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Vision Graph Construction in Wireless Multimedia
Sensor Networks

Xin Dong and Mehmet C. Vuran
Cyber-Physical Networking Laboratory

Department of Computer Science & Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588

Email: {xdong, mcvuran}@cse.unl.edu

Abstract—In Wireless multimedia sensor networks (WMSNs),
the camera nodes connected in the vision graph share overlapped
field of views (FOVs) and they depend on the densely deployed
relay nodes in the communication network graph to communicate
with each other. Given a uniformly deployed camera sensor net-
work with relay nodes, the problem is to find the number of hops
for the vision-graph-neighbor-searching messages to construct the
vision graph in an energy efficient way. In this paper, mathematical
models are developed to analyze the FOV overlap of the camera
nodes and the multi-hop communications in two dimensional
topologies, which are utilized to analyze the relation between
vision graph construction and maximum hop count. In addition,
simulations are conducted to verify the models.

I. INTRODUCTION

Recently, the advances in low cost CMOS imaging sensors
have made wireless multimedia sensor networks (WMSNs) pos-
sible [1][5]. In WMSNs, multiple camera sensors are deployed
to monitor an area. Potential applications of WMSNs include
surveillance, traffic tracking, wildlife monitoring, and battle-
field monitoring.

The challenges faced by scalar wireless sensor networks,
such as energy constraints, limited processing capabilities, unre-
liability and low accuracy of obtained data, are only exacerbated
in WMSNs. To improve the sensing quality, a certain level
of collaboration among sensor nodes are required. In [1],
collaborative multimedia in-network processing is suggested,
which can utilize the computational capacity of sensors as well
as reduce communication cost and energy consumption. In [2],
scalar sensors are exploited to help camera nodes detect events
in WMSNs. More directly, camera sensors can collaborate with
each other to accomplish tasks. This is achieved by exploiting
the overlapped field-of-views of the camera sensors.

In a WMSN, each camera sensor has its own directional
sensing range, known as the field-of-view (FOV), and cameras
may have overlapped FOVs such that if an event occurs in
this overlapped area, several cameras may capture this event in
different perspectives. These camera nodes form a vision graph
[4], in which an edge between two cameras indicates they share
an overlapped FOV and the two cameras are called vision graph
neighbors. Some research exploits the characteristics of the
overlapped FOVs in collaboration of camera sensor nodes. In
[6], routing paths are established based on the overlapped FOVs
of camera nodes. In [3] and [8], overlapped FOVs are exploited
to define correlation among camera nodes and this correlation
is used for cooperative video processing. Meanwhile, in [4], the

images of the overlapped FOVs have been explored to calibrate
the camera nodes.

To construct vision graphs in WMSNs, two methods are
widely used in literature. The cameras nodes may know their
locations and directions a priori [3], or reference objects are
used for camera nodes to calculate overlapped FOVs [7][8].
However, in these works, simple flooding is employed to
exchange information among camera nodes. It is well known
that for large scale WSNs, flooding is impractical in terms of
communication cost and network congestion. In this paper, we
propose a limited-hop-number multi-hop communication for
constructing the vision graph in WMSNs. Given a uniformly
deployed camera sensor network with relay nodes, we are
interested in finding the maximum allowed hop count for the
vision-graph-neighbor-searching messages (hello message) in
order to construct the vision graph in an energy efficient way.

Mathematical models are developed to analyze the proba-
bility of constructing the vision graph for different message
lifetime (maximum hop count). This is achieved by developing
a probabilistic model of the overlapped FOV for different
distance and the probabilistic model of the propagation distance
for different message life time. In [9], the authors have proposed
a method to analyze the probability distribution of multi-hop
communications in WSNs. However, only one dimensional
topology is considered and the channel is assumed to be
perfect. In this paper, we propose a recursive method to analyze
the multi-hop communications of WMSNs in two dimen-
sional topologies. Moreover, a more practical channel model
is adopted to capture the feature of wireless communication. In
addition, simulations are conducted to verify our models.

To the best of our knowledge, this is the first paper to address
the communication problem of constructing the vision graph in
WMSNs. Our main contributions are:

• The probabilistic model of two cameras having an over-
lapped FOV with respect to their distance;

• The 2-D multi-hop communication model that maps max-
imum hop number to connectivity;

• The mathematical model to calculate the needed maximum
hop number to construct the vision graph for a given
WMSN.

The remainder of this paper is organized as follows: The
probabilistic models for the overlapped FOV, the multi-hop
communication and the vision graph construction are developed
in Section II. Simulations and Numerical analysis of those mod-
els are provided in Section III. Furthermore, the conclusions are
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Fig. 1. The system overview.

drawn in Section IV.

