

The squeeze-film damping is often characterized by the value of the damping

coefficient cf and the quality factor Qn defined as follows

cf =
F

vbeamL
(1)
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Qn =
mωn

cf
(2)

ωn = γ2
n

√

EI

ρsbtL4
(3)

where L, b, t are length, width and thickness, E is the Young’s modulus and I = bt3/12 is

the area moment of inertia of the planar beam, n is the vibrational mode corresponding

to the frequency ωn. For MEMS dynamics models the frequently made assumption is

that the velocity of the motion is small enough that the damping force depends linearly

on the velocity. Thus the damping coefficient is constant with respect to velocity and

the direction of beam motion does not affect the damping parameters.

Steeneken et al. [10] used a high time-resolution detection set-up to determine

dynamics and gas damping force in a RF MEMS capacitive switch. They showed that

the damping coefficient during switch closing was higher than that during the opening.

In particular, during opening the damping force followed the slip-flow equation at small

gaps and approached the no-slip flow curve at larger gaps. Our quasi-steady simulations

show a similar trend with the damping force during closing is much higher than that

during opening for the same velocity magnitude. The challenge of selecting an adequate

description for gas damping in MEMS switches therefore consists in the fact that the

Knudsen number, velocity magnitude, and velocity direction all vary during the switch

operation. In this paper, we show the effects on the damping force for various beam

velocities and two different Knudsen numbers from the numerical solution of Boltz-

mann model kinetic equations. The difference between the predicted damping forces

for upward and downward moving beams is higher at larger beam velocities and higher

Knudsen numbers. The effect of direction of motion of the beam on the convergence

rate is explained in terms of local Knudsen number and entropy generation rate.

The remainder of the paper is organized as follows. Section 2 presents briefly the

governing equations and numerical solution method for the gas damping simulations.

Section 3 describes the geometry and simulation conditions. Finally in Section 4 we

present results for 2D squeeze-film damping and show the effect of beam velocity

magnitude and direction on the damping force calculated from numerical simulations.

The simulation results are compared qualitatively with the experimental observations

of damping force by Steeneken et al.[10].

2. Gas Damping Modeling Approach

The simulations of the gas damping are performed based on the Boltzmann-ESBGK

model of rarefied gas flows as described below.
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2.1. ES-BGK Equation

The full Boltzmann Model Kinetic equation in three dimensions is of the form:

∂f

∂t
︸︷︷︸

Transient term

+ cx
∂f

∂x
+ cy

∂f

∂y
+ cz

∂f

∂z
︸ ︷︷ ︸

Convective term

= −ν(f − fγ)
︸ ︷︷ ︸

Collision term

(4)

The ellipsoidal-statistical model (ES-BGK), introduced by Holway [11] where the

Maxwellian fγ of the standard BGK model is replaced by an anisotropic Gaussian. This

model can reproduce transport coefficients corresponding to arbitrary Prandtl numbers

(Pr) while the standard BGK model gives a Pr = 1.

fγ =
ρ

√

det(2πT)
e[−

1

2
(~c−~V )TT

−1(~c−~V )] (5)

~c− ~V = [cx − u, cy − v, cz − w]

ρT =
1

Pr
ρRTI + (1−

1

Pr
)ρ⊖

ρ⊖ =< (~c− ~V )⊗ (~c− ~V )f >

ρRTI =< (~c− ~V )⊗ (~c− ~V )fγ,BGK >

where notation <> denotes an expectation value and ⊗ denotes a tensor product. The

ES-BGK collision term satisfies the conservation of mass, momentum and energy which

may be written as
∫

mSdc = 0,

∫

mciSdc = 0,

∫
m

2
c2Sdc = 0

The production of entropy is always positive (H-theorem) as presented by Andries

et al. [12],

−k

∫

ln fSdc ≥ 0

A 2-dimensional explicit ES-BGK solver was developed in Ref. [18] and it was

shown that Boltzmann model equations can provide a practical modeling framework for

a wide range of Knudsen numbers. In this paper, we use an unsteady, unstructured 3D

finite volume solver for all the simulations.

3. Numerical Method

The solver is based on the finite volume method in the physical space and the discrete

ordinate method in the velocity space with an implicit time discretization. The velocity

space discretization is implemented using both Cartesian type with uniform velocity

abscissas and spherical type meshes up to 16th order Gauss-Hermit quadrature [14] in

velocity magnitude and both 3/8th rule and constant interval in angles. The Carte-

sian type consists of discretization A Cartesian mesh of size 10× 10× 10 with a cut-off
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of cmax = 5.5 was used in discretization of velocity mesh for all simulations in this paper.

