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For many years scientists and engineers have been researching semi-conducting materials 

for use in a broad array of electronic devices. With the growing demand for faster, 

smaller and more efficient electronics, new materials must be characterized and their 

properties quantified. The focus of this thesis is to develop a system to measure 

photoluminescence in opto-electronic materials. Photoluminescence measurements are 

important because it can give researchers valuable information about a material’s band 

structure. This thesis begins by presenting the carrier recombination mechanisms and 

how they apply to photoluminescence. A system was developed to measure 

photoluminescence spectroscopy. This system was tested with various known materials 

then used to characterize new materials. 
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Chapter 1 

Introduction 

For many years scientists and engineers have been researching semi-conducting 

materials for use in a broad array of electronic devices including diodes, transistors, 

lights, sensors, solar cells and many more[1-7]. With the growing demand for faster, 

smaller and more efficient electronics, scientists are always looking to newer and more 

exotic semi-conducting materials. These new unknown materials need to be characterized 

and their properties quantified. 

In steady state photoluminescence measurements a continuous wave (CW) laser is 

incident onto a direct band gap semiconductor material such as GaAs [8-10]. The 

semiconductor absorbs the light generating excess electron-hole pairs. The electron-hole 

pairs then recombine and light is re-emitted in the form of a photon near the band gap 

energy. The intensity is then recorded as a function of the photoluminescent wavelength. 

The focus of this thesis is to develop a system to measure photoluminescence in 

opto-electronic materials. Photoluminescence measurements are important for research 

and development of semiconductor materials because it can give researchers valuable 

information about a material’s band structure. Photoluminescence is useful because it can 

give a quantitative look at the quality of a material. This is necessary for the process of 

developing and testing solid-state electronic devices.  
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Photoluminescence is limited to materials with a direct band gap [9], which is not 

an issue in this work since the two materials under study, a-B5C:H and WSe2 are direct 

gap materials.  

 

1.1 Recombination Theory 

 Photoluminescence is heavily dependent on the recombination mechanisms of a 

material’s minority carriers. The dominating recombination mechanism is very sensitive 

to impurities or defects.  

 The minority carrier lifetime is defined as the average time it takes an excess 

minority carrier to recombine. The minority carrier lifetime is a function of three different 

types of carrier recombination: radiative recombination, Shockley-Read-Hall 

recombination, and Auger recombination. [11] 

 

1

𝜏𝑏𝑢𝑙𝑘
=  

1

𝜏𝑆𝑅𝐻
+  

1

𝜏𝑟𝑎𝑑
+  

1

𝜏𝐴𝑢𝑔𝑒𝑟
 (1) 

 

1.1.1 Radiative Recombination 

Radiative (or band to band) recombination occurs in direct band gap 

semiconductors when an electron recombines directly with a hole. Radiative 

recombination is dependent on the density of electrons and holes. When radiative 

recombination occurs, a photon is emitted. The energy of the emitted photon is close to 

that of the band gap, depending on the effect phonon interaction plays in the 



3 
 

recombination mechanisms. The best example of radiative recombination is an LED. This 

is the dominant mechanism in direct band gap materials such as GaAs. In indirect band 

gap semiconductors such as silicon, the radiative lifetime (τrad) is very large. This is 

because the valence and conductions bands do not line up causing the direct band to band 

recombination to be far less frequent. [10] Because the radiative lifetime is very large it 

can usually be neglected. 

The simple band to band recombination rate, R, is given by the following 

equation: 

 

𝑅 = 𝐵𝑛𝑝 (2) 

 

Where B is the radiative recombination coefficient specific to the semiconductor, and n 

and p are the total concentrations of electrons and holes respectively. In non-equilibrium 

circumstances such as carrier generation or recombination, n=n0+Δn and likewise 

p=p0+Δp where n0 and p0 are the respective equilibrium electron and hole concentrations 

while Δn and Δp are the transient electron and hole concentrations. [9] At equilibrium the 

recombination and generation rates are equal because the product of the electron and hole 

densities is constant (n0*p0= ni
2), but in an excess of minority carriers the recombination 

rate increases to drive the system back into equilibrium. In a deficit of minority carriers, 

the generation rate increases to drive the system back into equilibrium. [14] In the 

presence of excess carriers the equation becomes: 

 



4 
 

𝑅𝑟𝑎𝑑 = 𝐵(𝑛0 + ∆𝑛)(𝑝0 + ∆𝑝) (3) 

 

1.1.2 Shockley-Read-Hall Recombination 

Shockley-Read-Hall (SRH) recombination, also referred to as trap-assisted 

recombination, occurs in semiconductor materials with defects in the crystalline structure. 

These structural defects can trap electrons or holes within the forbidden region of the 

band gap. These traps can be unintentional (imperfect material growth) or intentional 

(doping). 

When an electron (or hole) is trapped in the defect, a hole (or electron) can move 

into that created state with less energy than would be required for it to cross all the way 

into the conduction band. If recombination does not occur, the electron (or hole) will be 

thermally re-emitted back into the conduction (valence) band. This is the dominant 

mechanism in doped indirect band gap materials like silicon. 

The recombination rate is dependent on where in the forbidden gap the defect is 

introduced. Defects introduced near the conduction band (or valence band) edge are less 

likely to cause recombination because the electron (or hole) has a higher chance of just 

being re-emitted into the conduction band (or valence band) than recombining with a hole 

(or electron) that jumps into the defect energy state. It turns out that traps near the center 

of the band gap or mid-gap lead to higher Shockley-Read-Hall recombination rates.  

If the traps near the band edges are neglected then the SRH lifetime equation can 

be simplified to Eq. (4) for p-doped materials, and Eq. (5) for n-doped materials: [11] 
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𝜏𝑆𝑅𝐻 = 𝜏𝑛0 + 𝜏𝑝0

𝛥𝑛

𝛥𝑛 + 𝑁𝐴
 (4) 

 

𝜏𝑆𝑅𝐻 = 𝜏𝑝0 + 𝜏𝑛0

𝛥𝑝

𝛥𝑝 + 𝑁𝐷
 (5) 

 

Where NA and ND are the acceptor and donor doping respectively and Δn and p are the 

carrier injection levels. 

