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1.1 INTRODUCTION 

The detection and interpretation of contaminants in tissues of wildlife belongs to the field of tox­
icology, a scientific discipline with a long, intriguing, and illustrious history (reviewed by Hayes 
1991, Gallo 2001, Gilbert and Hayes 2006, Wax 2006). We review its history briefly, to provide a 
context for understanding the use of tissue residues in toxicology, and to explain how their use has 
developed over time. Because so much work has been conducted on mercury, and dioxins and poly­
chlorinated biphenyls (PCBs), separate case histories are included that describe the evolution of the 
use of tissue concentrations to assess exposure and effects of these two groups of contaminants in 
wildlife. 

The roots of toxicology date back to early man, who used plant and animal extracts as poisons 
for hunting and warfare. The Ebers papyrus (Egypt -1550 BC) contains formulations for hemlock, 
aconite (arrow poison), opium, and various metals used as poisons. Hippocrates (-400 BC) is some­
times credited with proposing the treatment of poisoning by decreasing absorption and using anti­
dotes (Lane and Borzelleca 2007). Chanakya (350-283 BC), Indian advisor of the Maurya Emperor 
Chandragupta (340-293 BC), urged the use of food tasters as a precaution against poisoning, and 
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the Roman emperor Claudius may have even been poisoned by his taster Halotus in 54 AD. Moses 
ben Maimon (1135-1204), author of a treatise on poisoning, noted that dairy products could delay 
absorption of some poisons. Paracelsus (1493-1541) shaped the field of toxicology with his corollar­
ies that experimentation is essential to examining the response, that therapeutic properties should be 
distinguished from toxic properties, that chemicals have specific modes of action, and that the dose 
makes the poison. The art of concocting and using poisons reached its "zenith" during the Italian 
Renaissance, eventually culminating in its commercialization by Catherine Deshayes (a.k.a., La 
Voisine, 1640-1680) in France. 

One of the first to suggest a chemical method for the detection of a poison in modern times was 
Herman Boerhaave (1668-1738), a physician and botanist, who, according to Jurgen Thorwald (The 
Century of the Detective), placed the suspected poison on red-hot coals, and tested for odors. The 
Spanish physician Orfila (1787-1853) served in the French court, and was the first toxicologist to 
systematically use autopsy and chemical analysis to prove poisoning. He has been credited with 
developing and refining techniques to detect arsenic poisoning. Other historic accounts include 
extraction of alkaloids from postmortem specimens (Jean Servais Stas -1851) as evidence in a nic­
otine poisoning case (Levine 2003). The chemical analysis of organs and tissues became the basis 
for establishing poisoning. Much of the early history of toxicology addressed whether someone had 
been poisoned and how to treat poisoning. 

1.2 THE BEGINNINGS OF WILDLIFE TOXICOLOGY 

Wildlife toxicology has generally dealt with environmental contamination and the unintentional 
poisoning of amphibians, reptiles, birds, and mammals (Rattner 2009). Concern over poisoning 
of wildlife began in the late nineteenth century, and initially focused more on identifying envi­
ronmental problems than determining contaminant concentrations in tissues. Reports of pheasant 
(Phasianus colchicus) and waterfowl mortality related to ingestion of sp'ent lead shot appeared in 
the popular literature (Calvert 1876, Grinell 1894). Once recognized, it was considered a common 
occurrence in waterfowl (Phillips and Lincoln 1930). Wetmore (1919) described postmortem signs 
of intoxication in waterfowl that contained shot in the gizzard and other portions of the digestive 
tract. Poisoning of waterfowl from lead mining wastes dumped into the Spring River in Kansas 
was described in 1923 (Phillips and Lincoln 1930). A report of arsenic-related mortality of fallow 
deer (Dama dama) near factories processing metal ores in Freiberg, Germany, made its way into 
the popular press in 1887 (Newman 1979). Controlled exposure studies with mercury, strych­
nine, and arsenic were conducted in domestic and wild fowl (Gallagher 1918, Whitehead 1934), 
including measurement of arsenic in tissues of dosed chickens (Gallus gallus) (Whitehead 1934). 
Alkali poisoning of thousands of eared grebes (Podiceps nigricollis) and shovelers (Anas clypeata) 
was documented in California in 1891 (Fisher 1893). Similar cases were subsequently described 
in many locations in the western United States, and alkali poisoning was even experimentally 
duplicated by Wetmore using captive birds, which were administered chlorides of calcium and 
magnesium (Phillips and Lincoln 1930). The hazard of ingested phosphorus from military muni­
tions by waterfowl and swans was first recognized in 1923, and emerged as a problem on several 
occasions decades later (Phillips and Lincoln 1930). With the expansion of oil production and its 
use for marine propulsion after World War I, oiling of waterbirds and numerous die-offs occurred 
along the coast of the United States (over 35 incidents documented in Phillips and Lincoln 1930). 
In the aforementioned mortality incidents (i.e., lead shot, arsenic, alkali, phosphorus, and oil), the 
source and the presence of the toxicant were usually readily apparent (e.g., recovery of ingested 
shot, alkali salts or oil in or on birds). 

Qualitative and quantitative determination of presence of lead in stomach and caeca of water­
fowl was described as early as 1919 (Wetmore 1919, Magath 1931). Traces of arsenic were reported 
in the liver of dead deer following application of calcium arsenate for forest insect control in 1926 
(Danckwortt and Pfau cited by Keith 1996). In the detailed description of poisoning of nontarget 
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wildlife by thallium baits used to control ground squirrels, Linsdale (1931) mentioned the use of 
qualitative spectroscopic methods to detect thallium in tissues of dead geese, and quantitative meth­
ods to determine concentrations in edible tissues. Before 1940, the presence or actual concentra­
tions principally served as evidence of exposure. Quantitative methods were used in analyzing 
lead-poisoned geese (Branta canadensis) in the early 1940s, and "some correlation" between the 
number of shot found in the gizzard with lead content of the liver and kidney (but not leg bone) was 
suggested (Adler 1944). 

Environmental contaminant studies with captive waterfowl began at the Patuxent Research 
Refuge in the late 1940s. Through controlled exposure studies with captive birds, evidence of adverse 
effects (histopathological lesions, impaired reproduction, and lethality) on individuals began to be 
generated. In toxicity studies of white phosphorus used in military munitions, Coburn and cowork­
ers (1950) found statistically significant changes in concentrations of elemental phosphorus in heart, 
liver, and kidney of mallards (Anas platyrhynchos) and black ducks (Anas rubripes) that were dosed 
with various quantities of white phosphorus. These data were then used to interpret phosphorus con­
centration in tissues of redhead ducks (Aythya americana) collected from northern Chesapeake Bay, 
which led to the conclusion that "it appears probable" that the birds had been killed from ingestion 
of elemental phosphorus (Coburn et al. 1950). In order to interpret quantities of lead that produce 
toxic signs in waterfowl, mallards were dosed with lead nitrate (soluble and readily absorbable form 
of lead) for several weeks (Coburn et al. 1951). Anemia, emaciation, and a number of pathological 
lesions were consistently noted, and lead concentration in bone and liver was 7 and 40 times greater 
than that found in control birds. The critical lead intake level was suggested to be between 6 and 
8 mg/kg body weight/day, and it was stated that bone, liver, or soft tissues could be used to chemi­
cally verify lead poisoning in field samples. 

1.3 SYNTHETIC PESTICIDES AND POISONING OF WILDLIFE 

By the 1930s, a total of about 30 pesticides were in use in the United Kingdom, United States and 
elsewhere, including plant derivatives (e.g., pyrethrum and nicotine), inorganic compounds (e.g., 
calcium arsenate and lead), mercurial fungicides, and the synthetic weed killer dinitro-ortho cre­
sol (Sheail 1985). Aerial application of pesticides became a common practice in the 1930s, and 
potential adverse effects of pesticides to wildlife were acknowledged at the Third North American 
Wildlife Conference (Strong 1938). 

The discovery of the insecticidal properties of dichlorodiphenyltrichloroethane (DDT) in 1939, 
the development, production, and use of other organochlorine (e.g., hexachlorocyclohexane), organ­
ophosphorus pesticides (e.g., schradan), and rodenticides (e.g., Compound 1080), increased dramat­
ically during and after World War II (Hayes 1991). Concerns about potential damaging effects of 
DDT on wildlife appeared in The Atlantic Monthly (Wigglesworth 1945), which prompted experi­
mental studies. Field studies of DDT effects on wildlife were undertaken in Maryland, Pennsylvania, 
and Texas, and reduced numbers of some avian species and dead birds were noted at application 
concentrations of 4.4 and 5 pounds per acre (Hotchkiss and Pough 1946, George and Stickel 1949, 
Robbins and Stewart 1949). Parathion poisoning of geese attributed to spray drift was also reported 
at this time (Livingston 1952). In the United Kingdom, large numbers of wildlife poisonings (e.g., 
passerines, game birds, mammals) occurred in the early and mid-1950s related to the use of aldrin 
and dieldrin as seed dressings, and application of schradan for control of aphids (She ail 1985). 
Many other organochlorine insecticides (e.g., chlordane, heptachlor, and toxaphene) came into use 
in agricultural and forest settings in the 1950s, and wildlife mortality was noted (Peterle 1991). 

Reports of wildlife mortality from pesticide use were controversial, pitting scientists associated 
with agriculture and chemical companies against environmental scientists. Biologists relied on tis­
sue analyses not just to understand environmental hazards associated with pesticides, but also to 
provide more definitive evidence of exposure and even adverse effect. This controversy also served 
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as an impetus to conduct controlled studies, which often relied on tissue concentrations as a mea­
surement endpoint. 