The macroparameters such as density, velocity and temperature are then calculated

as:

ρ =
∑

j

fjwj (6)

ρ~V =
∑

j

~cfjwj (7)

3

2
ρT =

∑

j

((cx − u)2 + (cy − v)2 + (cz − w)2)fjwj (8)

where wj is the weight associated with the jth ordinate in velocity space.

The discretization in the physical space is based on arbitrary finite volume meshes.

CuBit and Gambit were used to create the various meshes for the different tests. The

solver has capability to read the input files from aforementioned grid generators and

partitions them by using ParMETIS (parallel version of METIS) [20] to create local

meshes. Starting with the full 3D ESBGK equation:

∂f

∂t
︸︷︷︸

Transient term

+ cx
∂f

∂x
+ cy

∂f

∂y
+ cz

∂f

∂z
︸ ︷︷ ︸

Convective term

= −ν(f − fγ)
︸ ︷︷ ︸

Collision term

(9)

The ESBGK equation for each discrete velocity ordinate cj is written in the form of

a linear system. An algebraic multigrid solver (AMG)[16, 17] is used for the solution of

these linearized equations [15]. Details for discretization of the different terms, algorithm

for implementation of Dirichlet and extrapolation conditions can found in Ref [15]. For

all the steady 2D simulations the linear system is automatically set-up to solve the

equivalent equation:

cx
∂f

∂x
+ cy

∂f

∂y
︸ ︷︷ ︸

2D−Convective term

= −ν(f − fγ)
︸ ︷︷ ︸

Collision term

(10)

Following the discrete velocity approach suggested by Mieussens [13], the function

fγ(xi, tk, cj) for the BGK type equilibrium equation is chosen in the form

fγ = α1e
β.p (11)

β = [−α2, α3,−α4, α5,−α6, α7, α8, α9, α10] (12)

p = [(c′x)
2, c′x, (c

′

y)
2, c′y, (c

′

z)
2, c′z, cxcy, cycz, czcx]

T (13)

where c′x = cx − u, c′y = cy − v, c′z = cz − w represent the thermal velocities. The

coefficients (αs) can be found from the discrete set of mass, x-momentum, y-momentum,

z-momentum and energy conservation equations and are solved iteratively using the

Newton’s method. For detailed description of the conservative discretization of the

collision term, linearization of the ES-BGK equations and boundary conditions please

see Ref. [21].
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4. Simulation Setup

All 2D damping simulations were performed on RF MEMS switch. The electroplated

Nickel fixed-fixed beam has dimensions of 400µm length, 120µm width and 2µm

thickness. The 2D slice of the beam considered here is at a gap size of 3.52µm.

Due to the symmetry of the problem only half of the beam is modeled. The top

and right boundaries are open to free stream air and thus are designated as pressure

inlets. Wall boundary conditions (BC) are applied to the bottom substrate and

the beam boundaries. Figure 1 indicates these boundary conditions. To setup the

simulations, spatial meshes were constructed and nominal grid sizes were determined

through Richardson Extrapolation (RE). Solution dependence on velocity space and

unsteady effects are also investigated.

Figure 1. Nominal 50x50 mesh and applied BC’s

Spatial grid convergence study was performed for a downward beam with highest

velocity of 2.44m/s at 0.1 atm. Spatial grids of sizes 50 × 50 and 100 × 100 result in

approximately 9% and 2% higher damping forces respectively when compared to value

from Richardson’s Extrapolation (RE). The effect of velocity space discretization on

the damping force calculations has been studied for the same case. A Cartesian mesh

of size 203 and a spherical mesh of size 8 × 32 × 16, i.e., 8th order accurate with 32

and 16 constant angles in θ and φ, result in nearly identical damping forces, however

the Cartesian mesh requires more than twice the computational time. Using a coarser

Cartesian mesh of size 103 results in approximately 5% higher damping force than that

computed from the other discretizations. This mesh is computationally least expensive

taking only half the computational time as a spherical mesh and therefore has been used

for all simulations in this paper.

Unsteady effects are investigated to ensure numerical accuracy of steady state

iterations to convergence. A transient simulation of a beam moving at −0.8m/s using

a dimensional time-step of 6.25×10−3s resulted in identical damping force and pressure

fields as shown in Fig. 2. However, the time taken for a transient simulation is 38 hours

while it is only 24 hours for the steady simulation. As such, for the remainder of the

paper, solutions from steady state simulations are used.
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P / P0

Figure 2. Transient vs. steady state comparisons for beam velocity of −0.8m/s

5. Results and Discussion

Damping forces for an upward and downward moving beam as well as pressure

fields, local Knudsen numbers, and gas flow velocities are obtained from the ES-BGK

simulations. Figure 3 shows pressure contours for upward and downward moving beams

at the highest and lowest velocities of 0.8m/s and 2.44m/s. The non-dimensional

pressure ranges from 1.35 to 0.8 for V = 0.8m/s and from 3.4 to 0.6 at V = 2.44m/s.