 

1.1.3 Auger Recombination 

Auger recombination is basically band to band recombination but instead of the 

energy given off as a photon, the energy is transferred to the third particle, an electron in 

the conduction band. That electron’s energy then dissipates throughout the conduction 

band. This is the fastest of the recombination mechanisms in heavily doped 

materials/high carrier concentration materials because the Auger recombination rate is 

directly related to the square of the doping concentration. [15] 

If the Auger recombination is faster than the other two recombination 

mechanisms, it will limit the minority carrier lifetime. In electron-electron-hole 

interactions the recombination process will be proportional to n2p and for electron-hole-

hole interactions the recombination process will be proportional to np2 where n and p are 

the total concentrations of electrons and holes respectively. 
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𝑅𝐴𝑢𝑔𝑒𝑟 = 𝐶𝑛2𝑝 (6) 

 

𝑅𝐴𝑢𝑔𝑒𝑟 = 𝐶𝑛𝑝2 (7) 

 

If NA>>ND (the acceptor doping is much greater than the donor doping) as is the 

case in heavily doped p-type semiconductors, the above equations produce Eq. (8) for 

Auger minority carrier lifetime. If ND>>NA (the donor doping is much greater than the 

acceptor doping) as is the case in heavily doped n-type semiconductors, Eq. (9) is 

obtained for Auger minority carrier lifetime. 

 

𝜏𝐴𝑢𝑔𝑒𝑟 =  
1

𝐶𝑁𝐴
2  (8) 

 

𝜏𝐴𝑢𝑔𝑒𝑟 =  
1

𝐶𝑁𝐷
2  (9) 

 

 

 

In Eqs. (8) and (9) C is the auger coefficient. The value of C for silicon is 

typically given as: 1.66 × 10-30cm6/s [16] [17].  

Since the recombination energy dissipates throughout the material, it is sometimes 

referred to as thermal recombination and is one of the sources of waste heat in 

semiconductors.  
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In the case of low level injection (where the number of minority carriers is much 

less than the doping) the recombination rate is related to the minority carrier lifetime by 

the following equation: 

 

𝑅 =  
𝛥𝑛

𝜏
 (10) 

 

 In the above equation R is the recombination rate, τ is the minority carrier 

lifetime, and Δn is the excess minority carrier concentration. 

 

1.2 Surface Recombination 

The effective minority carrier lifetime is a function of the lifetimes of both the 

bulk and the surfaces. [12] The bulk lifetime can be calculated from Eq. (1) above. The 

equation for this relation can be seen below. 

 

1

𝜏𝑒𝑓𝑓
=  

1

𝜏𝑏𝑢𝑙𝑘
+  

1

𝜏𝑠𝑢𝑟𝑓𝑎𝑐𝑒
 (11) 

 

The surface recombination of a semiconductor is an important parameter because the 

surface is a disruption of the semiconductor crystalline structure as seen in Figure 1. 
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Figure 1: Dangling bonds at the surface of a tetrahedrally bonded material. Source: 

pveducation.org 

 

 

A semiconductor crystalline lattice is normally periodic, but at the surface interruptions 

in the periodicity cause dangling bonds. The number of dangling bonds is directly related 

to the surface recombination rate. The decrease in the number of dangling bonds 

decreases the surface recombination rate thus increasing the lifetimes of the minority 

carriers. Surface passivation is defined as the reduction of dangling bonds on the surface. 

An example of natural surface passivation is the thin layer of silicon dioxide that forms 

on a silicon wafer. 

 The surface recombination is a function of the surface recombination velocity and 

the thickness. [13] The minority carrier lifetime at the surface of a silicon wafer or thin 

film is then: 

 

𝜏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝑊

2𝑆
 (12) 
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Where S is the surface recombination velocity and W is the thickness of the wafer. The 

full equation for the effective minority carrier lifetime is then: 

 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑆𝑅𝐻
+  

1

𝜏𝑟𝑎𝑑
+  

1

𝜏𝐴𝑢𝑔𝑒𝑟
+

2𝑆

𝑊
 (13) 
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Chapter 2 

Photoluminescence Theory 

 Since photoluminescence occurs in direct band gap materials, radiative 

recombination is the mechanism that dominates the recombination process. The radiative 

recombination of free electrons and free holes was given in Eq. (3) above as 

 

𝑅𝑟𝑎𝑑 = 𝐵(𝑛0 + ∆𝑛)(𝑝0 + ∆𝑝) (3) 

 

The radiative recombination coefficient, B, is specific to the semiconductor. B is 

determined from the interband transition matrix element at the Γ-point (k=0) of the 

Brillouin Zone. [18] This causes B to be much larger in direct band gap materials than 

indirect. [10] The calculated room temperature B coefficient for GaAs is approximately 2 

× 10-10 cm3 s-1 [19] [20] and about 1 × 10-15cm3 s-1 for Si. 

 If Eq. (3) is substituted into Eq. (10), the radiative lifetime can be written as 

 

𝜏 =  
𝛥𝑛

𝐵(𝑛0 + ∆𝑛)(𝑝0 + ∆𝑝)
 (14) 

 

For p-type materials, if the semiconductor is assumed to be in low-level injection, p0>>n0 

and Δp<<p0.  Also for n -type materials in low-level injection: n0>>p0 and Δn<<n0. [9] If 
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N is substituted in for the majority-carrier density for a p-type material, the following 

equation is obtained. 

 

𝜏 =  
𝛥𝑛

𝐵(∆𝑛)(𝑁 + ∆𝑛)
 (15) 

 

If we consider the Δn to be negligible, since Δn<<n0 and Δn=Δp, the equation simplifies 

to  

 

𝜏 =  
1

𝐵𝑁
 (16) 

 

If the effects of SRH and Auger recombination are negligible, the minority 

carriers should theoretically decay with the radiative lifetime of 1/(BN). [10]  

 

2.1 Generation of electron-hole pairs 

The absorption of light by a material can modeled by the following equation 

 

𝐼 = 𝐼0 ∗ 𝑒−𝛼𝑥 (17) 

 

Where x is the distance into the material at which the light intensity is being calculated, I0 

is the light intensity at the surface of the material, and α, the absorption coefficient, is 
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related to the extinction coefficient (𝜅) by the following formula [21] where λ is the 

wavelength. 

 

𝛼 =
4𝜋𝜅

λ
 (18) 

 

If it is assumed that every absorbed photon generates an electron-hole pair, Eq. 