Data on concentrations of organic pesticides in tissues of wildlife began to appear in the early 
1950s. Analysis of liver tissue from dead and intoxicated pheasants collected at pesticide-treated 
orchards revealed elevated concentrations of DDT (up to 326 flg/g), while parathion was detected in 
only a few birds (up to 5 flg/g) (Barnett 1950). Chronic dietary DDT and parathion feeding trials in 
pheasants demonstrated that the kinetics of the two pesticides were quite different (Barnett 1950). 
Substantial quantities of DDT were detected in fat (up to 8104 Ilg/g) and liver (up to 94 Ilg/g), but 
usually only trace amounts of parathion were found in liver. In a songbird study evaluating DDT 
(applied at 3 pounds per acre), Mitchell et al. (1953) found that whole body DDT concentrations in 
dead nestling songbirds were variable (up to 77 Ilg/g) and tended to be greater in dead nestlings in 
the sprayed area compared to the reference site. However, the overall songbird population was not 
affected (Mitchell et al. 1953). During this period, aldrin, dieldrin, and heptachlor were detected in 
tissues of dead birds and mammals following their field application (Post 1952, Clawson and Baker 
1959, Scott et al. 1959, Rosene 1965). As aptly pointed out by Keith (1996), during this era investiga­
tors documented pesticide exposure in tissues of dead birds, but were often hesitant to conclude that 
the cause of death was pesticide-related. 

Acute and chronic exposure studies were conducted using captive game birds that described 
signs of intoxication, lethality, and accumulation of residues of organochlorine pesticides in tissues 
(Dahlen and Haugen 1954, DeWitt 1955, 1956, DeWitt et al. 1955). The hazard of toxic chemicals 
to wildlife was frequently investigated using a combined laboratory-field approach (viz., determin­
ing the tissue concentrations of the compound and/or metabolites present in intoxicated or dead 
wild animals, and then comparing those values to concentrations in experimentally dosed animals 
exhibiting toxicological signs or effects) (Peakall 1992, Keith 1996). This approach worked well 
for organochlorine contaminants that readily bioaccumulated in tissues and exerted their lethal 
effects through neurotoxic mechanisms. For example, dietary feeding studies with captive quail 
and pheasants demonstrated that the concentrations of DDT in breast muscle were related to the 
severity of intoxication, with 34 Ilg/g in adult bobwhite (Colin us virginianus) and 22 Ilg/g in adult 
pheasants being associated with death (DeWitt et al. 1955). Barker (1958) reported brain concentra­
tions of DDT and DDE (dichlorodiphenyldichloroethane) in robins (Turdus migratorius) and other 
passerines that succumbed following DDT application for Dutch elm disease. Based on this field 
study it was concluded that "the brain, being a suspected site of action, was considered to be best as 
an indicator of toxicity," with greater than 60 flg/g indicative of death in robins (Barker 1958). Other 
investigators made similar conclusions on the toxic concentration of DDT in brain tissue (>50 Ilg/g) 
in several species of birds, and extended findings by considering the sum of metabolites (Bernard 
1963, Wurster et al. 1965, Stickel et al. 1966). This approach was used for many organochlorine 
compounds, including chlordane, heptachlor, dieldrin, and Aroclor 1254 (DeWitt et al. 1960, Stickel 
et al. 1969, 1984, and reviewed by Hoffman et al. 1996, Peakalll996, Wiemeyer 1996). To improve 
diagnostic capabilities for free-ranging wildlife, the effects of body condition, lipid reserves, cessa­
tion of feeding, cold, and other stressors on tissue distribution and mobilization of organochlorines 
were examined in both controlled exposure and field studies (Harvey 1967, Stickel et al. 1970, Van 
Velzen et al. 1972, Heinz and Johnson 1981). 

1.4 "SILENT SPRING" AND POPULATION LEVEL EFFECTS 

With the publication of Rachel Carson's Silent Spring (1962), issues such as adverse effects of pesti­
cides on nontarget organisms, ecological imbalances, chemical persistence, pesticide resistance, and 
human safety were publicized and debated not only among scientists, but also in all sectors of soci­
ety. Eventually, some pesticides and environmental issues were addressed through testimony before 
government entities and courtroom litigation. This environmental movement sparked new legislation 
(e.g., in the United States, Resource Conservation and Recovery Act in 1965, National Environmental 
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Policy Act in 1970, and Toxic Substances Control Act in 1976; reviewed by Fairbrother 2009) and 
the establishment of distinct governmental agencies to deal with environmental pollution (e.g., U.S. 
Environmental Protection Agency in 1970). Research programs related to pesticides and industrial 
chemicals expanded in North America, Europe, and elsewhere. In the United Kingdom, Monks 
Wood Experimental Station was established to investigate effects of chemicals on animals and their 
supporting habitat. Chemical screening programs were initiated to examine toxicity, repellency and 
potential hazard of chemicals to birds and mammals (Heath et al. 1972, Schafer et al. 1983), and long­
term environmental contaminant monitoring programs were established. 

Population declines observed in many species of fish-eating and raptorial birds were of great 
concern to biologists. Following the discovery of an increased frequency of broken peregrine fal­
con (Falco peregrinus) eggs in England, Moore and Ratcliffe (1962) and many other investigators 
(reviewed in Sheail 1985 and Keith 1996) detected organochlorine pesticide residues (e.g., DDE, 
dieldrin, and lindane) in eggs. In a classic paper, Ratcliffe (1967) reported that weights of raptor 
eggshells fell markedly and rapidly after DDT use was instituted, and Hickey and Anderson (1968) 
used correlation analysis to demonstrate that shell thickness was inversely related to the concentra­
tion of DDE in eggs. Controlled exposure studies followed that proved DDE caused eggshell thin­
ning and impaired reproduction (Heath et al. 1969). Similar relationships have been demonstrated 
in a number of predatory avian species (Hickey and Anderson 1968, BIus et al. 1972, Blus 1996), 
although some species are considerably more sensitive (e.g., brown pelican, Pelecanus occidenta­
lis) than others. Concerns over the effects of moisture loss related to incubation stage, particularly 
in addled eggs, resulted in the development of concentration correction factors (Stickel et al. 1973). 
Adverse effects of organochlorine pesticides were also described in wild mammals, most notably 
bats (reviewed in Clark and Shore 2001), and the first reports of organochlorine contaminants and 
mercury appeared in marine mammals in the 1960s (reviewed in O'Shea and Tanabe 2003). The 
use of tissue residues has evolved from merely explaining the cause of local wildlife die-offs to its 
use in the investigation of the status of wildlife populations, and in some cases the possible fate of 
species. 

Advances in chemical analysis and instrumentation enhanced detection capabilities and revealed 
some unsuspected problems. In 1966, Swedish scientist Soren Jensen reported several unknown 
peaks in a gas chromatogram that interfered with the quantification of DDT in environmental sam­
ples (Jensen 1966). These unknown peaks were subsequently identified as PCBs, which raised the 
possibility that previously reported DDT and metabolite values may have been falsely elevated 
by these interfering peaks. It was quickly recognized that PCBs were present in biota on a global 
scale, with perhaps the highest concentrations in fish-eating birds (up to 14,000 Ilg/g) (Risebrough 
et al. 1968, Wasserman et al. 1979). Quantification of these complex mixtures was based in part on 
matching chlorinated biphenyl patterns to the commercial Aroclor formulations, classified on the 
percentage of chlorination of the biphenyl. In the environment, these complex mixtures changed 
substantially due to natural weathering and biological processes, and Aroclor pattern recognition 
techniques were used to quantify total PCB concentrations in free-ranging wildlife. Toxicity stud­
ies of PCBs were undertaken in birds and mammals. It was realized that poor reproduction in 
ranch mink (Mustela vison) was due to the presence of PCBs in their food source, Great Lakes 
coho salmon (Oncorhynchus kistutch) (Aulerich and Ringer 1977). In the 1970s, studies focused 
on commercial mixtures (e.g., Aroclor 1254, Clophen A60), and concentration thresholds associ­
ated with lethality and embryotoxicity (e.g., <10 Ilg/g in eggs; reviewed by Hoffman et al. 1996). 
Concentrations of PCBs in liver and whole bodies were found to be indicative of exposure, but of 
limited diagnostic value in explaining mortality events (i.e., extremely high concentrations of PCBs 
are necessary to evoke mortality in adult birds). 

Studies in the 1960s indicating a possible link between contaminant exposure (mainly organo­
chlorines) and reproductive dysfunction in Great Lakes colonial nesting waterbirds (Hickey et al. 
~96?, Keith 1966, Gilbertson 1974, 1975, Gilman et al. 1977) led to a long-term research and mon­
Itormg program (Peakall and Fox 1987) using herring gulls (Larus argentatis) as bioindicators. 
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This herring gull monitoring program still continues today as an integral part of a multi facetted 
bi-national program to evaluate Great Lakes ecosystem health (Shear et al. 2003). 

The toxicity of metals during this era focused primarily on mercury and lead. By the late 1950s, 
waterfowl poisoning by ingestion of spent lead shot, and effects on populations were further char­
acterized (Bellrose 1959). Studies with captive Canada geese (Cook and Trainer 1966) and mallards 
(Locke et al. 1966, Barrett and Karstad 1971) dosed with lead shot reported concentrations of lead 
in liver and blood, associated pathological lesions, signs of intoxication, and death. However, in a 
lead study by Longcore and coworkers (1974) ranges indicative of exposure were proposed (>3 Jlg/g 
wet weight in brain, 6-20 Jlg/g in liver or kidney, and 10 Jlg/g in blood), that when combined with 
necropsy findings (presence of lead fragments in digestive tract), case history and histopathological 
lesions, could be used to make a definitive diagnosis of lead poisoning. In time and with the acqui­
sition of additional data, these ranges became a more formalized criteria, including categories of 
lead exposure (e.g., background), and levels of injury or effect (e.g., subclinical, clinical, and severe 
poisoning) (Friend 1985, Franson 1996, Pain 1996). 

