

Reconstruction of Naturalized Daily Streamflow for the Upper Wabash River

Introduction

During the 1960s, the United States Army Corps of Engineers constructed a number of dams in the Upper Wabash watershed in Indiana, primarily for flood control, hydropower and recreation. In order to investigate the impact of other environmental changes, such as changes in land management and climate on streamflow, it is necessary to reconstruct what the natural flow of the impounded river would be without the influence of the upstream reservoirs.

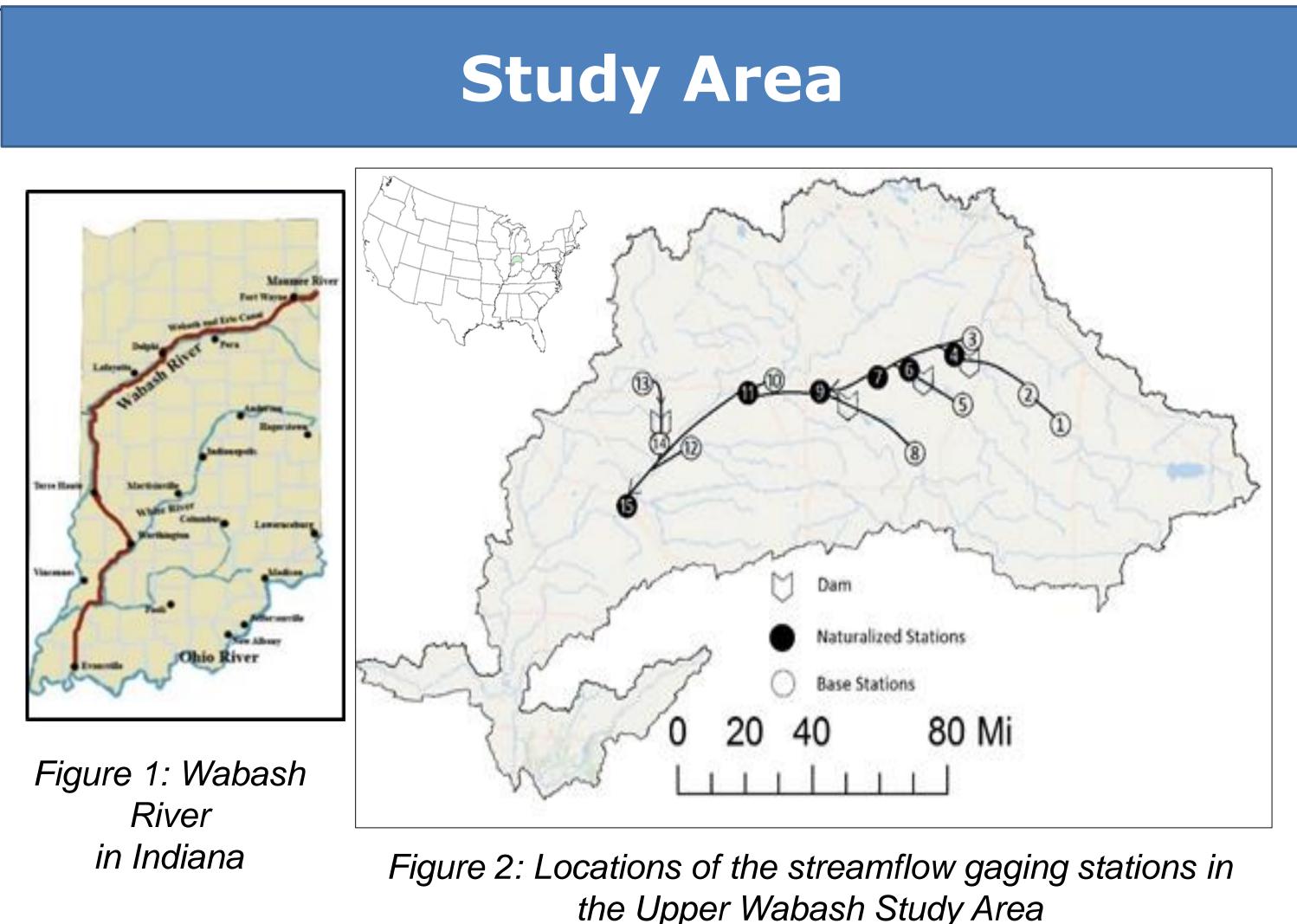


Table 1: USGS gauge sites in the Upper Wabash basin. Base stations (BS01, BS02, etc.) historic daily streamflow used and Naturalized stations (NS04, NS06, etc.) natural streamflow estimated.