(17) above can be modified to obtain Eq. (19) below. The generation rate, G, of electron-

hole pairs at any distance into the sample can be modeled by the following equation: 

 

𝐺 =  𝛼𝑁0𝑒−𝛼𝑥 (19) 

 

In Eq. (19) N0 is the photon flux at the surface (photons/unit-area/sec.) To obtain the 

generation of electron-hole pairs through the entire sample Eq. (19) is integrated over x 

(the thickness of the sample) to become Eq. (20). 

 

𝐺0 = 𝛼𝑁0 ∫ 𝑒−𝛼𝑥𝑑𝑥
𝑥

0

 (20) 

 

The excess carrier concentration is equal to the generation rate multiplied by the minority 

carrier lifetime. [13] 

 

∆𝑛 = 𝐺0 ∗ 𝜏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 (21) 
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The light generated from photoluminescence is related to the radiative 

recombination. The frequency of luminescence light, ν, multiplied by the Planck’s 

constant, h, equals the photon energy. This will be equal to the band gap of the material 

since radiative recombination is direct band to band recombination. 

 

𝐼𝑃𝐿 = ∫ 𝑅 ∗ ℎ𝜈
𝑉

 𝑑𝑉 (22) 

 

If Eq. (11) is substituted for R, Eq. (22) becomes, 

 

𝐼𝑃𝐿 = ∫
Δn

𝜏𝑟𝑎𝑑
∗ ℎ𝜈

𝑉

 𝑑𝑉 (23) 

 

 This means that if τrad dominates and τeffective is roughly equal to τrad, then a good 

amount of the absorbed light is released as photoluminescence. If τnr dominates and 

τeffective is much shorter than τrad, then not much of the absorbed light is released as 

photoluminescence. If Eq. (13) is simplified so as to model the effective lifetime as a 

function of the radiative and non-radiative lifetimes, Eq. (24) is obtained. 

 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑟𝑎𝑑
+  

1

𝜏𝑛𝑟
 (24) 
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Transform this equation [18] to get 

 

𝜏 =
𝜏𝑟𝑎𝑑 ∗ 𝜏𝑛𝑟

𝜏𝑟𝑎𝑑 + 𝜏𝑛𝑟
 (25) 

 

This demonstrates that the minority carrier lifetime will always be shorter than the 

smaller of the radiative and non-radiative recombination lifetimes. If the non-radiative 

recombination lifetime is significantly shorter than the radiative recombination lifetime, 

the effective minority carrier lifetime will also be significantly shorter than the radiative 

recombination lifetime. This causes the PL intensity to be negligible. 

The quantum efficiency is the ratio of the radiative recombination rate to the total 

recombination rate [14] [22] as seen in Eq. (26). When Eq. (10) is applied it can be seen 

that the quantum efficiency is inversely proportional to the ratio of the radiative and non-

radiative lifetimes (Eq. (27)). 

 

𝜂𝑞𝑢 =
𝑅𝑟𝑎𝑑

𝑅𝑡𝑜𝑡𝑎𝑙
 (26) 

 

𝜂𝑞𝑢 =
1

1 +
𝜏𝑟𝑎𝑑

𝜏𝑛𝑟

 (27) 

 

If the radiative recombination lifetime is significantly shorter than the non-radiative 

recombination lifetime, the quantum efficiency approaches unity, and much of the 

absorbed light is released as photoluminescence. 
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2.2 Photoluminescence Spectroscopy 

Photoluminescence Spectroscopy is a method of measuring electron-hole 

recombination by measuring the light emitted in direct band to band recombination. In 

steady state photoluminescence measurements a continuous wave (CW) laser is incident 

onto a direct band gap semiconductor material such as GaAs. The semiconductor absorbs 

the light generating excess electron-hole pairs. The electron-hole pairs then recombine 

and light is re-emitted in the form of a photon near the band gap energy. 

 In photoluminescence spectroscopy a semiconductor is usually excited by a laser 

with photon energy considerably above the band gap, and the photoluminescence is 

detected by a spectrometer. The intensity is then recorded as a function of the 

photoluminescent wavelength. 

Photoluminescence spectroscopy is helpful to quantify and qualify information 

about the band structure of the material being analyzed. Photoluminescence spectroscopy 

gives the researcher information about the material such as its band gap, whether it’s 

monocrystalline, polycrystalline, or amorphous, and whether it has a large congregation 

of trap states. If the material is a crystal, the photoluminescence spectrum will be narrow, 

whereas an amorphous material will have a wider photoluminescence spectrum. If a 

material has many trap states, they will show up in the PL spectrum as either narrow or 

wide signals depending on how concentrated they are in the energy domain. 

Photoluminescence is a good tool to use in conjunction with other measurement 

techniques because it is contactless, eliminating the need for an ohmic contact.  
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 The major disadvantage in using photoluminescence is that only direct band gap 

semiconductors luminesce with enough intensity to be applicable. In addition, if non-

radiative recombination mechanisms such as SRH or Auger recombination are dominant 

in a direct gap material, one will not get photoluminescence. Another problem that must 

be overcome is that the intensity of photoluminescence is usually very small. This is 

usually solved by taking multiple measurements and integrating them over time. 

 

2.3 Interference Effects 

An issue that can occur in photoluminescence studies of thin films of amorphous 

and polycrystalline materials is the emergence of interference fringes in the 

photoluminescence spectra. This is due to the thickness of the films being measured. 

Bragg’s law [23] states that: 

 

2𝑑𝑠𝑖𝑛(𝜃) = 𝑚𝜆 (28) 

 

In Bragg’s equation d is the distance between two planes, θ is the angle of 

incidence, m is a positive integer, and λ is the wavelength of light. For thin films this 

principle is applied to derive  the equations below where n is the index of refraction of 

the thin film, d is the thickness of the film, θ is the angle of incidence of the light on the 

back side of the film, m is an integer, and λ is the wavelength of light used. If the 

refractive index of the substrate is less than that of the film the equations for constructive 

(29) and destructive interference (30) are obtained. 
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2𝑛𝑓𝑖𝑙𝑚𝑑𝑐𝑜𝑠(𝜃) = (𝑚 −
1

2
)𝜆 (29) 

 

2𝑛𝑓𝑖𝑙𝑚𝑑𝑐𝑜𝑠(𝜃) = 𝑚𝜆 (30) 

 