1.5 ADVANCES IN MEASUREMENT ENDPOINTS 
OF CONTAMINANT EXPOSURE 

By the 1970s, restrictions were placed on the use of some organochlorine compounds, including 
DDT and PCBs, although to some scientists the decision on DDT was misguised (Roberts et al. 
2010). Controlled exposure studies in wild birds and mammals began to focus on sublethal bio­
chemical, physiological, and behavioral effects of organic compounds and metals. 

Use of organophosphorus and carbamate pesticides for farm crops, mosquito abatement, and for 
control of forest insect pests (e.g., spruce budworm in Canada described as "The Thirty Years' War," 
Burnett 1999) increased dramatically. Although these anticholinesterase pesticides had short envi­
ronmental half-lives, they were not without adverse effects to birds and other nontarget organisms 
(Mineau 1991, Kendall and Lacher 1994, Grue et al. 1997). Because these compounds are rapidly 
metabolized, laboratory studies focused on enzymatic indicators (cholinesterase and other esterases) 
in blood and tissues of exposed birds (Bunyan et al. 1968a, 1968b, Ludke et al. 1975). Detection of 
organophosphate poisoning in wildlife quickly evolved to include the combination of inhibition of 
cholinesterase activity in brain tissue (-50%) along with the presence of organophosphorus or car­
bamate parent compounds or metabolites in tissues or ingesta (Hill and Fleming 1982). Many direct 
poisoning cases, and intriguing incidents involving secondary poisoning, are described in the peer-re­
viewed literature (Henny et al. 1985, Mineau et al. 1999). Refinements over time included the develop­
ment of extensive libraries of reference values for unexposed animals and cholinesterase reactivation 
assays (Fairbrother et al. 1991). The combination of reduced cholinesterase activity and detection of 
residues or metabolites in tissues for diagnosis of poisoning has remained steadfast (Hill 2003). 

Although a longstanding problem, major petroleum spills resulting in large bird kills (e.g., 
Torrey Canyon in 1967, Union Oil drilling platform in 1969, Arrow tanker in 1970) heightened 
public awareness and concern. From both an historical (Phillips and Lincoln 1930) and modern 
day perspective, evidence of exposure of wildlife following major oil spills is usually apparent by 
visual inspection and petroleum odor of the integument (feathers or fur) of suspect animals. In the 
1960s and 1970s, numerous controlled exposure studies were undertaken that focused on char­
acterizing the effects of crude petroleum oil and refined petroleum products on wildlife (Holmes 
1984, Jessup and Leighton 1996). Despite the development of analytical methods (e.g., Gay et al. 
1980), tissue concentrations and related measures (e.g., total resolved hydrocarbons; presence of 
aromatic, high molecular weight hydrocarbons and odd-numbered hydrocarbons; and ratios of 
pristine to n-C17 and phytane to n-CI8; Hall and Coon 1988) are only occasionally measured in 
wildlife following oil spill events. In time it became recognized that (1) the composition of crude 
and refined petroleum varies considerably, (2) the chemical and physical properties of petroleum 
change through weathering and volatilization following a spill, (3) ingested petroleum compounds 
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are often rapidly metabolized, and (4) there are substantial differences in toxicity following external 
exposure and ingestion of various crude or refined petroleum products (Jessup and Leighton 1996, 
Albers 2003). Accordingly, tissue concentrations of aliphatic and aromatic components of petro­
leum oil that are associated with adverse effects have not been developed. Instead, measurements 
are used to document exposure, most commonly for purposes of natural resource damage assess­
ments following a spill event. However, confirmation of the presence of petroleum oil on the integ­
ument does not necessarily indicate that oil was the cause of death (Jessup and Leighton 1996). In 
the 1980s, enzyme-linked immunosorbent assays for detection of oil, and detailed fingerprinting 
for matching oil on exposed animals with its source were developed, and are now commonly used 
(Peters et al. 2005). 

By the end of the 1980s, the use of lead shot for hunting waterfowl and coots was banned in the 
United States, and restrictions were placed on the use of lead fishing tackle in the United Kingdom 
due to the unintentional poisoning of mute swans (Cygnus alar) (Pattee and Pain 2003). Investigations 
on effects of heavy metals (e.g., lead, cadmium, and zinc) at industrial, mining, and hazardous waste 
sites examined exposure and responses at the individual and population levels of biological orga­
nization. Selenium became a significant environmental issue in the early 1980s when dramatic 
effects, including death and embryonic deformity of birds, were observed at the Kesterson National 
Wildlife Refuge in California (Ohlendorf and Hothem 1995, Ohlendorf 2003). In response to find­
ings of selenosis and waterbird death at the Kesterson Reservoir, numerous field and feeding studies 
of birds were undertaken to establish toxicity thresholds. Using various statistical models (log it, 
probit, Weibull functions), much emphasis was placed on determining the toxicity of selenium in bird 
eggs. The probability of teratogenesis in black-necked stilts (Himantapus mexicanus) increased when 
selenium concentrations exceeded 37 Ilg/g dry weight (i.e., ECIO, estimate of concentration affect­
ing 10% of the population), while the ECIO for teratogenesis in mallards and in American avocets 
(Recurvirostra americana) was estimated to be 23 and 74Ilg/g, respectively (Skorupa 1998a, 1998b). 
The threshold for reduced egg hatchability, a more sensitive measure of selenosis, was estimated to 
be 6-7 Ilg/g in stilt eggs, but avocets were found to be considerably more tolerant with hatchability 
effects at 60 Ilg/g. There has been considerable debate on the selenium threshold concentration for 
impaired hatchability in waterfowl, with an ECIO ranging from 12.5 to 16 Ilg/g. 

The development and use of biomarkers of contaminant exposure and adverse effect expanded 
dramatically in the 1990s (McCarthy and Shugart 1990, Huggett et al. 1992, Peakall and Shugart 
1993). The impetus was multi fold. Organic contaminant and elemental analysis of tissues was, and 
continues to be, highly quantitative but costly and time consuming. Some biochemical measure­
ments were amenable to rapid screening of samples, and a few were rather specific for certain 
contaminants and linked to the mechanism of toxicity (e.g., 8-aminolevunic acid dehydratase inhi­
bition and protoporphyrin accumulation in blood of lead-poisoned birds and mammals). In some 
instances, rapid metabolism does not permit detection of parent compounds or metabolites in tis­
sues, and thus enzymatic and other biochemical assays are utilized in place of tradition analyti­
cal methods (e.g., neurotoxic esterase activity for organophosphorus-induced delayed neuropathy 
caused by tri-a-tolyl phosphate and leptophos; Ecobichon 1996). It was quickly recognized that 
other biochemical measurements (e.g., changes in plasma transaminase and lactate dehydrogenase 
activities) were sensitive generalized responses that were precursors or indicators of cellular dam­
age, although such measurements lack toxicant specificity. In time, other biomarkers (cytochrome 
P450, metallothionein, heat stress proteins, DNA damage, and measures of oxidative stress) were 
utilized as indicators of exposure and/or adverse effects in wildlife, and several exhibited dose­
response relationships. Endpoint measurements were characterized for sensitivity, specificity, vari­
ability, clarity of interpretation, validity, and applicability to field sampling (McCarthy and Shugart 
1990, Huggett et al. 1992, Peakall and Shugart 1993). Although biochemical markers are of tremen­
dous value in ecotoxicology, only a few have gained widespread acceptance for risk assessments 
and natural resource damage assessments. Often these endpoints are most valuable as ancillary 
measures used in combination with contaminant concentration and other endpoints. 
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1.6 INTERPRETING EXPOSURE USING NEW MOLECULAR 
AND MODELING TECHNIQUES 

On a grand scale, high prevalence of embryonic deformity was observed in some populations 
of colonial nesting fish-eating birds in the Great Lakes (Great Lakes Embryo Mortality, Edema, 
and Deformities Syndrome; Gilbertson et al. 1991). Such epidemic-like events and catastrophes 
including the Chernobyl nuclear reactor meltdown, and the Exxon Valdez and Gulf War oil spills, 
greatly expanded ecotoxicological research worldwide. Exposure studies with captive wild birds 
and mammals, in parallel with modeling efforts, were used to estimate no adverse effect level 
(NOAEL) and lowest observable adverse effect level (LOAEL) for PCBs in diets and drinking 
water (e.g., Heaton et al. 1995, U.S. EPA 1995, Forsyth 2001). Perhaps more germane to this text, 
the tissue concentrations of PCBs that correspond to the dietary NOAEL and LOAEL were also 
estimated (Heaton et al. 1995, Forsyth 2001). The realization of extreme toxicity of dioxin and 
dioxin-like coplanar PCB congeners in laboratory rodents (Poland and Knutson 1982), chicken 
eggs, and cell culture systems (Safe 1984, 1990) led to measurement (Kubiak et al. 1989) and 
toxicity testing (reviewed by Hoffman et al. 1996) of individual congeners in wildlife. The use of 
mammalian toxic equivalency factors to estimate dioxin equivalents of coplanar PCB congeners 
was applied to wild bird eggs. Potency estimates for dioxin-like PCB congeners (toxic equivalents, 
TEQs) were subsequently compiled (reviewed in Hoffman et al. 1996), and along with dioxins and 
dibenzofurans were eventually formalized at a World Health Organization workshop in 1997 (Van 
den Berg et al. 1998). 

The use of nondestructive and minimally or noninvasive sampling techniques became more com­
mon in the 1990s. The rationale arose from the desire to use samples that did not entail the sacrifice 
of animals for ethical or scientific reasons (species status as threatened or endangered) and the sam­
pling of animals repeatedly at a site where only a few individuals were found (Fossi and Leonzio 
1994). Much of the analysis of such samples has focused on biochemical endpoints. Concentrations 
of organochlorine pesticides and metabolites, PCBs, and metals (lead, mercury, cadmium, and vana­
dium) in blood, milk, feathers, hair, and excreta are often correlated with levels found in historically 
used tissues (e.g., liver and kidney), and thus critical concentration values associated with harm were 
developed for some contaminants in these matrices (Fossi and Leonzio 1994). 