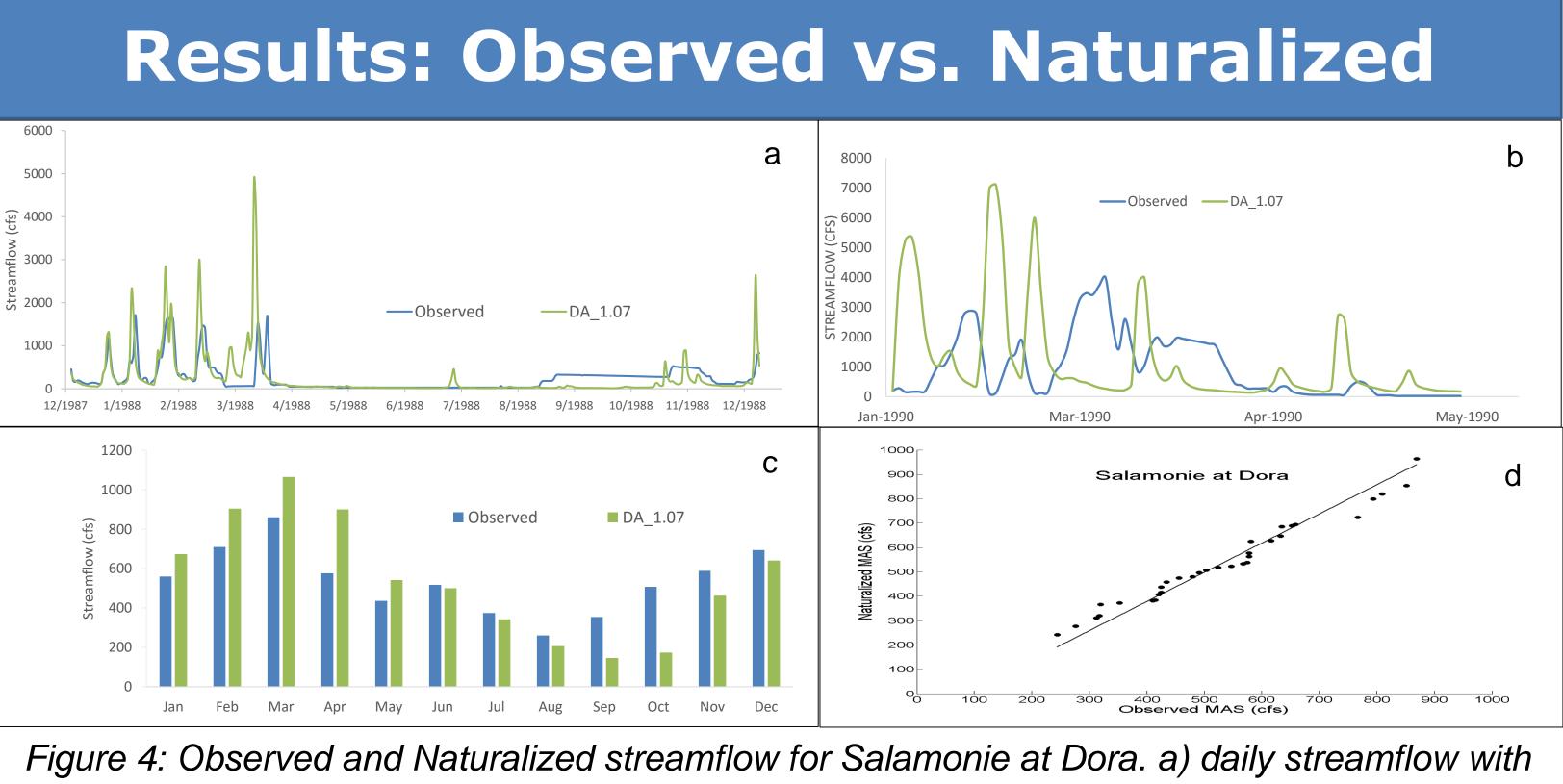
	$\mathbf{M}_{\mathbf{a}}$										
Map No.	Code No. ¹	USGS Site No.	Site Name	Latitude	Longitude	Drainag e (mi ²)	Period of Record				
1	BS 01	03322900	Wabash River at Linn Grove	40°39′22″	85°01′58″	453	1964-10-01 to current				
2	BS02	03323000	Wabash River at Bluffton	40°44'30"	85°10'19"	532	1930-10-01 to 1971-09-30				
3	BS03	03324000	Little River near Huntington	40°53'54.8"	85°24'47.4"	263	1944-04-01 to current				
4	NS04	03323500	Wabash River at Huntington	40°51'11.7"	85°29'23.2"	721	1951-04-01 to 2003-02-10				
5	BS05	03324300	Salamonie River near Warren	40°42′45″	85°27'13″	425	1957-03-01 to current				
6	NS06	03324500	Salamonie River at Dora	40°48′42″	85°41′02″	557	1924-04-01 to 2003-02-10				
7	NS07	03325000	Wabash River at Wabash	40°47′27″	85°49'13"	1768	1923-10-01 to current				
8	BS 08	03326500	Mississinewa River at Marion	40°34'35.1"	85°39'34.3"	682	1923-10-01 to current				
9	NS09	03327500	Wabash River at Peru	40°45′00″	86°04′00″	2686	1943-10-01 to current				
10	BS 10	03328500	Eel River near Logansport	40°46′55″	86°15′50″	789	1943-10-01 to current				
11	NS11	03329000	Wabash River at Logansport	40°44′47″	86°22'39″	3779	1904-04-01 to current				
12	BS12	03329700	Deer creek near Delphi	40°35′25″	86°37′17″	274	1944-04-01 to current				
13	BS13	03335000	Wildcat creek near Lafayette	40°26′26″	86°49′45″	794	1954-06-01 to current				
14	BS14	03333000	Tippecanoe River near Delphi	40°37'02"	86°45'39"	1865	1903-04-01 to 1987-09-30				
		03333050	Tippecanoe River near Delphi	40°35'38.1"	86°46'13.2"	1869	1986-10-01 to current				
15	NS15	03335500	Wabash River at Lafayette	40°25'30.6"	86°53'47"	7267	1923-10-01 to current				

