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 In recent years, bioactive lipids (e.g., carotenoids, phytosterols, and tocopherols) 

have attracted a lot of interest to develop health and wellness promoting foods and 

beverages. However, bioactive lipids are water-insoluble and degrade easily during 

processing and storage, making their addition into foods and beverages challenging.  

 The main objective of this thesis was to develop a novel green process to form 

bioactive lipid-carrier hollow solid lipid micro- and nanoparticles using supercritical 

carbon dioxide (SC-CO2). Specific objectives were to develop hollow solid lipid micro- 

and nanoparticles using SC-CO2 technology, and to load the hollow solid lipid micro- and 

nanoparticles with essential oil to develop food grade free-flowing powder antibacterial. 

Hollow solid lipid micro- and nanoparticles were formed from fully hydrogenated 

soybean oil (FHSO) using a novel process based on atomization of CO2-expaneded lipid. 

Hollow spheres (d50%= 278 nm) were obtained using 50 µm nozzle diameter and 200 bar 

expansion pressure. Shell thickness of the particles decreased with increasing pressure 

and nozzle diameter. Polymorphism of the particles changed from β to α by decreasing 

the nozzle diameter. Melting point of FHSO decreased from 69 °C to 57 °C above 120 

bar in CO2, and onset melting temperature of the particles was 50 °C due to nanosize. 



 
 

 

 

Peppermint essential oil was successfully loaded into the hollow particles using the same 

process to develop food grade antibacterials. The highest loading efficiency of 47.5% was 

achieved at 50% initial essential oil concentration at 50 µm nozzle diameter and 200 bar 

expansion pressure. The release of the loaded essential oil depended on initial essential 

oil concentration, which was affected by the physical strength of the solid lipid shell. 

Essential oil-loaded particles obtained at 50% initial essential oil concentration caused 3 

log decrease in growth of Pseudomonas fluorescens compared to 2 log decrease with free 

essential oil. 

Hollow solid lipid micro- and nanoparticles are promising bioactive-carriers with 

high loading capacity. Solid lipid shell protects the loaded bioactive from environmental 

conditions, and provides slow release. The free-flowing powder makes handling and 

storage convenient, and the simple and clean process makes the scaling up more feasible.  
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CHAPTER 1. INTRODUCTION AND THESIS OBJECTIVES 

 

1.1. Introduction 

 The growing demand for “natural” products along with the increase in diet-related 

illnesses such as obesity, diabetes, cardiovascular disease, inflammation, and cancer have 

led the food industry prioritize the development of health and wellness promoting foods 

using bioactive compounds. Health and wellness promoting foods refer to those that 

extend far beyond basic nutrition for the intended population, but could provide its 

unique characteristics and thus impart desirable physiological effects and associated 

health benefits. However, many of these bioactive compounds are lipophilic, resulting in 

poor water solubility that requires extra processes such as emulsification to make their 

addition into water possible, and have poor absorption through gastrointestinal (GI) tract 

and limited bioavailability (Ting, Jiang, Ho, & Huang, 2014). Moreover, many of these 

lipophilic bioactives are chemically sensitive; meaning they degrade easily in the 

presence of oxygen, light, and heat during processing and storage. Therefore, effectively 

including lipophilic bioactives into foods and beverages has been a major challenge for 

the food industry. 

 The food industry has been searching for solutions to enrich foods with lipophilic 

bioactive compounds while ensuring stability, bioavailability, and controlled release at 

the appropriate target, as well as confirming accepted fractional influence on the 

organoleptic and qualitative properties (Đorđević et al., 2015). The most common 

solution to incorporate lipophilic bioactives into foods has been encapsulation where the 

bioactive is entrapped in a matrix, which provides protection from environmental 
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conditions, and allows modification of the physical properties to improve solubility 

compatibilities between bioactive compounds and the established food matrix (Dube, 

Ken, Nicolazzo, & Ian, 2010; Helgason, Awad, Kristbergsson, McClements, & Weiss, 

2009; Hentschel, Gramdorf, Müller, & Kurz, 2008). From a technological point of view, 

there are some desirable characteristics required to achieve an efficient delivery system 

for bioactive compounds: (1) it must consist of only food grade materials; (2) it must be 

economic and easy to scale up; (3) it must protect the sensitive bioactives from 

degradation; (4) it should possess high loading capacity and longer retention before 

targeted release; and (5) it should maximize the uptake of encapsulated bioactives and 

enhance the bioavailability of the compound (McClements, Decker, Park, & Weiss, 2009; 

Đorđević et al., 2015).  