Pesticide hazards to migratory species were highlighted by the death of some 20,000 Swainson's 
hawks (Buteo swainsoni) from monocrotophos poisoning during their winter migration to Argentina 
(Hooper et al. 2003). Monitoring and forensic studies documented anticoagulant rodenticide expo­
sure and secondary poisoning in raptors (e.g., Stone et al. 1999, 2003), and restrictions were placed 
on the use of some of these compounds (US EPA 2008). Investigation of wildlife die-offs at industrial 
and mining sites continued (e.g., Hill and Henry 1996, Henny 2003), and in some instances metal 
concentration thresholds in tissues associated with toxicity were established (e.g., vanadium, Rattner 
et al. 2006). Studies of forest birds exposed to the organic-arsenical pesticide MSMA (monosodium 
methanearsonate) used for suppression of the mountain pine beetle in British Columbia revealed a 
significant hazard to woodpeckers (Picoides spp.), and findings led to the removal of MSMA from 
the marketplace (Morrissey et al. 2007, Albert et al. 2008). With reports of feminization of alliga­
tors (Alligator mississippiensis) in Lake Apopka, Florida (Guillette et al. 1994) and the publication 
of Our Stolen Future (Colborn et al. 1996), laboratory and field investigations were launched that 
focused on endocrine-disruptive effects of pollutants on wildlife. Despite extensive research, wide­
spread effects of pollutants on endocrine function of free-ranging wildlife have been difficult to 
demonstrate; however, effects on the gonadal subsystem of wild fish seem to be pronounced (Jobling 
et al. 1998). Ecotoxicological research and monitoring of amphibians greatly expanded in response 
to worldwide declines of their popUlations, and the realization that some pesticides might be respon­
sible for limb and other structural deformities (Sparling et al. 2000). 

Emerging contaminant issues in the twenty-first century have included the global detection 
of perfluoroalkyl surfactants in wildlife (Giesy and Kannon 2001), and the dramatic increase in 
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concentrations of polybrominated diphenyl ether (PBDE) flame retardants in eggs and tissues of 
birds (Norstrom et al. 2002). The population crash of Gyps vultures in the Indian subcontinent 
resulted in a remarkable forensic investigation documenting secondary poisoning (renal failure) of 
vultures that fed on carcasses of cattle that had been treated with the nonsteroidal anti-inflammatory 
drug diclofenac (Oaks et al. 2004). Old World vultures were found to be quite sensitive to dic10fenac 
(LD50 of 0.1 to 0.2 mg/kg body weight), with concentrations in kidney and liver of affected birds 
being <1 flg/g wet weight (Oaks et al. 2004, Shultz et al. 2004, Swan et al. 2006). This catastrophic 
event was the first time that a veterinary drug resulted in species endangerment. Notably, New 
World vultures do not seem to be sensitive to dic10fenac (Rattner et al. 2008). 

The use of stable isotopes to identify the environmental source of a metal is a recent development 
in the field of wildlife toxicology. In a study of California condors (Gymnogyps californianus), lead 
concentrations and stable isotope ratios demonstrated that the source of exposure was a combination 
of background environmental lead, and ingested spent lead ammunition that has a distinctly lower 
207Pb to 206Pb ratio (Church et al. 2006). 

New models have been developed to estimate tissue concentration and distribution of legacy 
and emerging contaminants in wildlife. For example, a toxicokinetic model in the developing her­
ring gull embryo predicts lipid mass balance and distribution of PCBs between the embryo, and 
yolk and albumen compartment (Drouillard et al. 2003). The model predicts that greatest PCB 
concentrations in the embryo occur during pipping, or shortly thereafter, when yolk lipids have 
been completely absorbed into the embryo, which is consistent with empirical data. Retention and 
elimination half-lives have also been modeled for numerous PCB and PBDE congeners in juvenile 
and adult American kestrels (Falco sparverius) (Drouillard et al. 2001, 2007). A bioenergetic-based 
model for tree swallow (Tachycineta bicolor) nestlings has been used to quantitatively examine fac­
tors (weight-normalized food consumption) and processes (growth dilution) that influence PCB bio­
accumulation (Nichols et al. 1995,2004). Several kinetic models have been developed for mercury 
in birds, and one such model with a bioenergetics-based component has been used to predict blood 
mercury concentration as a function of food intake, food mercury content, body mass, and mercury 
absorption and elimination in common loon (Gavia immer) chicks (Karasov et al. 2007). Work has 
been initiated on physiological-based pharmacokinetic models for some chlorinated hydrocarbons, 
methylmercury, and anticoagulant rodenticides in wild birds. Such models permit calculation of tis­
sue concentrations (internal dose) of contaminants for a variety of administered doses, and support 
interspecific extrapolations for risk assessments. Application of uncertainty factors in estimating 
toxicity reference values have become well-accepted, and are now used to estimate adverse effect 
concentrations for toxicant intake (e.g., milligrams per kilogram body weight per day), concentra­
tions in media, and tissue-based toxicant concentrations (micrograms per day) (USACHPPM 2000). 
Using this approach, predicted no effect concentrations for perfluorooctane sulfonate (PFOS) in the 
diet (i.e., 0.013 mg PFOS/kg body weight/day) and in the liver, serum, and egg yolk (0.08 flg PFOS/g 
wet weight, 0.15 flg PFOS/mL, and 1 flg PFOS/mL, respectively) of a generic female top-level 
avian predatory species have been generated (Newsted et al. 2005). Statistical techniques are now 
being used to derive tissue concentrations associated with toxicological benchmarks. Buekers et al. 
(2009) have recently calculated the fifth percentile hazard concentration (HC5) of blood lead levels 
associated with a no observed effect concentration (NOEC) in bird and mammals. Theoretically, at 
blood lead concentrations below the HC5, 95% of all higher vertebrates will be protected. As these 
examples illustrate, tissue concentrations are being used to answer increasingly more complex ques­
tions. Although tissue concentrations are still used to examine the fate of a particular organism, they 
are also used to elucidate contaminant hazards to populations and to ecosystems. 

1.7 CASE HISTORY: MERCURY IN WILD BIRDS 

Mercury (Hg) exposure has long been considered a potentially serious threat to the health of both 
humans and wildlife. The ecotoxicologicalliterature on Hg is substantial, having evolved over many 
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years, and serves to illustrate some of the problems faced by ecotoxicologists when trying to evaluate 
injury based on tissue contaminant concentrations. The fate of Hg in the environment is complex. 
For example, Hg originates from both natural sources and industrial processes; it may be released 
into the environment in a number of different chemical forms; it may be chemically interconverted 
within the abiotic environment; and it may be metabolized by microorganisms to form either methyl 
Hg or inorganic Hg, which differ considerably in dietary absorption, tissue distribution, and toxicity 
in exposed wildlife. Furthermore, the chemical forms of Hg may be changed within some organs 
(e.g., demethylation by liver), further complicating interpretation of wildlife tissue concentrations. 
The principles learned from the literature on Hg are applicable to other less well-studied environ­
mental contaminants. 

Mercury first received attention as a toxicological issue for wildlife in the 1950s and 1960s 
when elevated Hg concentrations and poisonings were reported in a wide variety of seed-eating 
birds and small mammals, and their predators. In these cases, the ultimate source of Hg exposure 
in small granivores was the consumption of agricultural seeds (mainly wheat, barley, and oats) 
coated with alkyl Hg fungicide compounds (commonly methylmercury dicyandiamide). Predators, 
including raptorial birds and various carnivorous mammals, were in turn poisoned after feeding 
on Hg-poisoned prey. Although poisoning of wildlife from this Hg source occurred in a number of 
different countries, the most comprehensive report of the phenomenon is probably that of Borg et 
al. (1969) who described the Swedish experience and concluded that the extent of Hg poisoning was 
great enough to have caused population reductions of some affected species. Although Borg et al. 
(1969) did not indicate specific threshold tissue concentrations for assessing Hg poisoning in wild­
life, they were among the first to suggest that tissue-Hg (or alkyl Hg) concentrations, together with 
supporting evidence such as behavioral signs and/or characteristic histopathology, were the primary 
criteria for diagnosing Hg poisoning in wildlife. 

In the 1960s, Hg poisoning of scavenging and fish-eating birds in Japan was related to the 
industrial release of methyl Hg, the most notable effects occurring in Minamata Bay (Doi et al. 
1984). Other major point-sources of Hg to the environment during the 1960s and 1970s were 
effluents from pulp mills and chloralkali plants. Aquatic wildlife, especially fish-eating species, 
sampled from environments affected by these industrial emissions, commonly demonstrated ele­
vated tissue-Hg concentrations (e.g., Fimreite 1974). Occasionally, overt intoxication and mor­
tality of fish-eating wildlife (e.g., wild mink, Wobeser and Swift 1976; and wild otter, Lutra 
canadensis, Wren 1985) were attributed to Hg exposure from such sources. In addition, repro­
ductive impairment in wild fish-eating birds was linked to elevated Hg exposure in such envi­
ronments (Fimreite 1974, Barr 1986). These early studies examined mainly gross toxicological 
endpoints such as overt neurotoxicity, reproductive failure, and outright mortality, but sometimes 
also included histopathological examination for lesions at the cellular level (Tejning 1967, Borg 
et al. 1969, 1970, Fimreite 1971, Fimreite and Karstad 1971, Aulerich et al. 1974, Heinz 1974, Pass 
et al. 1975, Heinz and Locke 1976, Wobeser et al. 1976, Finley and Stendell 1978, Finley et al. 
1979, Heinz 1979). 