If the refractive index of the substrate is greater than that of the film, then the 

phase of the reflected light will be shifted by 180° at the front and back of the film. This 

causes the equations for constructive (31) and destructive interference (32) to be 

 

2𝑛𝑓𝑖𝑙𝑚𝑑𝑐𝑜𝑠(𝜃) = 𝑚𝜆 (31) 

 

2𝑛𝑓𝑖𝑙𝑚𝑑𝑐𝑜𝑠(𝜃) = (𝑚 −
1

2
)𝜆 (32) 

 

This reflective interference was noted by J. Cernogora when studying photoluminescence 

in amorphous hydrogenated carbon. [24] He noted that if the optical thickness (d*nfilm) 

was on the order of width of the PL spectrum or larger then interference fringes may be 

observed. He also noted that such interference fringes can be eliminated by either making 

a film of optical thickness smaller than the width of the PL spectrum or by roughening 

the substrate to eliminate reflection interference as was done in [25] and [26]  
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Chapter 3 

Experimental Apparatus - Steady State 

Photoluminescence 

A steady state photoluminescence spectroscopy system was created using a 532 

nm green laser (~80 mW). The green light is generated by first exciting an aluminum 

gallium arsenide (AlGaAs) laser diode (LD) that operates at a wavelength of 808 nm. The 

AlGaAs LD then pumps a neodymium-doped yttrium aluminum garnet (Nd:YAG) LD. 

The ND:YAG laser emits light at 1064 nm. 

The 1064 nm output is then input into a frequency doubling crystal of potassium 

titanyl phosphate (KTP). The KTP crystal halves the wavelength to 532 nm. A dielectric 

mirror that reflects at 1064 nm and transmits at 532 nm is positioned at the end of the 

laser cavity, and behind the mirror is an infrared filter that filters out any extraneous 1064 

or 808 nm light. This IR filter is often omitted in cheaply made laser pointers. 
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Figure 2: A schematic of the photoluminescence apparatus 

 

 

Figure 2 above gives a schematic of the photoluminescence apparatus. The laser 

light is filtered through a 700 nm low pass filter to filter out any stray 808 or 1064 nm 

light. The filtered light is then focused by a lens through a 0.125 inch hole in a parabolic 

mirror onto the sample. The illuminated area on the sample can be roughly considered a 

point so the photoluminescence can be assumed to be radiating as a point source. This 

radiated luminescence is then captured by the parabolic mirror and focused by a 3 inch 

diameter lens into an optical fiber. Before reaching the fiber, the light is passed through a 

550 nm high pass filter to filter out by the 532 nm laser light. 



20 
 

The fiber is then fed into an Andor Mechelle 5000 spectrometer which utilizes an 

ICCD camera. The Andor spectrometer has a spectral resolution of .05 nm and can 

integrate data collected over time. The spectrometer can also account for background 

radiation and noise.  

This photoluminescence apparatus is designed to be modular so that any 

component can be easily replaced. For example: it was modified to use a 405 nm gallium 

nitride (GaN) laser (~80 mW). This laser has a two-fold benefit. 405 nm light is of 

shorter wavelength so it carries more energy per photon than 532 nm light. (3.06 eV as 

opposed to 2.33 eV) Also the GaN laser diode emits 405 nm without the need of a 

frequency doubling crystal like the ND:YAG laser. This removes the problem of infrared 

emission which makes it less dangerous for the human eye because all the radiated light 

is visible. 

It also means that all of the intensity is in the form of 405 nm light. After filtering 

out the infrared radiation of the 532 nm ND:YAG laser, the output power is only about 

two thirds of the original power. 

The 550 nm high pass filter was also switched out and replaced with a 450 nm 

high pass filter. This allows the apparatus to measure more of the visible spectrum. One 

of the problems with using a 405 nm GaN laser is that many materials fluoresce when 

exposed to this short wavelength light. Among the more common fluorescent materials 

are paper [27], Scotch tape, laundry detergent, and fibers used in most clothing. 

To avoid any problems with extraneous fluorescence, the sample holder, which 

was originally double sided tape, was replaced with a vacuum sample holder. Also all 

paper and people were removed from the immediate vicinity of the apparatus. The 
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experiments were conducted in the dark to avoid interference from the fluorescent bulbs. 

A picture of the photoluminescence apparatus can be seen below in Figure 3. 

 
Figure 3: A picture of the PL apparatus using the 405 nm GaN laser, vacuum sample 

holder, and 450 nm high pass filter. 

 

 

Some of the materials measured in this thesis are amorphous. Amorphous 

materials have a characteristic wide photoluminescence spectrum (Section 4.3 or 

whatever it will be). The transmission as a function of wavelength of the 450 nm long 

pass filter being used is non-uniform. As can been seen in Figure 4 below, the 

transmission oscillates between 76% and 94%. 

 



22 
 

 
Figure 4: Transmission of the 450 nm long pass filter. Source: Thorlabs 

 

 

For most materials, particularly single crystals, the photoluminescence spectra are 

narrow enough that this change in transmission across wavelength is negligible, but the 

photoluminescence spectra of amorphous materials are broad enough that this difference 

in transmission can cause erroneous peaks and valleys to appear. The oscillations were 

accounted for by measuring the transmission of the filter. The photoluminescence data, as 

measured by the system, was divided by reflection of filter (100% - transmission). The 

resulting spectrum was then processed as discussed in the next section. 

 

3.1 Data Processing 

The data in the form of an intensity vs. wavelength graph is then processed via a 

Savitzky–Golay filter [28]. A Savitzky-Golay filter is a low pass filter that fits small sub-
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sets of data points with a polynomial by the linear least squares method. This increases 

the signal to noise ratio without distorting the signal. Savitzky and Golay demonstrated 

that a polynomial can be fit to a set of equally spaced data points and then evaluating the 

polynomial at a single point within the set produces convolution coefficients for the set of 

data points. This then produces a smoothed estimate of the original data. 

 

3.2 System Tests 

Before using the system to measure the photoluminescence of new materials, the 

apparatus was tested using materials with known photoluminescence spectra. The three 

materials used as tests were chromium-doped aluminum oxide (Cr:Al2O3), gallium 

arsenide (GaAs), and hydrogenated amorphous silicon (a-Si:H). These materials have all 

been extensively studied and their photoluminescence spectra are all well known. 