Lipids are promising delivery vehicles for lipophilic bioactives mainly due to 

their biocompatibility (Dolatabadi, Valizadeh, & Hamishehkar, 2015; Severino et al., 

2012). Additionally, lipid-based carriers should be able to target delivery inside the body 

through either active (e.g., by incorporating antibodies) or passive (e.g., based on particle 

size) mechanism (Mozafari & Mortazavi, 2005; Mozafari, 2006). Moreover, several 

studies have reported that encapsulation of bioactive compounds through lipid-based 

carrier systems may improve their therapeutic potential by facilitating intracellular 

delivery and prolonging their retention time inside the cell (Suntres, 2011; Çağdaş, Sezer, 

& Bucak, 2014). 

Solid lipid nanoparticles have been developed as one of the latest generation of 

drug carriers, and recently they have been proposed as the new generation of lipophilic 

bioactive-carriers for food applications. However, they have limited bioactive loading 
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capacity, and tend to expel the loaded bioactive during crystallization due to their solid 

lipid core. Moreover, current solid lipid nanoparticles are currently produced using an 

energy-intensive high-pressure homogenization method that generates liquid products. 

This thesis reports the development of free-flowing powder hollow solid lipid micro- and 

nanoparticles that will overcome the low loading capacity and bioactive expelling 

problems using a novel green process based on supercritical carbon dioxide (SC-CO2) 

technology. The resultant powder formula makes the handling, transportation and storage 

convenient, while the nanosize particles make the addition of lipophilic bioactives into 

beverages possible, and the green process does not use hazardous or toxic solvents and 

limits environmental pollution. 

 

1.2. Hypothesis 

 It was hypothesized that atomization of a CO2-expanded lipid mixture through a 

nozzle can form hollow solid lipid micro- and nanoparticles. It was also hypothesized that 

atomization of a CO2-expanded mixture of solid lipid and essential oil through a nozzle 

can form essential oil-loaded hollow solid lipid micro- and nanoparticles, and further, the 

solid lipid shell provides slow release of the loaded essential oil, which results in 

improved antibacterial activity. 

 

1.3. Thesis objectives 

 The main objective was to develop a novel green process to form bioactive lipid-

carrier hollow solid lipid micro- and nanoparticles using SC-CO2. The specific objectives 

were to:  
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1) Develop hollow solid lipid micro- and nanoparticles using a green process based on 

SC-CO2 technology; and  

2) Load the hollow solid lipid micro- and nanoparticles with essential oil to develop food 

grade free-flowing powder antibacterials. 
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CHAPTER 2. LITERATURE REVIEW 

 

2.1. Bioactive compounds 

 Bioactive compounds are extra nutritional constituents that typically occur in 

small quantities in foods (Kris-Etherton et al., 2002). They are being intensively studied 

to evaluate their effects on health. Clinical studies have demonstrated that intaking 

bioactive compounds as part of consumers’ daily diet may exert tangible health benefits 

(Stewart & Kleihues, 2003). Moreover, increases in dietary-intake-related illnesses such 

as obesity, type-2 diabetes, cardiovascular disease and cancer have led the food industry 

prioritize the development of health and wellness promoting foods using bioactive 

compounds. 

Bioactive lipids (e.g., carotenoids, omega-3 fatty acids, tocopherols, and 

phytosterols) are a group of lipophilic bioactives that are water-insoluble and widely 

differ in their molecular, physicochemical and physiological properties. Carotenoids have 

been proposed to exhibit several potential health benefits: lutein and zeaxanthin to 

decrease age-related macular degeneration and cataracts (Stringham & Hammond, 2005), 

and lycopene to decrease the risk of prostate cancer (Basu & Imrhan 2007). Omega-3 

fatty acids, particularly, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid 

(DHA, 22:6) decrease the risks of cardiovascular disease, fight diseases affected by 

immune response disorders, and mental disorders, as well as benefit infant development 

(Fidler, Sauerwald, Pohl, Demmelmair, & Koletzko, 2000; Makrides & Gibson, 2000; 

Hibbeln, Nieminen, Blasbalg, Riggs, & Lands, 2006; Jensen, 2006). Tocopherols have 
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the potential to decrease the risks of coronary heart disease, cancer, and urinary tract 

disease (McClements, Decker, & Weiss, 2007). Phytosterols could decrease the risk of 

coronary heart disease by reducing total and low-density lipoprotein cholesterol in 

humans through inhibiting the absorption of dietary cholesterol (Wong, 2001; Ostlund, 

2004). 