Therefore the fluid is compressed at least three times more for a downward moving

beam at higher velocity. However the fluid is rarefied only a little more for an upward

moving beam at the higher velocity. Therefore at high velocities, the difference between

magnitude of the damping force is very high and sometimes over 200% as shown in the

next subsection.

Figure 3. Pressure contours for varying beam direction of motion for V = 0.8m/s

and 2.44m/s,Kn = 0.14
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Figure 4. Y-velocity contours for upward and downward-moving beam at 0.8m/s

and 2.44m/s

Figure 4 shows the velocity magnitude of flow around both the downward and

upward moving beams. The maximum fluid velocity for the downward moving beam at

speed 0.8m/s is 17m/s and 12m/s for the upward moving beam. On the other hand,

the highest velocity of 104m/s is seen at the corner below the beam for the downward

moving beam at speed 2.44m/s whereas the highest velocity of fluid is only 27m/s for

the upward moving beam.

Figure 5. Kn based on gap size for upward and downward-moving beam at 0.8m/s

and 2.44m/s

The degree of compression and rarefaction can be understood in terms of the local

Knudsen number based on characteristic length of gap-size. As shown in Fig. 5, the
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range of Knudsen number for upward and downward moving beams at V = 0.8m/s is

0.105 to 0.185. However this range is much larger for the case of the higher velocity.

Contours of Knudsen number based on local mean free path and gap size, as shown in

Fig. 5, indicate different regions of rarefaction relative to the entropy generation rate

parameter. The use of a constant geometrical dimension to define the Knudsen number

length scale fails to capture the flow gradients which are responsible for the nonlinear

effects on convergence rates. Note that regions of large gradients are not the only place

for rarefied flows to exist, as even a zero bulk fluid velocity at low enough pressure could

be rarefied. Defining Kn based on a constant length scale is therefore more representative

of the local pressures and temperatures and is well-suited for categorizing the free stream

gas.

5.1. Effect of Direction of Motion on Damping Force

Beam velocity effects on the pressure field and resulting damping force predictions are

performed using the nominal spatial mesh of 50× 50 and velocity mesh of 10× 10× 10.

# Iterations

D
am

pi
ng

 F
or

ce
 (

N
/m

)

0 500 1000 1500 2000

0

0.5

1

1.5

2
g =  3.52 µm
t  =  2 µm
P =  0.1 atm

v= -2.44

v= -1.5

v= 2.44

v= 1.5
v= -0.8
v= 0.8

v= +/-0.1 5.6%

226.4%

117.6%

53.5%

Figure 6. Damping force comparisons for varying beam velocities at 0.1 atm ambient

pressure

Effect of Velocity Magnitude on Damping Force It may be observed from Fig. 6 that

the damping force magnitudes range from approximately 0.05 to more than 1.7N/m.

The figure also depicts the % differences between upward and downward moving beam

damping forces |F/Fup − 1| × 100 for a range of velocities between 0.1 and 2.44m/s.
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At lower beam velocities, the differences between the upward moving beam’s damping

force and the downward moving beam’s damping force are approximately 5%. As the

beam velocity magnitude increases these differences increase to over 200% for a beam

velocity of 2.44m/s. Such large differences cause problems since most damping models

[2, 3, 9] assume: (1) equal damping forces regardless of the direction of beam motion

and (2) a linear relationship between damping force and beam velocity.

Effect of Velocity Direction on Damping Force Comparison of nondimensionalized

static pressure contours |P − P0|/P0, where P0 is the ambient pressure of 0.1 atm,

along with streamlines shown in Fig. 7(a) for upward- and downward-moving beam

reveals similar profiles. As would be expected from the damping forces shown in Fig. 6,

the pressures are several times larger for the downward-moving beam. The streamlines

indicate simple flow structures moving away from the high-pressure region in front of the

beam towards the low-pressure region behind it. No recirculation zones are observed

under these conditions, however they may begin to appear at higher pressures and

velocities.

(a) Non-dimensional pressure fields

(b) Non-dimensional entropy generation rate

Figure 7. Non-dimensional properties for upward- and downward-moving beam at

2.44m/s
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Effect of Velocity Direction on Convergence Rate Convergence rates are also much

slower for downward moving beams at higher velocities; with 14, 000 iterations required

for a beam velocity of −2.44m/s. Convergence rate differences are observed as a result

of the non-linearity present in the collision term of the ES-BGK equation. In particular,

the coupling between the collision term and the convective term is more significant in

regions of large density gradients due to larger collision frequency. Another way to ex-

plain the convergence issues for downward moving beams at higher velocities is through

observations of entropy generation rate.