 

3.2.1 Aluminum Oxide 

 A Cr3+ doped aluminum oxide (Al2-xCrxO3) ceramic substrate was used for the 

alignment of the photoluminescence system. Al2O3 is a corundum commonly known as 

sapphire. Cr3+ ions are usually found in alumina in nature and manifests itself by a sharp 

R1, R2 doublet photoluminescence signal at about at 693 and 694 nm. [29] This strong 

signal is noticeable even at molar concentration below 1 ppm. [30] 

Chromium doped aluminum oxide is commonly known as a ruby, and this 694 nm 

luminescence is what gives rubies their deep red color. The first laser that was developed 
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was a ruby laser by Theodore H. "Ted" Maiman on May 16, 1960. [31] This ruby laser 

emits a deep red beam at 694.3 nm. 

Because of its intense luminescence signal, and its unique R1, R2 peak, chromium 

doped aluminum oxide was used as a test sample to confirm that the photoluminescence 

apparatus was calibrated and working properly. It was also used to align the optical fiber 

to ensure that the maximum luminescent light was being captured. The data below in 

figures 9 and 10, taken with the PL apparatus match the data found in the literature. [29] 

[30] [31] The tall and short peaks are at 694.3 nm and 692.9 nm respectively. The 

FWHM of the tall and short peaks are 0.85 nm and 0.74 nm respectively. The thin, 

intense, peaks demonstrate Al2-xCrxO3 to be a good example of a polycrystalline material. 

Figure 5 is a full-spectrum graph, and Figure 6 is zoomed in before and after data 

processing. It can be observed that the Savitzky–Golay filter does increase the signal to 

noise ratio without distorting that data. From this point on, unless otherwise stated, the 

presented data will be processed with the Savitzky–Golay filter. 

 

 



25 
 

 

Figure 5: Strong Photoluminescence peak at ~694 nm in Al2O3:Cr 
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Figure 6: R1, R2 Doublet at 692.9 and 694.3 nm a) before and b) after smoothing 

 

 

3.2.2 Single Crystal Gallium Arsenide 

Gallium arsenide (GaAs) is a well-known single crystal material with a direct 

band gap of 1.42 eV. Photoluminescence was performed on Zn-doped p-type GaAs with 
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p≥5*1018 /cm3. The resulting spectrum can be seen in Figure 7 below. Three peaks are 

evident: a small peak at 817 nm, and two more prominent peaks at 846 nm and 871 nm. 

 

 
Figure 7: Photoluminescence of p-type GaAs gives three peaks: 817 nm, 846 nm, and 871 

nm 

 

 

The 817 nm peak corresponds to an energy of 1.51 eV which is greater than the 

band gap. This occurs because the GaAs is degenerately doped. The high concentration 

of donors causes the Fermi level to fall below the valence band as explained by Wang et. 

al. and Figure 8. [34] This peak is often seen in photoluminescence measurements of 

degenerately doped GaAs. [35] [36] [37] At these higher doping levels (greater than 

1018/cm3) the non-radiative recombination increases and the peak due to the modified 
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Fermi level decreases. This would explain why the 1.51 eV peak is much less intense 

than the other two peaks. 

At 300K (room temperature) the 871 nm peak (1.42 eV) is due to the band to 

band transition. The band gap of GaAs at room temperature is 1.42 eV. The 846 nm peak 

(1.46 eV) is believed to be caused by the band to acceptor transition. Because the doping 

concentration is high, on the order of 5*1018 /cm3, the acceptor level is below the top of 

the valence band rather than in the forbidden gap. Chen et al. noted that this peak was 

more prominent at higher doping concentrations and higher laser intensities. [33] He 

stated that the peak was due to the transition between the conduction band and the bottom 

of the impurity band. At a doping concentration of 5*1018 /cm3, the two peaks are of 

roughly equal intensities. A higher concentration would result in a larger 846 nm peak 

whereas a lower concentration would result in a larger 871 nm peak. 
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Figure 8: Density of states and position of Fermi level in undoped vs. heavily p-type 

doped GaAs. Source: Wang et al. [34] 

 

 

3.2.3 Amorphous Silicon 

While crystalline silicon has an indirect band gap of 1.12 eV, hydrogenated 

amorphous silicon (a-Si:H) has a direct band gap. This direct gap amorphous structure 

leads to the release of a photon rather than a phonon. In crystalline silicon a phonon is 

required for the electron to move in k-space to where it can drop into the valence band as 

seen in the indirect bandgap section of Figure 9 below. 
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Figure 9: Comparison of electron-hole recombination in direct and indirect band 

structures. Source: “Advances in Lasers and Electro Optics”, Edited by Nelson Costa and 

Adolfo Cartaxo 

 

 

Though amorphous solids have no crystalline structure, they are not entirely 

chaotic. The atomic bond lengths and angles are the same as in crystals and, in the case of 

silicon, every silicon atom still makes 4 covalent bonds. [38] This means that on a small 

atomic scale amorphous and crystalline solids behave very similarly. The difference is 

seen on a larger scale. Since the amorphous solid is not periodic, Bloch’s theorem no 

longer accurately portrays the movement of electrons and holes in amorphous materials. 

 In 1971 Weaire and Thorpe published two papers calculating the band structure of 

a tetrahedrally bonded solid regardless of its crystal structure.[39][40] Their model, now 

called the Weaire-Thorpe model, assumes that the atomic structure is arranged in a near 

tetrahedral crystal with roughly a 10% perturbation in bond length and angle. 
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Figure 10: Atomic structure of a solid according to the Weaire-Thorpe model. Source: 

Weaire and Thorpe 1971 

 

 

𝐻 = ∑ 𝑉1

𝑖,𝑗≠𝑗′

|𝜙𝑖𝑗⟩⟨𝜙𝑖𝑗′| + ∑ 𝑉2

𝑖≠𝑖′,𝑗

|𝜙𝑖𝑗⟩⟨𝜙𝑖′𝑗|(33) 

 

 Thorpe and Weaire defined the Hamiltonian seen in Eq. (33) above under the 

tight-binding approximation so only the four nearest neighbors are considered. [39] V1 

and V2 are the matrix terms and defined to be real. ϕij are the localized wavefunctions for 

atom index, i, and bond index, j. If V1 or V2 are set to zero, then the result is decoupled 

bonds or atoms with degenerate eigenstates, so Thorpe and Weaire assert that the ratio 

V1/V2 is necessary for determining the band structure. 
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According to Thorpe and Weaire the band gap is described as the bonding and 

anti-bonding states of the covalent bond split by the V2 term and broadened by the V1 

term in the Hamiltonian above. This tight-binding Hamiltonian gives information about 

the bonding in the short range structure, but not for long range in silicon. Weaire and 

Thorpe demonstrated that there is a band gap for a certain range of interaction strength 

V1/V2. 