However, there are some problems associated with the efficient utilization of 

these lipophilic bioactives by both consumers and food industry: 1) they may not be 

possible to intake with diet properly; 2) they are tightly bound to the food matrix and 

water-insoluble, resulting poor bioavailability; and 3) they are chemically unstable, 

meaning they degrade easily during processing and storage. Therefore, effectively 

incorporating lipophilic bioactives into foods and beverages has been a major challenge. 

To enrich foods with lipophilic bioactive compounds while ensuring stability, 

bioavailability, controlled release, and accepted organoleptic and qualitative properties, 

the food industry came up with a common solution: to entrap lipophilic bioactives in a 

matrix as delivery system (Đorđević et al., 2015). The matrix provides the protection of 

the encapsulated bioactive from environmental conditions such as temperature, oxygen, 

pH, and allows modification of the physical properties to improve solubility 

compatibilities between bioactive compounds and the established food matrix (Dube et 

al., 2010; Helgason et al., 2009; Hentschel et al., 2008). With a suitable delivery system, 

the in vivo fate of the bioactive compound is no longer determined by only its properties 

but by those of the delivery system (McClements et al., 2007). 

Lipids have attracted much attention as delivery vehicles for lipophilic bioactives 

because they are digestible, often facilitate the absorption of bioactive in the small 
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intestine, could entrap material with different solubilities and can be produced using food 

grade lipids on an industrial scale (Dolatabadi et al., 2015; Severino et al., 2012; 

Anandharamakrishnan, 2013; Mozafari & Mortazavi, 2005). 

 

2.2. Lipid-based delivery systems 

Recent developments of lipid-based delivery systems for efficiently incorporating 

various lipophilic bioactives include emulsions, liposomes, solid lipid nanoparticles 

(SLN), and nanostructured lipid carriers (NLC). In this section, these lipid-based delivery 

systems are described in terms of their production methods, applications and features, and 

advantages and limitations. 

 

2.2.1. Emulsions 

 Emulsions are colloidal delivery systems, basically consist of oil phase, water 

phase and surfactant, and can be classified based on particle size into macroemulsions (~ 

μm), microemulsions (5-100 nm) and nanoemulsions (20-300 nm). Macroemulsions and 

nanoemulsions are kinetically stable but thermodynamically unstable, tend to break down 

during storage. Nanoemulsions are more resistant to oxidation than microemulsions, 

which are thermodynamically stable, low viscous, easy to prepare but always require 

higher concentrations of a surfactant typically with a co-surfactant, therefore, 

microemulsions has not been established certain food grade systems for delivery these 

lipophilic bioactives (Đorđević et al., 2015).  
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2.2.1.1. Production methods 

 Emulsions are typically produced using mechanical (high-energy) or non-

mechanical method. Mechanical (high-energy) methods include high-pressure 

homogenization (HPH), microfluidization, and ultrasonication. In addition, solvent 

diffusion method is one example of non-mechanical techniques to produce 

nanoemulsions (Tadros, Izquierdo, Esquena, & Solans, 2004; Unger et al., 2004). 

 High-pressure homogenizers push the coarse dispersion of the mixture with high 

pressure in the range of 35-345 bar through a narrow gap (a few microns). Due to the 

acceleration of fluid over a very short distance with very high velocity (over 1000 km/h), 

very high shear stress and cavitation forces disrupt the particles down to the submicron 

range (Fathi, Mozafari, & Mohebbi, 2012). A recent example of the technology was 

when Yuan, Gao, Mao, and Zhao (2008) formed β-carotene O/W nanoemulsions. They 

found that the chemical stability of the nanoemulsions decreased with increasing 

temperature but increased with pressure (up to 100 bar) and cycle numbers (up to 3). 