A combination of field studies of methyl Hg-exposed animals, and controlled dosing studies 
using captive animals, helped elucidate tissue and dietary levels of methyl Hg that were asso­
ciated with overt toxicity or reproductive impairment (reviewed by Wren et al. 1986, Eisler 
1987, Scheuhammer 1987, and more recent reviews by Heinz 1996, Thompson 1996, Burger and 
Gochfeld 1997, Wolfe et al. 1998). In these studies, it was common to measure and report only total 
Hg concentrations in tissues, with the implicit assumption that because exposure was known to be 
primarily to methyl Hg, tissue levels of total Hg and methyl Hg would be essentially identical. This 
assumption was probably valid for most field and lab studies conducted in the 1960s and 1970s 
because dietary methyl Hg exposures in these studies tended to be high, and the duration of expo­
sure was generally fairly brief, certainly not more than a few months. However, the assumption is 
not valid for scenarios involving chronic, lower-level dietary methyl Hg exposure. A review of Hg 
concentrations in liver and kidney tissue of wildlife that died from Hg poisoning during the methyl 
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Hg-treated grains era, indicated that total Hg concentrations >20 flg/g wet weight represent poten­
tially lethal exposures. But in other unrelated studies, much higher concentrations of total Hg (in 
some cases, several hundred flg/g) in liver of apparently healthy wild animals were reported (e.g., 
ringed seal, Pusa hispida and bearded seal, Erignathus barbatus, Smith and Armstrong 1975; 
striped dolphins, Stenella coeruleoalba, Itano et a1. 1984; polar bears, Ursus maritimus, Norstrom 
et a1. 1986). An apparently healthy wandering albatross (Diomedea exulans) had liver concentra­
tions >1000 flg Hg/g dry weight (Thompson and Furness 1989). How could such dramatically 
elevated Hg concentrations fail to be accompanied by signs of severe toxicity? When studied fur­
ther, Hg in livers of these and other species was shown to contain variable proportions of organic 
(methyl) and inorganic forms, with a generally decreasing organic fraction as total Hg concentra­
tions increased. After absorption from the diet, some methyl Hg is apparently demethylated in 
certain tissues in response to increasing methyl Hg accumulation. Thompson and Furness (1989) 
demonstrated this phenomenon in a number of seabird species, suggesting that long-lived species 
with relatively slow molt cycles might be slow to eliminate methyl Hg through new feather growth 
and that, therefore, demethylation of methyl Hg might be an important additional mechanism to 
reduce the body burden of toxic methyl Hg. More recent studies have addressed apparent species 
differences in de methylation efficiency among different wild avian species (e.g., Scheuhammer et 
a1. 2008, Eagles-Smith et a1. 2009). Taken together, these studies demonstrated that Hg in liver 
cannot be assumed to be present primarily as methyl Hg, even though wildlife are exposed primar­
ily to dietary methyl Hg in fish and other prey. Inorganic Hg resulting from demethylation in liver 
is often found in close association with selenium (Se), especially at higher Hg concentrations (e.g., 
Koeman et a1. 1975, Thompson and Furness 1989, Dietz et a1. 1990, Scheuhammer et a1. 1998a). 
Further discussion of the biological Hg-Se relationship may be found in accompanying chapters by 
O'Hara et a1. (Chapter 10 of this volume) and Shore et a1. (Chapter 18 of this volume). 

A major lesson for wildlife toxicologists from the published literature on apparent demethyla­
tion of methyl Hg and accumulation of relatively nontoxic Hg-Se complexes is that toxicological 
assessments should not rely solely on total Hg concentration measurements in typically analyzed 
tissues such as liver. This is especially true for long-lived piscivores and other aquatic predators 
for which years of chronic low-level dietary methyl Hg exposure may be occurring. In such cases, 
a high proportion of liver Hg may be present as inorganic Hg bound with Se. Scheuhammer et a1. 
(1998a) suggested that total Hg, organic (methyl) Hg, and Se should be analyzed rather than total 
Hg alone, when using liver, kidney, and/or brain tissue for toxicological assessments. Wiener et a1. 
(2003) recommended that, when only total Hg measurements were available, Hg in skeletal muscle 
should be analyzed in addition to liver, as almost all of the Hg in muscle remains methylated. Total 
Hg concentrations in liver are not by themselves sufficiently informative to make confident toxico­
logical judgments. 

By the 1980s, the use of mercurial seed dressings had been abandoned, and releases of Hg from 
the chloralkali and pulp industries had been eliminated or drastically curtailed. At least in North 
America, some other sources of previously significant environmental Hg releases (e.g., its use in 
gold mining) had already been phased out by the early 1900s (Eisler 2000). However, some of these 
older sources of environmental Hg contamination can still cause substantial exposure in wildlife 
today. For example, waterbirds nesting in the Carson River basin, contaminated with Hg from gold 
refining operations during the late 1800s, continue to be exposed to substantially elevated dietary 
methyl Hg concentrations that are of toxicological concern, especially with respect to egg hatch­
ability and health of young (Henny et a1. 2002, Hill et a1. 2008). Similarly, predatory fish and fish­
eating wildlife such as bald eagles (Haliaeetus leucocephalus) continue to experience elevated Hg 
exposure near a former Hg mine in central British Columbia, Canada (Weech et a1. 2004, 2006). 
However, in addition to locations experiencing continued Hg contamination from past point-source 
emissions, a growing recognition evolved during the 1980s that environments remote from such 
releases could also contain fish (and consequently fish-eating wildlife) with elevated Hg concen­
trations. Predominant among such remote "Hg-sensitive" environments were acid-impacted lakes 
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(Bjorklund et al. 1984, Scheuhammer 1991, Spry and Wiener 1991, Scheuhammer and Blancher 
1994), and reservoirs and lakes created by flooding of vegetated land where environmental Hg 
methylation and food chain transfer of Hg are enhanced (Bodaly et al. 1984, Johnson et al. 1991, 
Hall et al. 2005). Furthermore, in some very remote environments, temporal investigations indi­
cated that Hg levels in wildlife were increasing near the end of the twentieth century (Monteiro and 
Furness 1997, Braune et al. 2005), whereas levels were declining in some more industrialized areas 
(Koster et al. 1996). 

In response to the recognition of elevated Hg concentrations in food chains of certain remote 
ecosystems, studies of the effects of environmental Hg exposure in wildlife continued through the 
1990s and beyond. A number of field studies sought to characterize exposure and effects in fish­
eating wildlife in Hg-sensitive habitats, and to better understand the relation between elevated Hg in 
wildlife and their prey (Wren et al. 1987a, 1987b, Meyer et al. 1995, DesGranges et al. 1998, Evers 
et al. 1998, 2003, Scheuhammer et al. 1998b, 2001, Burgess et al. 2005, Champoux et al. 2006). In 
more recent toxicological studies, emphasis has been placed on clarifying the effects of environ­
mentally realistic dietary methyl Hg exposures at the molecular (Spalding et al. 2000, Heath and 
Frederick 2005, Basu et al. 2005, 2006, 2007, 2009, Kenow et al. 2008, Scheuhammer et al. 2008), 
organismal (reproductive endpoints) (Wren et al. 1987a, 1987b, Heinz and Hoffman 1998, 2003, 
Dansereau et al. 1999, Albers et al. 2007), and population (Meyer et al. 1998, Moore et al. 1999, 
Sample and Suter 1999, Evers et al. 2005, 2008, Burgess and Meyer 2008) levels of organization in 
wild birds and mammals. In addition, species differences in methyl Hg toxicity in ovo have begun to 
be explicitly addressed through avian egg injection studies (Heinz et al. 2006, 2009). Contemporary 
reviews of the ecological impacts and toxicology of methyl Hg in wildlife have explicitly recognized 
that current levels of Hg exposure for some wildlife species in some environments are sufficiently 
high to be of toxicological concern (Wiener et al. 2003, Scheuhammer et al. 2007, Wolfe et al. 
2007). In addition, tissue-Hg concentrations recognized to be harmful have gradually decreased as 
increasingly sensitive cellular and biochemical effects have been identified. For example, significant 
correlations between brain Hg concentrations and the density of some neurotransmitter receptors 
in mink have been observed well below the previously estimated lowest observable effect concen­
tration (LOEC) for Hg in mink or otter brain (Scheuhammer et al. 2007). Shore et al. (2010), using 
species sensitivity distributions, have established egg-Hg concentrations that are protective of 95% 
(HC5) of avian species. 

Although fish-eating wildlife generally exhibit substantially higher exposure to dietary methyl 
Hg than terrestrial animals, recent research has identified certain terrestrial food chains in forest 
habitats that appear to concentrate methyl Hg. Some forest songbird species feeding in such food 
chains can experience dietary methyl Hg exposure at least as high as fish-eating birds. For example, 
blood Hg concentrations exceeding 4 Ilg/mL were reported in red-eyed vireos (Vireo olivaceus) 
and Carolina wrens (Thryothorus ludovicianus) (Cristol et al. 2008); these levels exceed the esti­
mated threshold for reproductive impairment in common loons (2.87 Ilg/mL in breeding females; 
Scheuhammer et al. 2007). Spiders (order Araneae), which had methyl Hg concentrations similar to 
fish preyed upon by belted kingfishers (Megaceryle alcyon), were found to be a major dietary source 
of methyl Hg for these terrestrial birds (Cristol et al. 2008). Additional studies are required to better 
understand the environmental conditions that lead to elevated methyl Hg concentrations in these 
terrestrial food webs, and to determine if reproductive or other impairments accompany elevated 
Hg exposure in the most at-risk wildlife species. 