II. SYSTEM MODEL

We consider applications in which the camera sensors are
randomly deployed. To connect these camera sensors, other
relay nodes are also randomly deployed among them by Poisson
random process. After deployment, the camera sensors send
hello messages that have a maximum allowed hop count to find
their vision graph neighbors. In each transmission, the sender
broadcast a hello message unless the message achieves its
maximum allowed hop count. When a camera sensor receives a
hello message from its peers, it uses the location and direction
information to calculate if the source of the message is its
vision graph neighbor. Hence the vision graph is constructed
in a distributed manner.

Denote the probability of constructing the vision graph pv ,
our goal is to relate this probability to the maximum allowed
hop count, n, of the hello message. pv is given as

pv(n) =

∫∞
0

pvc(d, n) dd∫∞
0

pv(d) dd
, (1)

where pvc(d, n) is the probability of successfully connected
vision graph neighbors given the distance d and the maximum
hop number n whereas pv(d) is the probability of having vision
graph neighbors given distance d. pv(d) is related to the FOV of
the camera and it is developed in Section II-A, while pvc(d, n)
is related to the multi-hop communication of the sensors, and
the model is provided in Section II-B. In Section II-C, those
two models are utilized to develop the model for vision graph
construction.

A. Overlapped Field of View

The FOV of a camera is modeled as a fan sector in a 2D
plane, as shown in Fig. 1. It is defined by a tuple (rv, α), where
rv is the FOV radius, which determines the maximum distance
the camera can observe, and α is the visual angle, which depicts
the width of the FOV.

The overlap model is shown in Fig. 1. It is observed that
given the distance d of two cameras, when these two cameras
are at some specific directions, they will have overlapped FOV
and become vision graph neighbors. Given the assumption
that the direction of the camera is uniformly distributed, the
probability that two cameras are vision graph neighbors is equal
to the portion of directions at which they have an overlapped

FOV. When given the direction of the first camera at angle θ1,
there exists a range [θmin

2 , θmax
2 ], such that when the direction

of the second camera, θ2, is in this range, these two cameras
have an overlapped FOV. As θ1 changes, the range of θ2

changes too. With the ranges of θ1 and θ2 in which the two
camera nodes can have an overlapped FOV at distance d, the
probability of having an overlapped FOV at distance d, which
is denoted as po(d), is the integral of the ranges divided by the
maximum range. Thus,

po(d) =
1

2π2

∑
i

∫ θmax,i
1

θmin,i
1

(θmax,i
2 − θmin,i

2 ) dθ1 . (2)

In Table I, the ranges of θ1 and θ2, in which two camera
nodes have an overlapped FOV for different distance, d, are
listed. For a given d, the range of θ1 is divided into categories,
and in each category, the range of θ2 can be expressed by
the value of θ1. Note in the tables, the range of θ1 is only
considered as in range [0, π]. For the range [π, 2π], it is a mirror
of [0, π]. Also note that the camera visual angle α impacts
the boundary conditions in (2), as shown in Table I and in
three different cases ([0, π

4 ], [π
4 , π

3 ], [π
3 , π

2 ]), the expressions are
different. Here, we assume the visual angle of the camera α
is in the range of [π

4 , π
3 ]. The variables a1–a6 in Table I are

given as follows:

a1 = cos−1 d

2rv
, (3)

a2 = tan−1 rv sin (θ−)
d − rv cos (θ−)

, (4)

a3 = sin−1 rv

d
, (5)

a4 = cos−1 d tan2(θ−) +
√

r2
v + r2

v tan2(θ−) − d2tan2(θ−)
rv(1 + tan2(θ−))

,

(6)

a5 = cos−1 d tan2(θ−) −
√

r2
v + r2

v tan2(θ−) − d2tan2(θ−)
rv(1 + tan2(θ−))

,

(7)

a6 = cos−1 d tan2(θ+) +
√

r2
v + r2

v tan2(θ+) − d2tan2(θ+)
rv(1 + tan2(θ+))

,

(8)

where θ− = θ1 − α and θ+ = θ1 + α.
As expected, it is noticed from Table I that when the two

cameras are close to each other, the ranges in which they can be
vision graph neighbors are larger, which means the probability
that they are vision graph neighbors is greater.

B. Multi-hop Communication

In this section, we develop a model to analyze multi-
hop communication of two camera nodes in wireless sensor
networks. In the analysis, the distance of camera node A and
B is denoted as l and the density of the relay nodes is λ. In
addition, log-normal shadowing model is employed to represent
the channel.