Moreover, β-carotene showed great stability with less loss in the first four weeks of 

storage at room temperature. 

In microfluidization, a high-pressure (up to 1380 bar) to force the liquid 

dispersions through an interaction chamber in which microchannels are placed, and very 

fine particles in submicron range are produced. The emulsification mechanism is based 

on shear and cavitation forces. The operating pressure and number of passes play 

important roles in particle size of the obtained nanoemulsion (Constantinides, Chaubal, & 

Shorr, 2008; Maa & Hsu, 1999). 
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Emulsification by the ultrasonication method is attributed to bubble cavitation. 

The ultrasonic waves result in sequential formation, growth and collapse of microscopic 

vapor bubbles in the liquid. Consequently, the collapse of these cavities provides 

sufficient energy to increase surface area of droplets (Patil & Pandit, 2007).  

Comparing these three high-energy mechanical methods, the use of HPH and 

ultrasonication may cause degradation or denaturation of the sensitive molecules being 

encapsulated, whereas the microfluidization was found to be more effective due to the 

smaller droplet diameters and less droplet diameter growth during storage (Fathi et al., 

2012). 

Nanoemulsions can also be obtained using solvent diffusion method (Tadros et 

al., 2004; Unger et al., 2004). Typically, the oil phase consists of oil carrier, lipophilic 

surfactant and hydrophilic organic solvent, and the aqueous phase consists of hydrophilic 

surfactant and water. Fine O/W emulsion can be produced by passing through a high-

pressure homogenizer, then the solvent is removed by evaporation (Jaiswal, Gupta, & 

Kreuter, 2004; Mainardes & Evangelista, 2005). However, one limitation of this 

technique is the use of large amount of organic solvent; therefore, high energy and 

expensive equipment is required to remove organic solvent before completion of final 

product. In general, application of the low energy methods is limited in food sectors due 

to the need of organic solvent in those methods (Fathi et al., 2012).  

 

2.2.1.2. Applications and features 

Emulsions have been used to encapsulate and deliver various lipophilic 

bioactives. For example, omega-3 fatty acids have been entrapped into food products 
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such as milk, yogurt, ice cream, and meat patties to protect omega-3 from oxidation 

(McClements & Decker, 2000; Chee et al., 2005, 2007; Sharma, 2005; Lee, Faustman, 

Djordjevic, Faraji, & Decker, 2006; Belhaj, Arab-Tehrany, & Linder, 2010). Application 

of emulsions as delivery systems of functional components, including lutein (Losso, 

Khachatryan, Ogawa, Godber, & Shih, 2005), lycopene (Ribeiro et al., 2003; 2006), β-

carotene (Santipanichwong & Suphantharika, 2007; Yuan et al., 2008), curcumin (Wang 

et al., 2008), α-tocopherol (Cheong, Tan, Man, & Misran, 2008), and phytosterol (Leong 

et al., 2011) have been reported. For those bioactives which are crystalline at ambient 

temperatures, they are used either at levels below their saturation concentration in the 

carrier oil, or the lipid phase is melted before homogenization, thus decreasing the 

problems associated with emulsion formation and/or stability (McClements et al., 2007).  

 

2.2.1.3. Advantages and limitations 

Emulsions are currently being used as delivery systems in various industries, 

including pharmaceuticals, cosmetics, and foods. They can provide a number of potential 

advantages to carry and deliver nutraceutical and functional food components, for 

example, it is possible to incorporate active ingredients that are water-soluble, water-

insoluble, and amphiphilic at the same time within the same delivery system 

(McClements et al., 2007, 2009; McClements, 2005). Additionally, the heterogeneous 

structure offers an opportunity to develop novel techniques for controlling the chemical 

stability of encapsulated bioactives (Coupland & McClements, 1996; McClements & 

Decker, 2000).  
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 Nevertheless, several limitations have restricted the prevalence of emulsions as 

delivery system, and therefore, more sophisticated structured systems are needed. The 

major problem is that emulsions are vulnerable to degradation when exposed to 

environmental conditions change, such as temperature and pH. In addition, emulsions are 

not physically stable in the liquid state, causing phase separation during storage. 