In summary, Hg in wildlife has been studied for more than 50 years, and much has been learned 
regarding its food chain transfer, accumulation, and toxic effects. Recent studies have begun to doc­
ument subtle, yet important effects of Hg on behavior, neurochemistry, and endocrine function in 
wildlife at currently relevant levels of environmental exposure. Insofar as substantial global anthro­
pogenic Hg emissions will likely continue into the foreseeable future, there will undoubtedly be a 
need for continued research on ecotoxicology of Hg, and a revisiting of tissue concentration effect 
thresholds, well into the twenty-first century. 
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8 CASE HISTORY: DIOXINS AND PCBs IN WILD BIRDS 1. 
pCBs, polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) 

e structurally similar, persistent, and lipophilic chemicals, which have widely contaminated envi­
:~nmental media, where they have the potential to cause toxicological effects in wild birds. PCBs 
re anthropogenic in origin and were manufactured and widely used until the latter decades of the 

:wentieth century. PCDDs and PCDFs were produced as by-products of industrial processes and 
combustion, especially of plastic wastes. The chemistry, environmental fate, and toxicology of these 
chemicals are complex, and hence controversial. 

The word "dioxin" became known to the scientific community, and eventually part of the pub­
lic lexicon, as a result of the death of millions of broiler chickens during the 1950s in parts of the 
eastern and southwestern United States. The condition was labeled "chick edema disease" as it was 
characterized by excessive fluid in the pericardial sac and abdominal cavity, subcutaneous edema, 
liver necrosis, and death beginning at about 3 weeks of age (Friedman et al. 1959). Investigators 
quickly traced the source to toxic factors present in fatty acid feed supplements obtained from 
"fleshing greases" produced as a by-product of the hide tanning industry (Wootton and Alexander 
1959). Several years of toxicological and chemical research eventually implicated the use of chlo­
rophenolic biocides as hide preservatives, and the identification of PCDDs, particularly 1,2,3,7,8,9-
hexachlorodibenzo-p-dioxin as the main chick edema factor (Higginbotham et al. 1968, Firestone 
1973). Verrett, Flick and coworkers dosed both chicks and chick embryos with individual PCDDs 
and PCDFs providing the first data of potential value for interpreting tissue concentrations (Verrett 
1970, Flick et al. 1973). 

Concerned over PCDD contaminants in chlorophenolic pesticides, some researchers began to 
investigate food chain contamination in areas of intensive use. During the 1960s, an estimated 400 
kg of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was sprayed by the United States military onto 
the forests of Indochina as a contaminant in the 20 million kg of the herbicide 2,4,5-T, a component 
of Agent Orange, used as a chemical warfare agent (Huff and Wassom 1974). A 1970 survey of 
Vietnamese rivers found that whole body samples of catfish (Siluridae), for example, from the Dong 
Nai River had mean 2,3,7,8-TCDD concentrations of 810 pg/g wet weight (Baughman and Meselson 
1973). There appears to have been no published attempt to extrapolate that finding to wildlife; how­
ever, assuming that the reported concentrations in fish were accurate within an order of magnitude, 
and using the biomagnification factor from fish to fish-eating birds for 2,3,7,8-TCDD of 32 (Braune 
and Norstrom 1989), aquatic birds feeding in that system would have accumulated sufficient TCDD 
alone to cause overt toxicity, even in less sensitive species. 

While a number of laboratories were investigating environmental contamination by dioxins, in 
1966 during gas chromatographic analysis for DDT, Jensen identified a series of PCB compounds 
(Jensen 1966, Jensen et al. 1969). Risebrough and coworkers (1968) soon reported that birds from the 
remotest areas of the globe were contaminated by PCBs. Studies of PCB toxicity to birds, particu­
larly chickens, soon followed (Chapter 14 of this volume, reviewed by Eisler 1986, Bosveld and Van 
den Berg 1994, Barron et al. 1995). Compared to many of the organochlorine insecticides in wide use 
at that time, acute toxicity of PCBs was low and also varied according to the degree of chlorination of 
the Aroc1or mixture (Hill et al. 1975). In cases of experimentally caused mortality, the brain was the 
most reliable diagnostic tissue for determining lethal concentrations of PCBs (e.g., brain: 300-400 
J..Ig/g wet weight in pheasants, Dahlgren et al. 1972; 76-445 J..Ig/g in fish-eating birds, Koeman et al. 
1973; and 310 J..Ig/g in passerines, Stickel et al. 1984; liver: 70-697 I-lg/g in Bengalese finch, Lonchura 
striata, Prestt et al. 1970). A study of lethal effects on the great cormorant (Phalacrocorax carbo) 
reported a lower brain threshold, and attempted to determine if that species was more sensitive or 
whether results were confounded by furan contamination from the Clophen A60 dosing mixture 
(Koeman et al. 1973). Mortality and residue analyses of ring-billed gulls (Larus dalawarensis) in 
the early 1970s on the Great Lakes also implicated PCBs as a possible causative factor (Sileo et al. 
1977). 
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During the late 1960s, scientists began to assess the effects of PCB mixtures on avian reproduc­
tion, principally focusing on chickens, but also including other galliform and nongalliform species. 
It soon became evident that, as with dioxins, chickens were more sensitive than other tested species. 
Some researchers employed the egg injection technique, and findings varied according to factors 
such as the Aroclor mixture, injection site, and dosing vehicle. For example, 5 Ilg/g of Aroclor 1242 
injected into chicken eggs on day zero of incubation caused a variety of malformations in embryos, 
and other effects in hatched chicks (Carlson and Duby 1973). Peakall and Peakall (1973) conducted a 
feeding study with Aroclor 1254 in the ring dove (Streptopelia risoria), and showed that embryonic 
mortality increased with egg concentrations. In subsequent experiments with artificially incubated 
eggs, they found that the embryonic mortality was caused by altered parental behavior, specifically 
reduced nest attentiveness. 

By the late 1970s, surveys of PCB contamination revealed, not surprisingly, that wildlife in 
heavily industrialized ecosystems, such as the North American Great Lakes and the Baltic region, 
were particularly contaminated, and thus those regions became foci for investigating the effects of 
environmental contaminants on birds (Gilman et al. 1977, Falandysz 1980) (Table 1.1). As early as 
1970, colonies of gulls (Larus spp.) and terns (Sterna spp.) nesting on Lakes Ontario and Michigan, 
were exhibiting high rates of nest failure associated with embryotoxicity and various deformities 
among hatched birds (Gilbertson 1974, 1975). Mean PCB concentrations (as Aroclor 1254:1260) 
in herring gull eggs were 142 Ilg/g wet weight at a colony in Lake Ontario and 92 Ilg/g at a Lake 
Michigan colony (Gilman et al. 1977). There were extensive field and laboratory investigations 
of the Great Lakes avifauna; however, establishing cause-effect linkages, and thus critical con­
centrations of specific compounds proved problematic. During the period when signs of toxicity 
were overt, fish-eating bird eggs contained elevated concentrations of a complex mixture of haloge­
nated aromatic contaminants in addition to PCBs, including DDTs, mirex, hexachlorobenzene, and 
TCDD (Peakall and Fox 1987). 

The early research and monitoring of wildlife contamination by PCBs and dioxins was hindered 
by limitations in analytical chemistry. PCB quantification was based on one or two peaks resolved 
by packed column gas chromatography (GC), ineffective at separating most individual congeners. 
With the introduction and widespread use of fused-silica capillary GC columns, greater resolution 
of compounds was possible, but identification of many peaks remained problematic. In the early 
1980s, Mullin et al. (1984) reported the synthesis and relative retention times of all 209 PCB conge­
ners, which allowed researchers to comprehensively assess the patterns of PCB congeners present 
in various environmental media. By comparing patterns of congener peaks among sediment, forage 
fish, and birds, Norstrom (1988) showed which congeners were more resistant to metabolic degra­
dation and therefore, tended to bioaccumulate, and he suggested some general structural properties 
governing bioaccumulation in birds. 

Given the findings of widespread embryotoxicity, including deformities, during the late 1960s 
and early 1970s, the presence of 2,3,7,8-TCDD in the Great Lakes food chain had been hypothe­
sized, but could not be established with analytical methods employed at tmt time (Bowes et al. 
1973). By the early 1980s, the availability of high resolution mass spectrometry (MS) combined 
with GC/MS enabled the quantification of PCDDs and PCDFs in tissue samples at <10 pg/g. A new 
GC/MS analytical method was developed and applied to a spatial survey of the Great Lakes, and 
to a temporal survey made possible by retrospective analysis of herring gull egg samples archived 
in the Canadian Wildlife Service National Specimen Bank (Elliott et al. 1988). The results showed 
that eggs from a colony in Lake Ontario contained mean concentrations of 2, 3, 7, 8-TCDD that 
were greater than 1000 pg/g in 1971, and which had decreased to about 100 pg/g by 1980 (Stalling 
et al. 1985). The GC/MS method enabled examination of PCDD and PCDF patterns in environmen­
tal media and biota, demonstrating that chlorine substitution at the 2, 3, 7, and 8 carbon positions 
conferred resistance to metabolic breakdown, indicating therefore that those compounds tended to 
bioaccumulate (Stalling et al. 1985). 
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TABLE 1.1 . d' f PCB d D' . . 'Id' d Some Representative Stu les 0 s an IOXInS In WI Bir S 

Species 
location Contaminants Study Type Reference 

Western grebe, British Columbia PCBs, PCDDs, Monitoring Elliott and Martin 1998 

Aechmophorus PCDFs,OCs 

occidentalis 

Black-footed albatross, North Pacific PCBs,OCs Monitoring Auman et al. 1996 

Phoebastria nigripes 

Northern gannet, Eastern Canada PCBs, DDE, Poor reproductive Elliott et al. 1988 

Morus bassanus OCs success 

Great cormorant, Netherlands, PCBs Reports of Koeman et al. 1973, 

Phalacrocorax carbo Japan mortality, Guruge and Tanabe 1994 

monitoring 

Double-crested Great Lakes PCBs,OCs Deformities, Larson et al. 1996, 

cormorant, variable Powell et al. 1998, 

Phalacrocorax auritus reproductive Custer et al. 1999 

success 

Black-crowned night Eastern U.S. PCBs,OCs, Monitoring study Rattner et al. 1997,2000, 2001 

heron, Nycticorax PCDDs, 

nycticorax PCDFs 

Great blue heron, British Columbia PCDDs, PCDFs Reproductive Elliott et al. 1989, 2001 a, 

