

School of Civil Engineering Purdue University, West Lafayette, Indiana

Recent Developments in Porous Concrete Paving Materials

Narayanan Neithalath, Rolando Garcia, Will Thornton Jason Weiss, Jan Olek, Bob Bernhard

> 765-494-2215 or wjweiss@ecn.purdue.edu Purdue Road School - March 25, 2003

The Need for Pavements

The Time When Cursing Was Louder than Pavement-Tire Interaction

Reducing Noise Through Enhanced Porosity Concrete

- Increasing the porosity of the non-aggregate component of the material
- Why do we think that this will work
 - 1. Dissipate Energy Through Friction
 - 2. Reduces Surface Area and Resulting "Slapping Sound"
 - 3. Reduces "Horn Effect"

Other Benefits of Enhanced Porosity Concrete

- Work for tire and drive train noise as well
- Rapid drainage of water through interconnected voids
 - Minimizes spray
 - Minimizes glare
- In the south this is being used for "permeable" parking lots

Research Objective

- Determine whether porous pavements can reduce the total noise level while avoiding potential problem associated with highporosity pavements such as reduced durability
- Balance Safety, Mechanical, Durability, and Sound Performance
 - Determine Optimal Porosity
 - Determine Proportioning Procedures

Specimen Geometries and Test Procedures

For Each Mixture – Cast 6 in x 6 in x 28 in Beam

Mixtures Investigated

- Influence of Gap Grading and Aggregate Size (#8, #4, 3/8")
- Influence of Blending Aggregates (#8/#4, #8/3/8", #4/3/8")
- Influence of Silica Fume
- Influence of Sand Content
- Influence of W/C (To Come)
- Influence of Fibers (To Come)
- Micro-particulate (To Come)

			_				
				_			
Mixture I.D.	3/8" Aggregate	#4 Aggregate	#8 Aggregate	Fine Aggregate (Sand)	Water-to-Cement Ratio	Silica Fume Addition by Cement Weight	
	%	%	%	%	~	%	
Influence of Gap Grading and Aggregate Size							
PC-100-3/8-0	100	0	0	0	0.30	0.00	
PC-100-#4-0	0	100	0	0	0.30	0.00	
PC-100-#8-0	0	0	100	0	0.30	0.00	
Influence of Blending #8 and #4 Aggregates							
PC-100-#8-0	0	0	100	0	0.30	0.00	
PC-75#8-25#4-0	0	25	75	0	0.30	0.00	
PC-50#8-50#4-0	0	50	50	0	0.30	0.00	
PC-25#8-75#4-0	0	75	25	0	0.30	0.00	
PC-100-#4-0	0	100	0	0	0.30	0.00	
Influence of Blending #8 and 3/8" Aggregates							
PC-100-#8-0	0	0	100	0	0.30	0.00	
PC-75#8-25-3/8-0	25	0	75	0	0.30	0.00	
PC-50#8-50-3/8-0	50	0	50	0	0.30	0.00	
PC-25#8-75-3/8-0	75	0	25	0	0.30	0.00	
PC-100-3/8-0	100	0	0	0	0.30	0.00	
Influence of Blending #4 and 3/8" Aggregates							
PC-100-#4-0	0	100	0	0	0.30	0.00	
PC-75#4-25-3/8-0	75	25	0	0	0.30	0.00	
PC-50#4-503/8-0	50	50	0	0	0.30	0.00	
PC-25#4-753/8-0	25	75	0	0	0.30	0.00	
PC-100-3/8-0	100	0	0	0	0.30	0.00	
Influence of Sand Content							
PC-100-#4-0	0	100	0	0	0.30	0.00	
PC-95#4-5Sand-0	0	97	0	3	0.30	0.00	
PC-97.5#4-2.5Sand-0	0	95	0	5	0.30	0.00	
PC-92.5#4-7.5Sand-0	0	92	0	8	0.30	0.00	
Influence of Silica Fume							
PC-100-#4-0	0	100	0	0	0.30	0.00	
PC-100-#4-06SF	0	100	0	0	0.30	0.06	
PC 100 #4 129E	0	100	0	0	0.30	0.12	

Using A Simple Method for Screening Mixtures

Impedance Tube

How Do We Gain an Idea of What the Internal Porosity Looks Like

Goal: Separate Porosity Into Total and Accessible Porosity

Steps: Cut At Various Depths and Image

Seal Sides and Add Low Viscosity Epoxy

Image Processing Sample Preparation

Epoxy Added and Specimen Sectioned Using Diamond Bladed Saw

Scanning Using a Flatbed Scanner Scanned Image Cropped to a Diameter of 2.75 in (550 Pixels)

Image Processing Determine Total Porosity

Scanned Image Cropped to a Diameter of 2.75 in (550 Pixels) Color Intensity Threshold Established (~ 150) To Separate Total Porosity (i.e., air and Epoxy Filled Space)

Image Cleaned White Pixels (Porosity) Counted = 72,641 Divide By Total Pixels 72,641/237463 = 30.6%

Image Processing Determine Inaccessible Porosity

Epoxy Filled Space

Epoxy Filled Space

Scanned Image Cropped to a Diameter of 2.75 in (550 Pixels) Color the Surface of the Scanned Image Cropped to a Diameter of 2.75 in (550 Pixels)

Separate Total Porosity into Accessible Porosity and Inaccessible Porosity

Image Processing Determine Inaccessible Porosity

the contract of the second	Sav
Air Filled Void	

Color the Surface of the Scanned Image Cropped to a Diameter of 2.75 in (550 Pixels) Color Intensity Threshold Established (~ 70) To Separate Inaccessible Porosity (i.e., Air Filled Space) Image Cleaned Black Pixels (Porosity +Background) and Subtract Background Counted = 225,087 12,376/237463 = 5.2%

30.6%-5.2% = 25.4% AP

Aggregate Size and Pore Size

Inspiration for Trying Multi-Layer Systems

Multi-Layer Pavements

Modeling Sound Absorption and Porosity

Using the Model to Determine the Optimal Pore Geometries

Water Permeability

Characterizing the Pore Structure

- Electrical Impedance
 Spectroscopy
- Characterization of pore connectivity and tortuosity

Controlled Testing

Measure Sound Generated By Tire/Pavement Interaction

- Porous Concrete May Have Benefits Sound Absorption and Drainage
- The "Structure of these Materials Influence Performance" (Impedance Tube, Porosity, Strength, Permeability)
- Blended Systems Appear to Show Optimal Performance
- Modeling Appears to Have A Promise to Help Us Optimize the Properties We Want
- Durability Testing is Beginning for F-T Climates