Moreover, rapid release of entrapped functional components due to the smaller size and 

the liquid state of the carrier, low stability in gastric condition, and long-term instability 

during storage are the major disadvantages (Benichou, Aserin, & Garti, 2002; Dickinson, 

2003; Drusch, 2007; McClements et al., 2009; Fathi et al., 2012). Furthermore, emulsions 

are liquid products. In order to obtain a dry formulation, they must be dried to make 

handling, transportation, and utilization in some applications more convenient 

(Soottitantawat, Yoshii, Furuta, Ohkawara, & Linko, 2003; Desai & Park, 2005; 

Klinkesorn, Sophanodora, Chinachoti, McClements, & Decker, 2005; Vega & Roos, 

2006). 

 

2.2.2. Liposomes 

Liposomes are microscopic vesicles composed of a membrane, usually 

phospholipid bilayers, surrounding an aqueous medium. Liposomes have been widely 

used for targeted drug delivery, but increasing interest for the delivery of the functional 

compounds has emerged in the recent decade. The mechanism of liposome formation is 

based on the unfavorable interactions between amphiphilic compounds (primarily 

phospholipids) and water molecules (Goyal et al., 2005; Jesorka & Orwar, 2008). Due to 

the special structure consisting of both lipid phase and water phase, liposomes can be 
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utilized to encapsulate water-soluble, lipid-soluble, and amphiphilic materials. 

Furthermore, liposomes are efficient in entrapping and stabilizing bioactives against 

environmental conditions and providing better protection (Mozafari & Khosravi-Darani, 

2007). Similar to emulsions, liposome formation is based on the interaction of 

hydrophilic and lipophilic interactions between phases of lipid/lipid and lipid/water 

(Goyal et al., 2005).  

 

2.2.2.1. Production methods 

 Mechanical and non-mechanical methods have been developed to produce 

liposomes. Mechanical techniques include HPH, microfluidization, sonication, and 

extrusion. Non-mechanical techniques include reversed-phase evaporation and lipid 

hydration followed by vortex or manual stirring (Lasch, Weissing, & Brandl, 2003; 

Schroeder, Kost, & Barenholz, 2009). It has been shown that ultrasonic cavitation 

induced mechanical shear is an ideal method as it results in having particle size 

distribution in a narrower range than other methods (Maulucci et al., 2005; Moran et al., 

2006).   

 

2.2.2.2. Applications and features 

 In the recent decade, liposomes have been investigated as delivery systems for 

enzymes (Jahadi et al., 2012, Smith, Jaime-Fonseca, Grover, & Bakalis, 2010), proteins 

(Sun-Waterhouse & Wadhwa, 2013), vitamins (Gonnet, Lethuaut, & Boury, 2010), 

flavors (Nedovic, Kalusevic, Manojlović, Petrovic, & Bugarski, 2013; Yoshida, Yokota, 

Foglio, Rodrigues, & Pinho, 2010), minerals (Evens et al., 2012), antioxidants (Isailović 
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et al., 2013; Kerdudo, Dingas, Fernandez, & Faure, 2014; Rashidinejad, Birch, Sun-

Waterhouse, & Everett, 2014), and antimicrobials (Boualem, Subirade, Desjardins, & 

Saucier, 2013; Malheiros, Sant’Anna, Barbosa, Brandelli, & Franco, 2012). Liposomes 

have been also used to entrap polyphenolic compounds (Kerdudo et al., 2014; Pravilović, 

Radunović, Bošković-Vragolović, Bugarski, & Pjanović, 2014). Encapsulation of 

material in liposomes could help protect against environmental changes (Augustin & 

Hemar, 2009). 

  

2.2.2.3. Advantages and limitations 

 Large-scale production and delivery of both water-soluble and lipid-soluble 

ingredients are the predominate perks. Nevertheless, rapid release of the encapsulated 

bioactive due to the smaller size and the liquid state of the carrier, low stability in gastric 

condition, and long-term instability during storage are the major disadvantages associated 

with liposomes (Fathi et al., 2012). Moreover, liquid state, high expenses and time-

consuming manufacturing processes limit the application of liposomes in food systems 

(Đorđević et al., 2015).  