The main difference in band structure between amorphous and crystalline solids is 

that the band edges, which are well defined in a crystal, trail off into the band gap in an 

amorphous material. There is a non-zero density of states in the forbidden gap [41] (see 

Figure 11.) This non-zero density of states in the forbidden gap produces a broad 

photoluminescence spectrum.  
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Figure 11: Band edge in crystalline vs amorphous silicon Source: Gilles Horowitz French 

National Centre for Scientific Research 

 

 

Hydrogenated amorphous silicon is different from pure amorphous silicon in that 

it has dangling bonds that have then bonded to a hydrogen atom. The dangling bonds in 

pure amorphous silicon become holes for electrons to fall into thus diminishing the 

luminescent photons that could otherwise be emitted from the material. Bonded hydrogen 

atoms create defect states that are present throughout the band gap [38]. 

Electrons can fall into these defect states and be trapped for a while without 

recombining with holes. Because of these defect states, the band gap of a-Si:H is not very 

well defined. The non-zero density of states allow for a varying distance that excited 

electrons must traverse to find an unoccupied state either jumping from the valence band 
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to the conduction band or falling from the conduction band to the valence band. This 

varying distance leads to a very broad photoluminescence signal (Δλ ~200 nm). If the 

material is a single crystal and the bandgap is well-defined, the photoluminescence signal 

should be very narrow. 

Photoluminescence of a hydrogenated amorphous silicon (a-Si:H) solar cell was 

measured and the spectrum can be seen in Figure 12 below. The structure of the PL 

signal is in accordance with literature results. [38-41] There is a broad 

photoluminescence signal (Δλ ~200 nm) with its peak at 715 nm (1.73 eV) [42]. 

 Hydrogenated amorphous silicon was used as a system test because it is similar to 

hydrogenated amorphous boron carbide, the material the thesis is attempting to 

characterize. Both materials are amorphous and passivated with hydrogen. Both materials 

have a direct band gap and should photoluminesce. Both materials’ photoluminescence 

spectra are expected to be similar in appearance. Amorphous silicon is a well-studied 

example of an amorphous material. 

 



35 
 

 
Figure 12: Photoluminescence of a-Si:H gives a broad single peak characteristic of 

amorphous materials 
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Chapter 4 

Materials Tested 

 

4.1 Amorphous Boron Carbide 

One of the materials that was analyzed for this thesis was hydrogenated 

amorphous boron carbide (a-B5C:H). Wide ranges of chemical compositions are possible 

for boron carbide and many of the BxCy stoichiometries have been studied intensively for 

the past two decades. Boron carbide is known to be an atomically hard substance with 

high temperature stability. While the most abundant and most stable form of boron is 11B, 

boron carbide is rich in 10B isotopic boron. Boron carbide possesses unique 

thermoelectric properties [43] that allow for high neutron absorption with little nuclear 

activity. [44] That along with its self-healing ability has caused it to be of great interest 

for the nuclear industry. 

 One of the major research applications of Boron Carbide is the creation of a 

cheap, portable, solid state neutron detector. This is of great interest for energy, defense, 

and homeland security. Its ability to detect neutrons comes from the 10B(n, α)7Li neutron 

capture reactions. This reaction generates lithium atoms of .84 MeV, helium atoms of 

1.47 MeV, and a gamma ray of 0.48 MeV 94% of the time. [44] 
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10B + n   7Li (0.84 MeV) + 4He (1.47 MeV) +   (0.48 MeV) (94%) 

10B + n   7Li (0.84 MeV) + 4He (1.78 MeV) (6%) 

 

 Since the products of this reaction are known, a solid state neutron detector based 

on boron carbide only requires cheap and reliable synthesis of boron carbide. The BC 

films analyzed for this thesis were fabricated via plasma-enhanced chemical vapor 

deposition (PECVD) for the solid precursor orthocarborane (1,2-C2B10H12, 1a). This 

method has been shown to reliably reproduce high-resistivity (1010–1013 Ω cm) films of 

device quality [45-47]. 

 Another application for boron carbide is a neutron-voltaic cell. A boron carbide p-

n junction under neutron flux behaves similarly to a standard p-n junction solar cell as 

seen in Figure 13 below. The only difference is that in this case there is a nuclear 

reaction. A neutron is absorbed by the device and reacts with the 10B producing helium 

atoms with energies of 1.47 MeV. The ejected helium can then create electron-hole pairs 

in the boron carbide p-n junction. The charge carriers can be captured by the junction’s 

internal electric field resulting in current flow. 
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Figure 13: The I-V Curve of boron carbide under neutron radiation Source: S. Balaz, D. I. 

Dimov, N. M. Boag, K. Nelson, B. Montag, J. I. Brand, P. A. Dowben, Appl. Phys. A 

(2006) 

 

 

4.2 Tungsten Diselenide 

Another material that was measured using photoluminescence spectroscopy was 

tungsten diselenide (WSe2). Tungsten diselenide along with materials such as tungsten 

disulfide (WS2), molybdenum disulfide (MoS2), and molybdenum diselenide (MoSe2) are 

called transition metal dichalcogenides (TMCs). Transition metal dichalcogenides are 

materials that consist of one of the 15 transition metals and one of the three 

chalcogenides. Chalcogenides consist of sulfur, selenium, or tellurium. 

 Transition metal dichalcogenides are layered 2-dimensional materials with each 

layer bonded together by the van-der-Waals interaction. As seen in Figure 14 below, a 
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layer of tungsten diselenide is made up of a tungsten layer sandwiched between two 

selenium layers. A thin film is made up any number of these layers stacked on top of each 

other.  