Ardea herodias failure Bellward et al. 1990 

Wood duck, Aix sponsa Arkansas TCDD, TCDF Poor reproductive White and Seginak 1994, 

success, egg Augspurger et al. 2008 

injection 

Herring gull, Larus Great Lakes PCBs,OCs Poor reproductive Gilman et al. 1977 

argentatus success 

Glaucous gull, Larus Norway PCBs,OCs Monitoring study Bustnes et al. 2001 

hyperboreus 

Common tern, Sterna Great Lakes, PCBs, PCDDs, Deformities, poor Gilbertson et al. 1976, 

hirundo Netherlands PCDFs reproductive Bosveld et al. 1995 

success 

Forster's tern, Sterna Great Lakes PCBs, TCDD Reproductive Kubiak et al. 1989, 

Jorsteri problems Harris et al. 1993 

Caspian tern, Great Lakes PCBs,OCs Monitoring Struger and Weseloh 1985 

Hydroprogne caspia 

Atlantic puffin, Great Britain PCBs Toxicological Harris and Osborne 1981 
Fratercula arctica field experiment 

White-tailed sea-eagle, Sweden PCBs, PCDDs, Poor reproductive Helander et al. 2002 

Haliaeetus albicilla PCDFs,OCs success 

Bald eagle, Haliaeetus United States, PCBs,OCs, Poor reproductive Wiemeyer et al. 1993, 
leucocephalus British PCDDs, success Elliott and Harris 200 I 

Columbia PCDFs 
Osprey, Pandion Pacific Northwest, PCBs, PCDDs, Monitoring, Elliott et al. 200 I a, Henny et al. 
haliaetus Wisconsin, PCDFs industrial site 2009, Woodford et al. 1998, 

Ontario assessment DeSolla and Martin 2009 
American kestrel. Lab study CB-126, CB-77, Egg injection Hoffman et al. 1998, 

Falco sparverius Aroc1or study, feeding Fernie et al. 200 I, 2003 

mixture study 

continued 
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TABLE 1.1 (continued) 
Some Representative Studies of PCBs and Dioxins in Wild Birds 

Species location Contaminants Study Type Reference 

Northern bobwhite, Lab study CB-126, CB-77 Egg injection Hoffman et a!. 1998 

Colinus virginianus study 

Ring-necked pheasant, Lab study 2,3,7,8-TCDD Feeding study, Nosek et a!. 1992, 1993 

Phasianus colchicus egg injection 

Great horned owl, Kalamazoo River, PCBs Contaminated Strause et al. 2007a, 2007b 

Bubo virginianus Michigan site assessment 

Tree swallow, New York, PCBs, TCDD Contaminated McCarty and Secord 1999a, 

Tachycineta bicolor Massachusetts, site assessment 1999b, Custer et a!. 2003, 

Rhode Island 2005 

Eastern bluebird, Wisconsin, TCDD Lab study, Thiel et a!. 1988, 

Sialia sial is Michigan contaminated Neigh et al. 2007 

site assessment 

American robin, Massachusetts PCBs Contaminated Henning et a!. 2003 

Turdus migratorius site assessment 

Eurasian dipper, Wales PCBs Point source Ormerod et a!. 2000 

Cinclus cinclus assessment 

American dipper, British Columbia PCBs,OCs Source Morrissey et al. 2005 

Cinclus mexican us coastal determination 

watershed 

Starling, Sturnus Illinois PCBs Contaminated Arenal et a!. 2004 

vulgaris site assessment 

Availability of a full range of compounds for toxicity testing advanced understanding of the 
structure-activity relationships of the 17 various 2,3,7,8-substituted PCDDs and PCDFs and the 
structurally similar non-ortho and mono-ortho PCB congeners. That similarity in structure and 
effects furthered the theory that there was a common mechanism of action that hinged on the binding 
to the cytosolic aryl hydrocarbon (Ah) receptor protein, translocation into the nucleus and induction 
of gene transcription and corresponding proteins (Poland and Knutson 1982). Ranking of potencies 
for individual congeners relative to 2,3,7,8-TCCD resulted in development of the toxic equivalence 
factor (TEF) scheme, whereby the toxicity of complex mixtures could be estimated by multiplying 
each congener concentration in a given sample by its TEF and summing the results of the multiple 
congeners to obtain the TCDD TEQ concentration of the sample (Safe 1984, 1990). An expert panel 
recommended avian-specific TEFs, now in wide usage (Van den Berg et al. 1998); however, recent 
experiments have reported that 2,3,7,8-TCDF may be more toxic than 2,3,7,8-TCDD in some bird 
species, while 2,3,4,7,8-pentaCDF may be tenfold or more toxic to Japanese quail (Coturnixjapon­
ica), than TCDD, requiring a reassessment of avian TEFs (Cohen-Barnhouse et al. 2008). 

Brunstrom and coworkers (Brunstrom 1988, 1990, Brunstrom and Andersson 1988, Brunstrom 
and Lund 1988) conducted a series of egg injection experiments using chickens and other avian spe­
cies. Those and other studies provided avian-specific data on the relative potencies of various PCB 
congeners, and further demonstrated that the chicken was in a class of its own in relative sensitivity 
to dioxin-like compounds, while the pheasant and the turkey (Melleagris gallopavo) were interme­
diate in sensitivity, with other species such as ducks and gulls being much less sensitive. Meanwhile, 
Nosek et al. (1992, 1993) studied the toxicology of TCDD in more depth using the pheasant as a 
model species. 

Congener-specific analytical techniques were employed in field and laboratory investigations 
of ongoing health problems including poor reproductive success of bird populations in the Great 
Lakes. Given the similarity between the apparent syndrome in that region and chick edema disease, 
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Gilbertson and coworkers (1983, 1991) developed the concept of the Great Lakes Embryo Mortality, 
Edema and Deformities Syndrome (GLEMEDS). By the late 1980s, the non-artha PCBs were 
suggested as the likely causative factor, because of their wide distribution, greater environmental 
concentrations, and dioxin-like toxicity. Kubiak et al. (1989) investigated a Forster's tern (Sterna 
!orsteri) colony in the Green Bay region of Lake Michigan that was exhibiting what was later con­
sidered GLEMEDS-type signs of toxicity. Their egg-swap studies in particular pointed toward a 
parental behavioral mechanism to explain lower productivity, rather than embryotoxicity. A sub­
sequent study of those birds suggested NOAELs for PCBs and for hatching success (Harris et al. 
1993). Studies of common terns (Sterna hirunda) in North America (e.g., Hoffman et al. 1993), and 
in Europe (Becker et al. 1993, Bosveld et al. 2000), reported some sublethal effects on chick growth 
and development, but no clear evidence of PCB effects on hatching success. Reproduction and 
contaminants, particularly elevated PCB concentrations were investigated by Struger and Weseloh 
(1985) in Great Lakes Caspian terns (Sterna caspia), and despite relatively high concentrations of 
PCBs, there were no apparent effects on productivity. 

Of particular concern to many researchers were the continued reports during the early 1990s of 
deformed nestlings in the Great Lakes, considered by some to be a clear diagnostic of poor fitness in 
wildlife. Clustered incidences of bill deformities among double-crested cormorants (Phalacrocorax 
auritus) nesting at Lake Michigan colonies were regularly reported. Ludwig et al. (1996) and Giesy 
et al. (1994) considered that the correlative evidence was sufficient to implicate PCBs as a chemical 
driver of deformities in Great Lakes cormorants. It has, however, proven difficult to conclusively 
establish cause and effect between the observed deformities and PCB concentrations in the field, 
given inconsistency in laboratory results, and potential confounding factors such as disease and 
genetics, which are discussed more thoroughly in Chapter 14. 

In the mid-1980s, eggs of aquatic birds from the Pacific coast of Canada were found with high 
concentrations and an unusual pattern of PCDDs and PCDFs (Elliott et al. 1989). Work with great 
blue herons (Ardea herodias) explored possible links between colony failures and increasing PCDD 
and PCDF contamination from forest industry sources. Throughout the 1990s, field work was con­
ducted on a variety of potentially vulnerable species, including herons, cormorants, bald eagles, 
osprey (Pandian haliaetus), tree swallows, and various waterfowl species, which described spatial 
and temporal patterns in contamination, and successfully established linkages with specific for­
est industry sources (Elliott and Martin 1994, Elliott et al. 1996a, 200la, Harris and Elliott 2000, 
Harris et al. 2003). A complementary series of laboratory studies employing artificial incubation 
and egg injection explored the toxicological aspects in more depth, and generated data useful for 
recommending criteria for interpreting tissue concentrations of PCDDs in a number of avian species 
(Bellward et al. 1990, Sanderson et al. 1994a, 1994b, Sanderson and Bellward 1995, Elliott et al. 
1996b, 200lb, Janz and Bellward 1996). The contamination and potential effects of PCDDs and 
PCDFs from the pulp and paper industry were also studied in fish-eating and insectivorous birds 
from other locations in North America (Champoux 1996, Wayland et al. 1998, Woodford et al. 1998, 
Custer et al. 2002). 