 

2.2.3. Solid lipid nanoparticles 

SLN have attracted increasing attention as delivery systems of drugs and 

lipophilic food bioactives in the recent decade, but their potential for food applications 

has not been fully explored yet (Awad et al., 2008; Gallarate, Trotta, Battaglia, & Chirio, 

2009; Taylor, Gaysinsky, Davidson, Bruce, & Weiss, 2007; Varshosaz et al., 2010). SLN 

are particles in the submicron range and composed of solid lipid, dispersed in water or 
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aqueous surfactant solution. The solid lipid matrixes are typically mono-, di- or 

triacylglycerol, with the lipophilic bioactives being a part of the lipid matrix (Jenning, 

Thünemann, & Gohla, 2000). Different from emulsions, SLN are submicron-sized 

particles in which the liquid oil is replaced by solid fat at room temperature or at body 

temperature, which could provide better protection of encapsulated material and achieve 

controlled release due to lower mobility in solid fat rather than in liquid oil (Pardeshi et 

al., 2012).  

 

2.2.3.1. Production methods 

2.2.3.1.1. High-pressure homogenization  

 HPH is a basic technique which enables the large-scale production of SLN. The 

lipid contents vary depending on different applications using HPH, typically are in the 

range of 5-10% but could go higher (up to 40%) forming lipid nanodispersions 

(Anandharamakrishnan, 2013). 

 In hot HPH method, firstly the solid lipid is melted at 5-10 °C above its melting 

point, then bioactive is dispersed in the lipid phase along with an aqueous surfactant 

under the same temperature. After premixing and forming a coarse free-emulsion, the 

mixture is passed through a high-pressure homogenizer above the lipid melting point and 

result in a hot O/W nanoemulsion. Cooling down to the room temperature leads to the 

solidification of the obtained nanoemulsion and the formation of SLN (Fathi et al., 2012; 

Anandharamakrishnan, 2013; Shin, Kim, & Park, 2015). Lyophilization could also be 

applied to initiate recrystallization of the lipid (Müller, Mäder, & Gohla, 2000).  
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The advantages of hot HPH technique include: 1) easy to scale up; 2) short 

production time; and 3) controlled smaller particle size with narrow size distribution. 

However, hot HPH has some limitations. Due to the loss of the lipophilic bioactive to the 

water phase, hot HPH may not efficiently incorporate these compounds into the solid 

matrix. Secondly, for those heat sensitive functional compounds such as enzyme and fish 

oil, hot HPH cannot be applied to obtain ideal particles. Finally, since most surfactant 

have low cloud point, which is the temperature above which an aqueous solution of a 

water-soluble surfactant becomes turbid, the presence of high temperatures may reduce 

the emulsifying capability and impact particle stability (Fathi et al., 2012).  

Cold HPH has been proposed to address these problems. Similar to the first step 

in hot HPH, the bioactive is incorporated into a melted lipid. Then, the mixture is cooled 

down either in liquid nitrogen or dry ice, and grounded by a powder mill with particle 

size of 50-100 µm. The grounded powder are dispersed in an aqueous cold surfactant 

solution at room temperature and premix together. Finally, the lipid suspension is 

homogenized at or below room temperature to produce SLN (Pardeshi et al., 2012). For 

this cold HPH technique, special care must be employed since the temperature may rise 

during milling and homogenization (10-20 °C per cycle) (Fathi et al., 2012; Weiss et al., 

2008). Cold HPH enables processing heat sensitive or water-soluble food compounds. 

Additionally, crystallization process is controllable and desired crystal structure could be 

successfully formed by rapid cooling procedure. However, a major drawback of this cold 

HPH technique could be larger particle size and broader size distribution, and therefore 

do not possess a uniform dissolution when masticated and digested (Weiss et al., 2008). 
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An example of the technology was performed by Schubert and Müller-Goymann 

(2005), who incorporated bovine serum albumin (BSA) in solid hydrogenated palm oil 

nanoparticles using HPH technique. They found that the addition of lecithin up to 30% 

(w/w) in the lipid posed a concentration-dependent decrease of particle size to 100 nm. In 

addition, Sun et al. (2013) developed curcumin-loaded SLN using hot HPH method with 

liquid lipid propylene glycol monocaprylate. They obtained curcumin-loaded SLN which 

had a mean particle size of 153 nm and achieved 90% encapsulation efficiency. They also 

reported that the SLN delivery could improve the dispersity and chemical stability of 

curcumin, elongate their antitumor activity and cellular uptake, and further enhance the 

bioavailability.  