In our model, Cn
d represents the event that two nodes at

distance d can communicate through exactly n hops, while
C̄n

d represents the opposite. The probability of event Cn
d is
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TABLE I
THE POSSIBLE RANGES OF θ1 AND θ2 TO HAVE AN OVERLAPPED FOV FOR

DIFFERENT DISTANCE d.

√
2rv < d ≤ 2rv

i θ1 ∈ [θmin,i
1 , ψmax,i

1 ] θ2 ∈ [θmin,i
2 , θmax,i

2 ]
1 [0, α− cos−1 d

2rv
] [π − a1 − α, π + a1 + α]

2 [α− cos−1 d
2rv

, α] [π − a1 − α, π − a2 + α]

3 [α, cos−1 d
2rv

+ α] [π − a1 − α, π − a4 + α]

rv < d ≤ √
2rv

i θ1 ∈ [θmin,i
1 , ψmax,i

1 ] θ2 ∈ [θmin,i
2 , θmax,i

2 ]
1 [0, α− cos−1 rv

d
] [−a3 + π − α, a3 + π + α]

2 [α− cos−1 rv
d
, α] [−a3 + π − α, π − a2 + α]

3 [α, cos−1 rv
d

+ α] [−a3 + π − α, π − a4 + α]

4 [cos−1 rv
d

+ α, cos−1 d
2rv

+ α] [π − a2 − α, π − a4 + α]

5 [cos−1 d
2rv

+ α, sin−1 rv
d

+ α] [π − a5 − α, π − a4 + α]

−2rv cos(2α) < d ≤ r

i θ1 ∈ [θmin,i
1 , ψmax,i

1 ] θ2 ∈ [θmin,i
2 , θmax,i

2 ]
1 [0, α] [0, 2π]

2 [α, cos−1 d
2rv

+ α] [π + a2 − α, π + α]

3 [cos−1 d
2rv

+ α, π − α] [π − a5 − α, π + α]

4 [π − α, α+ π
2
] [π − a5 − α, a6 + π + α]

5 [α+ π
2
, π] [π − a4 − α, a6 + π + α]

0 < d ≤ −2rv cos(2α)

i θ1 ∈ [θmin,i
1 , ψmax,i

1 ] θ2 ∈ [θmin,i
2 , θmax,i

2 ]
1 [0, α] [0, 2π]
2 [α, π − α] [π − a2 − α, π + α]

3 [π − α, cos−1 d
2rv

+ α] [π − a2 − α, a6 + π + α]

4 [cos−1 d
2rv

+ α, α+ π
2
] [π − a5 − α, a6 + π + α]

5 [α+ π
2
, π] [π − a4 − α, a6 + π + α]

denoted as pc(d, n) and the probability of event C̄n
d is qc(d, n).

In addition, Pc(d, n) denotes the probability that two nodes can
communicate at a distance d through up to n hops.

Adopting the shadowing channel model [11], the signal noise
ratio (SNR), φ, in dB is expressed as

φ(Xσ, l) = Pt −PL(d0)− 10η log10

(
d

d0

)
−Xσ −Pn , (9)

where Pt is the transmission power, PL(d0) is the attenuation
at the reference distance d0, Xσ is the shadowing effect random
variable and Pn is the noise floor.

The symbol error rate, ps(Xσ, d) is calculated by

ps(Xσ, d) = Q (β2 (φ(Xσ, d) − β1)) , (10)

where β1 and β2 are two parameters obtained by experiments
[12]. Note that other error rate models can be used in our
scheme. For example, a means to calculate the error rate for
MicaZ mote is developed in [10]. The probability that two
nodes can communicate in one hop is:

pc(d, 1) = p
{
C1

d

}
=
∫ ∞

−∞
(1 − ps(N, d))L

fXσ
(Xσ) dXσ ,

(11)
where L is the packet length in symbols, and fXσ

(Xσ) is the
pdf of the shadowing effect random variable, Xσ , which is
Gaussian.

For the one hop situation, the probability that two nodes can
communicate within up to 1 hop is given simply by

Pc(d, 1) = pc(d, 1) . (12)

Fig. 2. The multi-hop model.