Given its conservation status until the mid-1990s as federally endangered in the United States 
and in some Canadian provinces, and its position as a top predator, the role of contaminants in the 
decline of the bald eagle was widely investigated. Nests in many regions of North America were 
visited regularly to document reproduction and to salvage unhatched eggs for contaminant analysis. 
Statistically significant negative associations were found between productivity and various contam­
inants, including PCBs, while DDE effects on shell quality was identified as the main determinant 
(.'¥iemeyer et al. 1993). In the Great Lakes region, Best et al. (2010) reported that associations con­
tmued between PCBs and productivity into at least the late 1990s. To improve the quantity of data 
obtained, the salvaged egg metric was enhanced by measuring contaminant burdens in blood sam­
ples from nestling bald eagles (Bowerman et al. 1995, 1998), an,approach also applied in Sweden 
to the white-tailed sea-eagle (Haliaeetus albicilla). Meanwhile, improved analytical techniques 
also made it possible to measure PCDDs, PCDFs, and non-artha PCBs in eagle nestlings (Elliott 
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and Norstrom 1998). Tentative critical concentrations for PCBs and DDE in nestling eagle blood 
samples were derived (Elliott and Norstrom 1998) based on regressions between nestling blood 
and egg samples, which were later modified by Elliott and Harris (2001) and Strause et al. (2007a). 
As exposure to legacy contaminants such as PCBs was declining in many jurisdictions during the 
1990s, some researchers began to directly investigate ecological factors, particularly the relative 
role of food supply and weather that may interact with contaminant exposure and effects (Elliott 
et al. 1998, 2005, Dykstra et al. 1998, Gill and Elliott 2003, Hoff et al. 2004, Elliott et al. 2005). 
Similarly, Helander et al. (2002) studied the ecotoxicology of the congeneric white-tailed sea-eagle 
for many decades in Sweden, in the process developing critical tissue values for PCBs in eggs. 

Field research on the effects of PCBs and other contaminants on productivity and other param­
eters of birds nesting in the Great Lakes continued through the 1990s and into the present century 
(e.g., Tillitt et al. 1992, Giesy et al. 1995, Fox et al. 1998, Ryckman et al. 1998, Custer et al. 1999). 
As with bald eagles, the role of ecological variables was increasingly factored into understand­
ing sources and dynamics of contaminants (Hebert and Weseloh 2006), eventually incorporating 
tools such as stable isotopes and fatty acid profiles (Hebert et al. 2008). Drouillard and Norstrom 
(2000) made valuable progress in understanding the pharmokinetics of PCBs in birds, and applied 
those collective advances to develop a bioenergetics model for contaminant dynamics in wild birds 
(Norstrom et al. 2007). The ongoing concerns about contamination of birds in the Great Lakes and 
elsewhere, led to more comparative egg injection studies with TCDD and non-ortho PCBs. These 
studies furthered the understanding of species variation in sensitivity and provided critical egg con­
centrations for the double-crested cormorant (Powell et al. 1998), and common tern and American 
kestrel (Hoffman et al. 1998). Several investigators (Fernie et al. 2001, 2003, Fisher et al. 2001, 
Smits et al. 2002) carried out a feeding study of an Aroclor mixture with the American kestrel as 
a laboratory model of predatory and fish-eating birds, which has yielded valuable data on a wide 
range of reproductive and physiological endpoints. 

Currently, widespread restrictions on use of PCBs and the need to regulate dioxin releases have 
been in place for at least 30 years. There remain, however, numerous point sources of those com­
pounds, associated primarily with waste dumps, and soil and sediment contamination at former 
manufacturing and storage sites. Birds have been used to determine the exposure and evaluate 
impacts to wildlife in Canada (Bishop et al. 1999, Harris and Elliott 2000, Ormerod et al. 2000, 
Kocan et al. 2001, Kuzyk et al. 2003, Jaspers et al. 2006), and particularly in the United States, 
where investigations of contamination of wild birds have been conducted as part of Natural Resource 
Damage Assessments. Researchers and risk assessors have looked principally at fish-eating birds 
and raptors (Williams et al. 1995, Hart et al. 2003, Strause et al. 2007a, 2007b), and increasingly 
at cavity-nesting passerines (Custer et al. 1998, McCarty and Secord 1999a, 1999b, Arenal et al. 
2004). Custer and colleagues (1998, 1999,2002,2003,2005) in particular have made effective use 
of the tree swallow and provided data on various endpoints useful for determining critical tissue 
concentrations. 

Outside of specific hotspot areas, long-term monitoring of PCBs and other contaminants in avian 
indicator species has continued in some regions, such as the Great Lakes (Norstrom and Hebert 
2006), and other North American aquatic environments (Rattner et al. 2004, Toschik et al. 2005, 
Henny et al. 2009), various marine systems including the Arctic (Barrett et al. 1996, Braune and 
Simon 2003), the Pacific, and Atlantic coasts of Canada (Elliott et al. 1992, 2001a, Harris et al. 
2003), and the Baltic (Bignert et al. 1995). The Arctic has been a focus of ongoing study as biolo­
gists from Scandinavia, Canada, and Alaska have investigated the exposure and potential effects 
of PCBs and other persistent organic pollutants in high trophic-level marine birds, particularly the 
glaucous gull (Larus hyperboreus), a species, which often preys on other marine birds (Henriksen 
et al. 1998, Sagerup et al. 2000, 2002, Bustnes et al. 2001, Verreault et al. 2006a, 2007). 

Monitoring of PCBs and dioxins in wildlife has been complemented by the use of biomarkers, 
often measured non destructively in blood or by bioassay methods, to assess relationships between 
exposure and various endpoints such as hepatic cytochrome P450-associated monooxygenase 
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activities (Fossi et al. 1986, Rattner et al. 1993, 1994, 1997, 2000, Sanderson et al. 1994a, 1994b, 
Davis et al. 1997, Custer et al. 1998, Feyk et al. 2000, Kennedy et al. 2003, Fox et al. 2007a), gene 
mutations (Stapleton et al. 200l), porphyrin metabolism (Fox et al. 1988, Kennedy et al. 1998), 
. mune system responses (Grasman and Fox 200l, Grasman et al. 1996, Bustnes et al. 2004, Fox 
:al. 2007b), thyroid hormone levels (Smits et al. 2002, McNabb and Fox 2003, Saita et al. 2004), 

tinoids (Spear et al. 1990, Elliott et al. 1996b, 200lb, Kuzyk et al. 2003, Murvoll et al. 2006), 
::x steroids (Verreault et al. 2006b), stress hormones (Martinovic et al. 2003), disease (Hario et al. 
2000), and behavior (McCarty and Secord 1999b). Further developments of analytical methodol­
ogy have led to surveys of PCB and other organochlorine (OC) metabolites in wild birds and some 
examination of relations with biomarkers (Fangstrom et al. 2005, McKinney et al. 2006). 

Most recently, advances in molecular biology have furthered understanding of the mechanisms 
of dioxin-like toxicity to birds and of the basis for variation in species sensitivity. The cytochrome 
P450 response of birds exposed to Ah receptor ligands has been shown to be unique, with birds hav­
ing two distinct CYP1A isoforms (Gilday et al. 1996, Mahajan and Rifkind 1999). Kennedy et al. 
(1996) developed avian in vitro assays and showed that the magnitude of in vitro response to CYP1A 
induction may be predictive of species differences in embryotoxicity in ovo. Application of molecu­
lar techniques examined the interspecific variation of response to TCDD-like exposure, and showed 
that sensitivity is closely associated with differences in the molecular structure of the Ah receptor 
and to differences in preferential induction of CYP1A isoforms (Head 2006, Karchner et al. 2006, 
Head and Kennedy 2007, Yasui et al. 2007). Sensitivity to dioxin-like compounds among avian 
species varies according to amino acid differences in the Ah receptor ligand binding domain (Head 
et al. 2008). Consistent with previous toxicological data, chickens exhibit high sensitivity, while of 
particular interest some upland game birds, passerines, and an albatross exhibit moderate sensitiv­
ity. All other species tested to date, including raptors, waterbirds, and waterfowl, appear relatively 
insensitive to dioxin-like toxicity (Head et al. 2008). 

In summary, beginning with the identification of the chick edema factor, the collaboration 
among biologist, chemists, and toxicologists over the past 50 years has successfully investigated 
many aspects of the exposure and toxicology of PCBs, PCDDs, and PCDFs in birds. Field studies 
have made correlative links between dioxin-like chemicals and alterations in the metabolic, endo­
crine, and immune functions of populations of avian top predators and aquatic insectivores. In some 
instances, reproductive success has been significantly affected, although it has often proved difficult 
to separate causal factors, including other contaminants and cumulative anthropogenic and natural 
stressors. The particular sensitivity of the chicken to these chemicals has now been linked to the 
structure of its Ah receptor. One or two changes in the amino acids of the receptor's binding domain 
causes greatly reduced sensitivity to dioxins. That likely explains in large part the findings that, 
despite widespread exposure to PCBs, dioxins, and furans at concentrations that would severely 
compromise reproduction of chickens, there is limited evidence of a significant impact on popula­
tions of wild birds. That contrasts to the population declines associated with DDT and dieldrin, and 
more recently the veterinarian pharmaceutical, diclofenac. Nevertheless, given the ongoing prob­
lems posed by numerous contaminated sites, and the global nature particularly of PCB contamina­
tion, we can expect these chemicals to remain an issue for sometime into the current century. 

CONCLUSION 

As pointed out in a recent review, the field of wildlife toxicology has been shaped by chemical use 
and misuse, ecological mishaps, and research in the allied field of human toxicology (Rattner 2009). 
The development and use of new chemicals, and unexpected and unpredicted contamination prob­
lems continue to drive this discipline. In some instances, environmental release of toxicants could 
have resulted in species extinction (e.g., bald eagle, sparrowhawk, Accipiter nisus, and California 
condor) had not regulatory and remedial actions been undertaken. Dramatic advances in analyt­
ical technology over the past 50 years now permit routine detection and measurement of minute 
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quantities of chemicals in a myriad of matrices. However, our greatest challenge remains the extrap­
olation of exposure data from laboratory and field studies to effects in diverse species and free­
ranging populations, which are often subject to multiple environmental and toxicological stressors. 
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