 

 
Figure 14: Two Layers of Tungsten Diselenide (WSe2) Source: Wikipedia 

 

 

The length of the tungsten-selenium bond is about 0.2526 nm, and the length of 

the selenium-selenium bonds is 0.334 nm. [48] Bulk tungsten diselenide has both a direct 

and an indirect band gap whereas a single monolayer has a direct band gap. [49] A quick 

search of “WSe2” and “photoluminescence” on Web of Science did not bring up any 

results where the WSe2 samples were thicker than 20 nm. [50] 

Monolayer and few monolayer Tungsten diselenide as well as other transition 

metal dichalcogenides have quickly become an important research topic because of their 

2-D graphene-like nature. Like graphene, single layers of WSe2 have a very high electron 

mobility, but unlike graphene, which has a zero band gap, monolayer WSe2 has a high 

band gap around 1.65 eV. [51] 
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The most prominent thin film photovoltaic currently is the chalcogenide, 

Cadmium telluride (CdTe). [52] [53] CdTe laboratory devices have been made with over 

15% conversion efficiency, and large area modules have been made with over 9% 

efficiency. While CdTe shows promise for the solar cell industry, the main drawbacks are 

that cadmium is toxic and tellurium is rare. [54] Tungsten diselenide has been proposed 

as an alternative because it is safe, earth abundant, and has an ideal bandgap for 

photovoltaics. [55] 

It has been shown that with increasing numbers of monolayers the 

photoluminescence intensity of MoSe2 and WSe2 decreases considerably. Also, the 

photoluminescence spectrum moves to lower energies, and a second peak emerges. [50] 

[51] This second peak is due to the indirect band gap forming. The indirect band gap is 

smaller than the direct gap at around 1.35 eV. Much research has been done on the 

photoluminescence of single layer or n-layer WSe2 where n<5, but photoluminescence 

data has not been recorded on films thicker than 20 nm. 
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Chapter 5 

Results 

 

5.1 Amorphous Boron Carbide Results 

The boron carbide films are amorphous and hydrogenated (a-B5C:H) causing 

them to have similar characteristics to hydrogenated amorphous silicon (a-Si:H) in that 

they have a direct, but not well-defined, band gap. Photoluminescence spectroscopy lends 

itself as a good tool to characterize these boron carbide samples because of its ability to 

measure intensity of luminescence as a function of wavelength. This can give us 

information about the width of the band gap and to what extent the band tails extend into 

the forbidden gap. Photoluminescence is also ideal because it is contactless and non-

destructive to the films. 

 Our research team is able to synthesize hydrogenated amorphous boron carbide 

(a-B5C:H) with direct band gaps ranging from 1.55 eV to 2.11 eV measured by the 

ellipsometrically determined Tauc plot method by varying the deposition temperature, 

pressure, and power applied to the electrodes. This ability combined with an organic 

linker molecule [56] (Bis-BN Cyclohexane) gives a large degree of control over the 
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optical and electronic properties of boron carbide material that can be created. A graph of 

the absorption of some of the materials can be seen in Figure 15 below. 

 

 
Figure 15: Absorption curve at 405 nm light of a-B5C:H with high band gap (blue and 

purple lines) and low band gap (red and black lines) both with and without the linker 

molecule. Determined by ellipsometry 

 

 

The absorption of monochromatic light can be modeled by the Beer-Lambert Law 

seen in Eq. (34) below is an extension of Eq. (17) [57] where x is the depth of the sample, 
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x0 is where the light starts being absorbed, I(x) is the light intensity at depth x, and α is 

the absorption coefficient.  

 

𝐼(𝑥) = 𝐼(𝑥0) ∗ 𝑒𝛼(𝑥−𝑥0) (34) 

 

The absorption coefficients for the highest and lowest band gap boron carbide 

along with the organic linker molecule are given in Table 1 below. 

 

Table 1: Absorption coefficients of high and low temperature boron carbide samples 

 

  405 nm  532 nm 

250C  0.000190388 nm-1 99.6805 cm-1 

250C linker 0.000172113 nm-1 101.57 cm-1 

450C  0.00124407 nm-1 1949.44 cm-1 

450C linker 0.001601171 nm-1 3438.03 cm-1 

 

 

In the photoluminescence experiments performed for this thesis the angle of 

incidence is 0º, the thickness of the boron carbide films was ~1 μm, and the index of 

refraction was ~1.9-2.2 [58] which is less than the silicon substrate. These films may 

yield interference fringes in the PL spectrum as discussed in section 2.3. In order to 

address this issue thinner films (~200 nm) were deposited. To avoid interference fringes 

the sample must be thinner than Eqs. (35) and (36) for constructive and destructive 

interference respectively. 

  

𝑑 =
𝜆

2𝑛𝑓𝑖𝑙𝑚
 (35) 
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𝑑 =
𝜆

2 ∗ 2𝑛𝑓𝑖𝑙𝑚
 (36) 

 

As can be seen in Figure 16 the PL spectrum of amorphous boron carbide bears a 

resemblance to amorphous silicon. Both materials have a broad PL curve (Δλ ~200 nm) 

that can be modeled as a single Gaussian distribution. Also they both peak in the red area 

of the visible spectrum. The peak of the signal gives us the band gap, [59] and the width 

gives us a qualitative idea of the extent to which the band tails extend into the forbidden 

gap. In amorphous materials the broader the PL spectrum is, the more chaotic (less 

crystalline) the material is. 

The amorphous hydrogenated boron carbide was synthesized via plasma-

enhanced chemical vapor deposition (PECVD). The deposition parameters that were 

analyzed for this thesis were temperature, and the power applied to the electrodes. As 

temperature and power were increased, the band gap decreased. The largest band gap 

measured was 2.04 eV for a deposition temperature of 250ºC at 10 Watts, and the 

smallest band gap measured was 1.86 eV for a deposition temperature of 450ºC at 30 

Watts. A table of the samples’ deposition temperature, power, band gap as determined 

from photoluminescence, band gap as determined from the ellipsometrically determined 

Tauc plot method, and the full width at half maximum (FWHM) of the 

photoluminescence spectra is presented below. 

 

Table 2: Band gaps as a function of deposition parameters 
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       Band Gap Band Gap FWHM 

Temperature Power     PL  Tauc Plot PL        . 