 

2.2.3.1.2. Microemulsion formation 

 Microemulsion formation is another method to produce SLN. This method is 

based on the dilution of a microemulsion in water that leads to precipitation of the lipid 

phase, thus forming particles (Gasco, 1997). Typically, microemulsions are produced by 

stirring an optically transparent lipid mixture at 65-70 °C which is normally composed of 

high melting fatty acid (stearic acid), emulsifier and water. Then, the hot microemulsion 

is dispersed in cold water under stirring, with the volume ratio of the hot microemulsion 

to cold water usually are in the range of 1:25 to 1:50 (Flanagan & Singh, 2006). Finally, 

the excess water is removed by either by ultrafiltration or lyophilization to condense the 

particle concentration (Weiss et al., 2008). Tiyaboonchai, Tungpradit, and 

Plianbangchang (2007) produced curcuminoid-loaded SLN at 75 °C. Under optimum 

processing conditions, lyophilized curcuminoid-loaded SLN had spherical shape with a 
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mean particle size of 450 nm and encapsulation efficiency of 70%, and in vitro release 

was prolonged for up to 12 h. Moreover, lyophilized curcuminoid-loaded SLN showed 

good physical and chemical stability over the 6-month storage period. Low mechanical 

energy input and theoretical stability are the advantages of microemulsions method; 

however, extremely sensitive to changes in the processing parameters, labor intensive 

work, and low nanoparticle concentrations are its limitations (Ekambaram, Sathali, & 

Priyanka, 2012). 

 

2.2.3.1.3. Ultrasonication 

 SLN can also be prepared by ultrasonication. For smaller particle size, a 

combination of high-speed homogenization and ultrasonication is required. Nayak, 

Tiyaboonchai, Patankar, Madhusudhan, and Souto (2010) produced curcuminoid-loaded 

SLN by combining high-speed homogenization and ultrasonication. The particles had 

spherical shape with sizes ranging between 120 and 250 nm. The encapsulation 

efficiency was between 80-94% and the loading capacity was between 1-3%. The 

advantages of this method include reduced shear stress and the need for only simple 

equipment (Ekambaram et al., 2012). Potential metal contamination, large particle size 

due to low dispersion quality, and physical instability (e.g., particle growth during 

storage) are the major concerns with the technique (Ekambaram et al., 2012; Üner, 2006). 

Moreover, lipid concentration tends to be low (<1%) and the surfactant concentration is 

comparatively high (Wissing, Kayser, & Müller, 2004). 
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2.2.3.1.4. Solvent emulsification-evaporation or -diffusion 

 This technique is based on SLN dispersions by precipitation in O/W emulsions. 

During this procedure, addition of water to the organic solution with lipophilic material 

under mechanical agitation would result in coacervation and formation of lipid 

nanoparticles (Quintanar-Guerrero, Allémann, Fessi, & Doelker, 1999). Avoidance of 

heat is the most important advantage of this method. However, in this technique, because 

of the limited solubility of the lipid in organic solvents, it usually needs dilution of the 

suspension, therefore, the particle concentration (up to 15%) is lower than the one 

obtained by HPH technique. Additionally, solvent residues may pose toxicological 

problems (Trotta, Debernardi, & Caputo, 2003). 

 

2.2.3.2. Applications and features 

 Three models of incorporating bioactive components into SLN have been 

proposed: homogeneous matrix model, bioactive-enriched shell model and bioactive-

enriched core model. Production method and formulation components (lipid, lipophilic 

bioactive and surfactant) play important role in determining the SLN model. A 

homogeneous matrix will likely be formed when cold homogenization method is used 

and very lipophilic bioactives are incorporated using hot homogenization method. In this 

case, dissolution of the homogeneous matrix dictates the bioactive release. A bioactive-

enriched shell model could be produced if phase separation happens during cooling of the 

liquid lipid to a solid. On the other hand, a bioactive-enriched core model might be 

formed if the bioactives solidify first and as a result, the shell would have less bioactives 
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when it begins solidifying. Passive diffusion governs this type of SLN model to release 

the loaded bioactive (Fathi et al., 2012).  