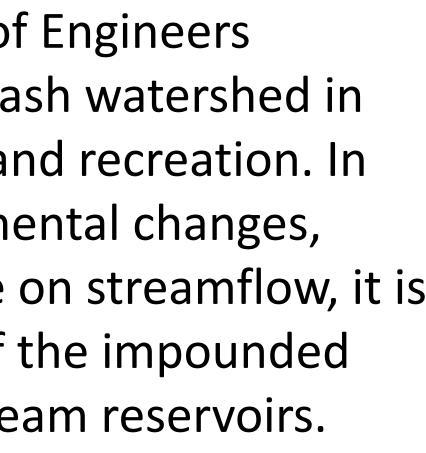
Sanoar Rahman^{1,2} and Laura Bowling^{1,3}

¹Department of Agricultural and Biological Engineering, ²Ecological Sciences and Engineering, ³Department of Agronomy Purdue University, West Lafayette, Indiana

Methodology

A modified drainage-area ratio method (DA) and maintenance of variance extension type 1 (MOVE.1) method were used in this study to estimate streamflow for the Naturalized Sites. The drainage-area ratio method (Hirsch, 1979) is based on the assumption that streamflow can be estimated using the ratio of the drainage area for the site of interest and the drainage area for a nearby gaged site:


To estimate naturalized flow from more than one base station, the former equation is modified as follows: $y_i = x_{1i}(Ay_1/Ax_1)^{\alpha} + x_{2i}(Ay_2/Ax_2)^{\alpha} + \dots + x_{ni}(Ay_n/Ax_n)^{\alpha}$


The MOVE.1 method can be used when streamflow data are available for both the naturalized and base station for a period of N1 years and an additional N2 years data for the base station (Emerson, 2005) as follows:

$$y_i = \overline{y}_1 + \left(\frac{S_{y_1}}{S_{x_i}}\right) \left(x_i - \overline{x}_i\right)$$

Model Efficiency

		DA		MOVE.1		MOVE.1_Log	
Naturalized Station	NSE	%BIAS	NSE	%BIAS	NSE	%BIAS	
Salamonie at Dora	0.93	0	0.95	0.3	0.96	-4.7	
Wabash at Huntington	0.95	4.1	0.92	9.9	0.93	12.5	
Wabash at Wabash	0.98	4.2	0.97	-5.0	0.96	-7.1	
Wabash at Peru	0.97	0	0.97	4.2	0.97	2.1	
Wabash at Logansport	0.99	-0.9	0.99	-0.9	0.99	-1.1	
Wabash at Lafayette	0.96	2.3	-7.2	238.4	-8.69	275.8	

$y_i = x_i (A_v / A_x)^{\alpha}$

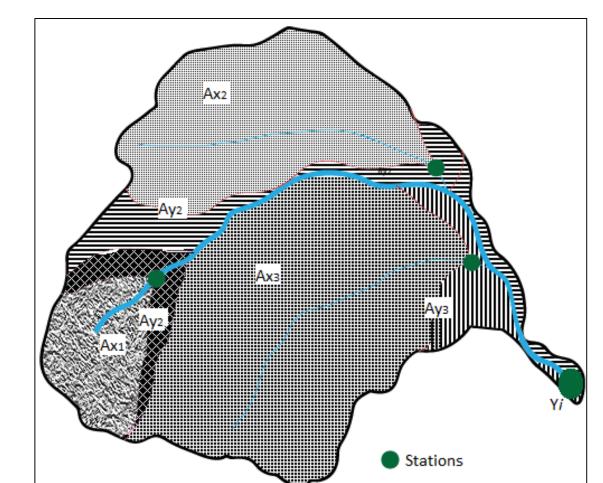


Figure 3: Illustration of DA method with multiple Base stations.