The entropy generation rate is a useful property which may be used to determine

local regions of non-equilibrium [18]. Large flow gradients are therefore represented

by large entropy generation rates, and these gradients lead to the nonlinear coupling.

Figure 7(b) indicates larger entropy generation rates for the downward-moving beam

at −2.44m/s in the areas near the beam tip. The upward-moving beam has the same

profile but is orders of magnitude smaller. Note in the figure the upward moving beam

is shown with 10 times the entropy generation rate as actually computed.

Rarefaction Effects The differences in damping forces for upward and downward mov-

ing beams are also strongly affected by the degree of rarefaction. For an increasing

Knudsen number based on the gap size and ambient gas properties, the damping force

difference is also increased as is shown in figure 8.
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D
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ng
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N
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)
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Kn=0.14, +v
Kn=1.4, -v
Kn=1.4, +v

g = 3.52 µm
t  = 2.0 µm
v = 0.8 m/s

60%

93%

Figure 8. Damping force and comparisons for varying Kn at 0.8m/s
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In Fig. 9 we compare damping force from our simulations with three linear models:

(i) the model based on Boltzmann-ESBGK simulations [9] (ii) a model based on unsteady

Reynolds equation [2] and (iii) a model based on a modified Reynolds equation with the

first-order slip boundary conditions formulated from DSMC simulations [3]. The draw

back with all these models however is the inherent linearity assumption. Our simulations

for upward motion of beam closely follows Guo’s ES-BGK Model which was developed

from 50 numerical simulations for different Kn and beam aspect ratio conditions for

a velocity of +1m/s. It can be clearly seen that the damping force for a down-ward

moving beam is in-fact highly non-linear with respect to velocity magnitude. The data

points on the plot are at Kn = 0.14 and the mesh size is 50× 50. The velocity mesh is

maintained at 10× 10× 10.

Velocity (m/s)

F
or

ce
(N

/m
)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3 ESBGK Upward Motion
ESBGK Downward Motion
ESBGK Low Aspect Ratio Beam
Reynold’s Equation - Slip
Reynold’s Equation - DSMC

Figure 9. Damping force for upward and downward moving beam simulations at

different velocities and comparison with the linear models: ES-BGK compact model

for low aspect ratio beam [9], Veijola Reynolds equation with slip model [2] and Gallis-

Torczynski Reynolds Equation-DSMC model [3]

Comparison with Experimental Measurements Qualitative comparison with experimen-

tal measurements for a capacitive RF MEMS shunt switch at 1.0 atm pressure in Ref.

[10] shows a similar trend. Figure 6 of Ref. [10] shows the profiles of gap vs time for the

opening and closing cycle which are reconstructed from capacitance measurements. Fig-

ure 8 of Ref. [10] shows the profiles of extracted gas damping force vs gap are shown as

well as theoretical model predictions. The measured damping force coefficient is higher

during the closing of the switch as compared to the opening, especially at small gaps.
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Based on the data in these two graphs, we estimate that at a gap equal to z = 0.55µm,

the speed of the beam during opening and closing is equal to approximately 0.009m/s

and the difference in damping force is about 30%.

This is the same trend as observed in our simulations. There are notable differences

in the geometry of the moving microstructure. In particular, the movable membrane in

the capacitive switch of Ref. [10] has etch holes creating an overall three-dimensional

structure, whereas we consider a generic planar microbeam. More significantly, the

aspect ratio of the fluid gap is significantly higher in the experiments. In particular, at

the point of equal speeds (gap of 0.55 microns) the aspect ratio is over 600 creating an

extremely narrow fluid region. This is about an order of magnitude larger than the gap

aspect ratio in the planar simulations of this work that were based on the geometry of

PRISM center switch [22]. It is expected that the non-linearity effect would be more

pronounced at large gap aspect ratios with an onset occurring even at smaller velocities.

6. Conclusions

Non-linear effects in the dependence of gas pressure and damping force as a function

of microbeam velocity are studied by numerical simulations based on the Boltzmann-

ESBGK equation. At lower beam velocities, the difference between the damping forces

on upward and the downward moving beams is below about 5%. As the beam veloc-

ity magnitude increases this difference increases to over 200% for a beam velocity of

2.44m/s. For an increase in rarefaction, the damping force difference between upward

and downward moving beams is also increased. Therefore the direction of motion of

beam should be taken into account in gas damping modeling and design of MEMS de-

vices with large displacement and large aspect ratio structures moving with velocities

on the order of 1 m/s and higher.
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