250 ºC  10 W     2.04 eV 2.11 eV 207 nm  

250 ºC  30 W     1.92 eV 1.96 eV 208 nm 

450 ºC  10 W     1.91 eV 1.65 eV 234 nm 

450 ºC  30 W     1.86 eV 1.55 eV 214 nm 

 

 

A graph of the PL spectra at the four different temperatures and powers overlaid 

can be seen in Figure 16 below. It can be seen from Table 2 that the temperature and 

power do not seem to affect the width of the photoluminescence curve indicating that 

crystallinities of the boron carbide samples are all similar. 
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Figure 16: As deposition temperature and power increase band gap decreases 

 

 

 
Figure 17: Band gaps determined by photoluminescence compared with that of those 

determined by ellipsometry. It can be seen that both methods show that band gaps 

decreasing as deposition temperature and power increase, but ellipsometry shows a more 

substantial decrease in band gap. 
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 In Figure 17 it can be seen both the photoluminescence measurements and the 

ellipsometry measurements so a decrease in band gap as deposition temperature and 

power increase. But it must be pointed out that while the band gaps as determined from 

PL and ellipsometry are consistent for the lower temperatures, they differ more for the 

higher temperatures. This is assumed to be because between 200ºC and 300ºC the 

temperature is optimal for hydrogen passivation. [60] At higher temperatures hydrogen 

starts to be driven out of amorphous materials. This leaves dangling bonds that can hold 

electrons. 

 These dangling bonds, as in the case of surface recombination, create trap states 

that can trap carriers. These trap states could allow for the boron carbide to absorb low 

intensity light below its actual band gap producing a Tauc plot with a lower band gap. 

Photoluminescence measurements, on the other hand, are the result of high intensity 

absorption. When relaxing, electrons will either fall into the valence band (radiative 

recombination) or into one of the traps caused by dangling bonds (Shockley-Read-Hall 

recombination). In the case of SRH recombination no light is emitted. Photoluminescence 

is an emission measurement so it doesn’t measure the non-radiative recombination, 

producing what looks like a higher band gap. 

 These two measurements together give information regarding the band structure 

of amorphous boron carbide. They tell us that at 250ºC the band edges behave like a well-

understood amorphous material, but that at 450ºC the band edges are more incoherent 

and there is discrepancy between absorption and emission. 

 



48 
 

5.2 Tungsten Diselenide Thin Film Results 

Since tungsten diselenide has promising solar cell properties photoluminescence 

spectroscopy is a great tool for understanding its band structure, defects and overall 

assessment of film quality. 

Our research team is able to synthesize WSe2 films of varying thicknesses. This is 

done via sputtering deposition of tungsten onto quartz and then processes the tungsten 

film in a selenium atmosphere to convert it to WSe2. Typically the samples are then 

processed at 875º C for 12 hours. This time and temperature allow for the tungsten and 

selenium to react and for annealing to occur. 

This process leads to the films thickness increasing by roughly a factor of four. 

This process is safe and reproducible and can be used to create WSe2 films anywhere 

from 100 nm to 500 nm. These films have a recorded mobility of 30 cm2/Vs, but 

unfortunately no photoluminescence was detected. 

This is assumed to be because at 100 nm and thicker, these films are much thicker 

than what is considered a bulk WSe2 material. Bulk WSe2 has both a direct and an 

indirect band gap, but the indirect gap is smaller (1.35 eV as compared to 1.65 eV) this 

means that there is a much larger probability that the recombination will be phonon-

assisted and the radiative recombination coefficient will be much less than in direct gap 

transitions. 

Arora et. al. [50] noticed that a single monolayer of tungsten diselenide gave a 

bright photoluminescence signal at about 1.65 eV but at a thickness of 20 nm the peak 

had shifted to about 1.25 eV and the intensity had dropped by a factor of 10000 (see 
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Figure 18). This decrease in PL energy corresponds to the shift from the direct band gap 

to the indirect band gap. The decrease in PL intensity makes sense when comparing the 

radiative recombination coefficients of silicon and gallium arsenide. The radiative 

recombination coefficient for silicon is about five orders of magnitude less than that of 

gallium arsenide. [19] [20] 

  

 
Figure 18: Photoluminescence and PLE of 1, 2, 3, and 4 monolayers, and bulk (20 nm) of 

tungsten diselenide. Source: Arora et. al.  
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Chapter 6 

Conclusions and Future Work 

This thesis has discussed photoluminescence theory as well as document the 

building of a modular photoluminescence system. Testing of this apparatus was 

completed using three materials of differing crystallinity. Chromium-doped aluminum 

oxide (Cr:Al2O3) was used as a system test for polycrystalline material. It was also used 

to test the system’s wavelength calibration. Gallium arsenide (GaAs) was also used as a 

single crystal test material for the apparatus. The last material to be used as a system test 

was hydrogenated amorphous silicon (a-Si:H). The photoluminescence apparatus was 

tested on amorphous silicon to determine its efficacy with amorphous materials. The 

photoluminescence apparatus behaved as expected with all system tests. 

After it was demonstrated that the photoluminescence apparatus worked as 

expected, it was used to characterize two new materials, hydrogenated amorphous boron 

carbide (a-B5C:H) and tungsten diselenide (WSe2). It was shown in this thesis that boron 

carbide thin films produced by plasma enhanced chemical vapor deposition (PECVD) are 

indeed amorphous and have a direct band gap. It was also shown that the band gap 

decreases with increased deposition temperature and plasma power supply power. 

Neither one of these deposition parameters had a noticeable effect on the width of the 

photoluminescence curve. 
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6.1 Future Work 

There are many way this research can continue. Firstly, the photoluminescence 

apparatus is modular so any part can be changed out for a different/higher quality part. 

For example, the laser could be swapped out for one with shorter wavelength or higher 

intensity. Or the long pass filter could be swapped for one with a flat transmission curve. 

The future plans for research into amorphous boron carbide include determining 

what effect changing the deposition pressure and the choice of plasma has on the 

photoluminescence signals. Also there are plans to create a multi-dimensional matrix of 

the extreme values of the deposition parameters to obtain a better idea of how they work 

together to affect the band structure of boron carbide. Currently the introduction of an 

organic linker molecule (Bis-BN Cyclohexane) is being attempted. Research in being 

done to determine how this linker molecule affects the optical and electron properties of 

the boron carbide. 

Other future plans are to create thinner tungsten diselenide films. Once thinner 

films can be reproduced reliably, photoluminescence will be taken on the films to 

measure the intensity as a function of thickness. Photoluminescence will also be used to 

look into how the recombination shifts from the direct band gap to the indirect band gap 

as film thickness increases. 
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