> Table 2: Model efficiency for all of the naturalized stations with DA, MOVE.1 and MOVE.1_Log methods. NSE= Nash–Sutcliffe *Efficiency; and %BIAS* = Percent Bias.

DA (*α*=1.07) for 1988, b) daily streamflow of the three wettest months of year 1990, c) mean monthly streamflow (1968-2001), and d) mean annual streamflow (1968 to 2001).

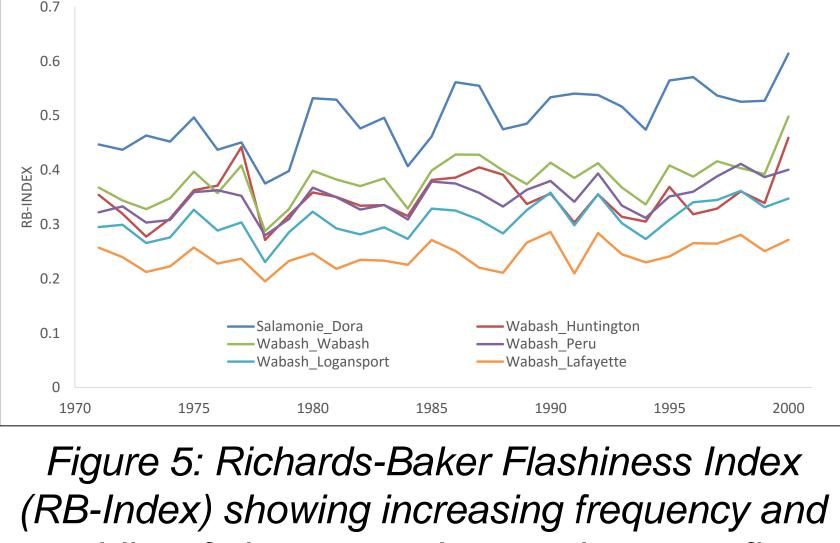
Salamonie at Dora	RBI
	MAF
	AMS
	MIN
Wabash at Huntington	RBI
	MAF
	AMS
	MIN
Wabash at Wabash	RBI
	MAF
	AMS
	MIN
Wabash at Peru	RBI
	MAF
	AMS
	MIN
Wabash at Logansport	RBI
	MAF
	AMS
	MIN
Wabash at Lafayette	RBI
	MAF
	AMS
	MIN
** Statistically significant	tranda

**Statistically significant trends at $\alpha = 0.01$ *Statistically significant trends at $\alpha = 0.05$

- studied.
- Using site specific exponents resulted in lower bias for individual stations, but were not used here.
- The accuracy of the estimated streamflow somewhat reduced when streamflow of a particular station is estimated from multiple base stations.
- Comparison of the naturalized and observed hydrograph shows the effect of reservoir management, including: reduced and delayed daily peaks, suppressed monthly cycle, and little change in mean annual flows.
- Trend analysis of the naturalized flow revealed:
 - Statistically significant increasing trends in the Annual Maximum Streamflow (AMS) statistics for Wabash at Logansport Station.
 - Statistically significant increasing trends in The Richards-Baker Flashiness Index (RBI) for Wabash at Huntington and Wabash at Lafayette station.

Literature Cited: Hirsch, R.M., 1979, An evaluation of some record reconstruction techniques: Water Resources Research, v. 15, no. 6, p. 1781-1790.

PURDUE AGRICULTURE



Results: Streamflow Trends

Trend Slope 0.002 yr⁻¹ -0.385 cfs/yr -20.00 cfs/v 0.18 cfs/yr 0.003* yr⁻¹ -4.60 cfs/yr 25.26 cfs/yr 0.13 cfs/yr 0.001 yr⁻¹ -3.67 cfs/yr 93.75 cfs/yr 0.59 cfs/yr 0.001 yr⁻¹ -2.96 cfs/yr 55.56 cfs/yr 0.80 cfs/yr 0.001 yr⁻¹ -3.84 cfs/yr 300** cfs/yr 1.61 cfs/yr 0.001* yr⁻¹ -8.73 cfs/yr 452.63 cfs/yr 4.00 cfs/yr

sen's slope estimator (Trend Slope) for selected annual naturalized streamflow statistics: Richards-Baker Flashiness Index (RBI), Mean Annual Flow (MAF), Annual Maximum Series (AMS), and Annual Minimum Flow (MIN). Length of data 30 years (1971-2000).

Table 3 (left): Mann-Kendall trend results and

rapidity of short-term changes in streamflow for the naturalized stations.

Conclusions

• The DA method with a constant exponent, α , of 1.07 worked better than MOVE.1 method for all of the naturalized stations

Think **impact**