When the number of hops is greater than 2, we develop our
model as shown in Fig. 2. The event that node A has a n-
hop communication path to node B equals to the event that
there is node x at position (ρx, θx), which has a 1-hop path to
A a (n − 1)-hop communication path to node B. Assume the
location of the intermediate node, x, is (ρx, θx), where ρx is
the distance between x and B, and θx is the angle of x with
respect to vector

−−→
BA. Thus, the distance between x and A can

be expressed as

ρxA =
√

(l − ρx cos θx)2 + (ρx sin θx)2 . (13)

Given Poisson process density λ, the probability that at
position (ρx, θx) there is a node is

pe(ρx, θx) = 1 − e−λρxΔρxΔθx ≈ λρxΔρxΔθx . (14)

The approximation holds when the area ρxΔρxΔθx → 0. The
ranges of ρx and θx are 0 < ρx ≤ ∞ and 0 ≤ θx ≤ 2π.

The probability of 1-hop communication between x and A is
pc(ρxA, 1), where ρxA is the distance from A to x. Recursively,
the probability that node x has a (n − 1)-hop communication
path to node B is pc(ρx, n − 1). Therefore,

pc(d, n) = 1−∏
ρx

∏
θx

(1 − (λρx · Δρx · Δθx) pc(ρxA, 1)pc(ρx, n − 1)) .

(15)

In (15),1 − (λρx · Δρx · Δθx) pc(ρxA, 1)pc(ρx, n − 1) defines
the probability that there is no intermediate node at (ρx, θx)
which satisfies the requirements. Since the relay nodes are
deployed independently, the product over ρx and θx is the
probability that there is no intermediate node at the whole
planar which has 1-hop communication to A and n − 1
communication to B. This is equal to the probability that A
and B cannot communicate in n hops. Finally, subtracting that
probability from 1 is the probability that the two camera nodes,
A and B, can have a n-hop communication.

Also, the probability that two nodes at distance l can com-
municate within up to n hops is

Pc(d, n) = p
{
C1

d

}
+ p

{
C̄1

d , C2
d

}
+ · · ·

+ p
{

C̄1
d , C̄2

d , . . . , C̄
(n−1)
d , Cn

d

}
.

(16)
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The first term in (16) is the probability of communication in
1 hop, the second term is the probability that the two camera
nodes cannot communicate in 1 hop but can communicate in
2 hops. Generally, the nth term is the probability that the two
camera nodes cannot communicate within up to (n−1) hops but
can communicate in n hops. The sum is the probability that the
two nodes can communicate within up to n hops. Assume that
given distance, d, C̄1

l ,. . . ,C̄n
d and C1

d ,. . . ,Cn
d are independent1,

thus, we have

Pc(d, n) = p
{
C1

d

}
+ p

{
C̄1

d

}
p
{
C2

d

}
+ · · ·

+ p
{
C̄1

d

} · · · p{C̄
(n−1)
d

}
p {Cn

d }
= pc(d, 1) + qc(d, 1)pc(d, 2) + · · ·

+

(
n−1∏
i=1

qc(d, i)

)
pc(d, n) .

(17)

C. Vision Graph Construction

The communication range of nodes in WSNs is short, hence
a camera node’s vision graph neighbors may be several hops
away. On the other hand, two closely located camera nodes
may not be vision graph neighbors. Given a uniformly de-
ployed camera sensor network with relay sensors, we show
the probability of vision graph construction as a function of
the maximum allowed hop count of the hello messages.

Assume the camera node deployment is a Poisson point
process and denote the camera node density as κ. Given the
distance d, the probability that a camera node has vision graph
neighbors at distance d is

pv(d) =
(
1 − e−κAμ

)
po(d) ≈ κAμpo(l) , (18)

where po(d) is the probability that two cameras have an
overlapped FOV when the distance is d, which is provided in
Section II-A, and Aμ is the size of an infinitely small circle
area, which is expressed as A(μ) = 2πd dd.

The paths to some far away vision graph neighbors may
not be established because of the limitation of the maximum
message hop number. Thus, we consider the probability of
constructing the vision graph as the ratio of the connected
vision graph neighbors against all vision graph neighbors.
Given a camera node A, the probability that there are camera
nodes at distance d which are vision graph neighbors of A and
they can communicate within n-hops is

pvc(l, n) = pv(d)Pc(d, n) , (19)

where pv(d) is given in (18) and Pc(d, n) is given in (17).
The probability of constructing the vision graph using n-hop

communication is

pv(n) =

∫ 2rv

0
pvc(d, n) dd∫ 2rv

0
pv(d) dd

=

∫ 2rv

0
2πκdpo(d)Pc(d, n) dd∫ 2rv

0
2πκdpo(d) dd

=

∫ 2rv

0
po(d)Pc(d, n)d dd∫ 2rv

0
po(d)d dd

,

(20)

1In [9], it is pointed out that in reality it is not the case, however, the
simulation shows it is a reasonable simplification.

TABLE II
PARAMETER LIST.

Parameter rv Pt d0 PLd0 η
Value 10 m 0 dBm 1 m 55.4 dBm 4.7

Parameter σ Pn λ β1 β2

Value 3.2 −95.23 dBm 0.2 2.3851 0.9794
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Fig. 3. The comparison of the theoretical analysis and the simulation results
for constructing the vision graph.

III. NUMERICAL ANALYSIS

In this section, numerical analysis of the system model is
performed using Matlab. We first use TOSSIM simulation to
verify our model in Section III-A, after which the camera FOV
overlap model, the multi-hop communication model as well
as the model for constructing vision graph in WMSNs are
analyzed in Section III-B. The parameters used in the analysis
are listed in Table II.

A. Model Verification

To verify the models, we have simulated the WMSNs using
TOSSIM. In the simulations, 1000 network topologies are
generated by a Poisson process, and the size of the field is
50 m × 50 m. In each topology, two cameras nodes are set
with random distance and random direction. Unless otherwise
noted, he vision angle of each camera is 5π

18 . Note all the camera
pairs in the 1000 topologies are vision graph neighbors. Since
we consider the ratio of the successful connected vision graph
neighbors over all vision graph neighbors, if the two cameras
are not vision graph neighbors, they do not have impact on the
result. The other parameters are set the same as in Table II.

In Fig. 3, the theoretical and the simulation results of the
probability of constructing the vision graph are shown. It is
observed from Fig. 3 that the mathematical model captures the
characteristics of the FOV overlap and the multi-hop commu-
nication. For our settings, instead of unlimited flooding, 5-hop
broadcast is sufficient to construct the vision graph with a high
confidence (91%). In other words, when deploying the WMSN,
the camera nodes need to broadcast a hello message with
maximum hop count of 5 to find the vision graph neighbors.

B. Model Analysis

In this section, the mathematical models are analyzed. In
Fig. 4(a), the probability of camera FOV overlapping over
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Fig. 4. (a) The probability of FOV overlap, (b) the probability of multi-hop connectivity and (c) the probability vision graph construction.

distance is shown for different camera vision angles. It is
observed that when the camera vision angle is larger, the
probability that two cameras have an overlapped FOV is greater.
At the distance of 5 m, if the camera vision angle is π

3 , it is
12% more likely to have a vision graph neighbor than camera
vision angle of π

4 . Also, the decrease of the probability over
distance is not constant. Around distance of 10 m, which is the
vision range, there is a sharp drop. Thus, most vision graph
neighbors will be in a close distance.

The probability of connectivity for the multi-hop commu-
nication is depicted in Fig. 4(b), where the hop counts are
the maximum allowed hop counts. It is shown that if the 1-
hop coverage is r, the coverage for n-hop is slightly more
than nr. For example, at 90% connectivity, the coverage of
1-hop is 4.57m, however, the coverage of 3-hop is 14.73,m
and the overage of 5-hop is 26.39m. The reason behind this
is that the log-normal channel model does not have a cut-off
value as the maximum transmission range. Thus, beyond the
90% connectivity range, there are still some nodes that receive
the message. Accordingly, their transmission can increase the
coverage in the next hop. In addition, because the maximum
distance of two vision graph neighbors in our setting is 20m,
we would assume the needed hop count is 4.

The probability of constructing the vision graph as a function
of maximum hop counts is shown in Fig. 4(c) for different
camera vision angles. It is expected that because when the
camera vision angle is greater, the two cameras are more likely
to be vision graph neighbors, thus given a maximum hop
count, the probability of constructing the vision graph is lower.
However, the analysis shows the decrease of the probability
is not significant. In fact, when the maximum hop count is
2, where the difference is most notable, the probability of
constructing the vision graph for camera vision angle of π

4 is
52.08%, and for camera vision angle of π

3 , the probability is
48.28%.

IV. CONCLUSIONS

In this paper, we address the issue of constructing vision
graphs in WMSNs. A mathematical model for the camera field
of view overlapping is developed to analyze the probability
of having vision graph neighbor over distance. Meanwhile, a
multi-hop communication model with a realistic channel model
is developed to analyze the probability of multi-hop connectiv-

ity. Simulations are established to verify these models, which
show that the mathematical models capture the characteristics
of the FOV overlapping and the multi-hop communication. For
our settings, instead of unlimited flooding, 5-hop broadcast is
sufficient to construct the vision graph with high probability.
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