 To ensure the physical stability of SLN, zeta potential is commonly used to 

quantify surface charge (Bunjes, 2005; Lim & Kim, 2002). Charged particles possessing 

high zeta potential are less likely to suffer nanoparticle aggregation due to electric 

expulsion (Mehnert & Mader, 2001). It is also important to recognize that, after oral 

administration, due to the ionic strength and strong pH changes in GI tract, nanoparticles 

are likely to destabilize and this can lead to aggregation and size growth. However, 

Zimmermann and Müller (2001) demonstrated that by having SLN with larger than 8-9 

mV zeta potential and in combination with steric stabilization, it is possible to produce 

stable SLN in GI environment. Loading capacity of SLN could be greatly affected by 

solubility of bioactive in melted lipid, structures of the solid lipid matrix and polymeric 

state of the lipid material (Fathi et al., 2012). The additions of solubilizers such as mono- 

and diacylglycerols could help boost bioactive solubility in lipid and therefore increase 

loading capacity. Crystallization of the lipid nanoparticles is different than the bulk lipid 

material. For bulk lipid, it tends to recrystallize in β’ form and rapidly transformed to β 

form, whereas for lipid nanoparticles, it at least partially recrystallizes in α form 

(Westesen, Siekmann, & Koch, 1993). In order to produce SLN with delayed 

polymorphic form from α to β, changing fat type or using surfactant with hydrocarbon 

tails that crystallize before lipid could help preventing nanoparticle aggregation and 

storing at low temperatures (Awad et al., 2008; Helgason et al., 2009). To keep it 

physically and chemically stable, lyophilization with cryo-protective agents has been 

demonstrated as an effective technique (Mehnert & Mader, 2001). Generally, for the 
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production of SLN, relatively high melting-point lipids (melting point >70 °C) is 

recommended (Mehnert & Mader, 2001). 

 Patel and Martin-Gonzalez (2011) encapsulated ergocalciferol (vitamin D2) in 

tripalmitin SLN stabilized by Tween 20 using hot HPH technique. The particle size of 

ergocalciferol-loaded SLN gradually decreased from 120 nm to 65 nm with increasing 

ergocalciferol content up to 20% (w/w). They also observed that the turbidity of SLN 

dispersions reduced noticeably with increasing ergocalciferol loading, indicating it could 

be useful for fortification of clear water-based drink. Qian, Decker, Xiao, and 

McClements (2012) have encapsulated β-carotene and studied the effect of lipid 

compositions on formulations. They found out that liquid lipid nanoparticles showed 

better stability to β-carotene than SLN, and suggested that cocoa butter and hydrogenated 

palm oil mixtures were too well packed and led to the expulsion of β-carotene.  

 

2.2.3.3. Advantages and limitations 

 SLN are delivery systems for drugs and bioactives alternative to emulsions and 

liposomes due to their advantages (Cavalli, Gasco, Chetoni, Burgalassi, & Saettone, 

2002; Illing & Unruh, 2004; Müller et al., 1995): 1) most lipids and surfactants used in 

preparation have “Generally Recognized As Safe” (GRAS) status (Code of Federal 

Regulations, Food and Drugs, 2001); 2) stable formulations can be developed; 3) SLN 

production using HPH technique is highly reproducible (Gohla & Dingler, 2001; Tabatt, 

Sameti, Olbrich, Müller, & Lehr, 2004); 4) possibility of large-scale production (Gohla & 

Dingler, 2001; Tabatt et al., 2004); 5) effective protection of bioactives against chemical 
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degradation; and 6) more controlled release of encapsulated compounds due to the solid 

matrix.  

 Nevertheless, there are several disadvantages associated with SLN, including: 1) 

poor loading capacity due to solid lipid core and limited solubility of the active ingredient 

in the lipid phase; 2) expulsion of the loaded active ingredient after liquid-to-solid phase 

transition during storage; and 3) burst release which is due to the presence of active 

ingredient in the outer shell (Tabatt et al., 2004; Fathi et al., 2012). 

 

2.2.4. Nanostructured lipid carriers  

 NLC are colloidal carriers featured as a solid lipid core with a mixture of both 

solid and liquid lipids with mean particle size falling into nanometer range 

(Anandharamakrishnan, 2013). NLC are considered as a modified version of SLN and the 

second generation of lipid nanoparticles (Müller, Radtke, & Wissing, 2002). In general, 

NLC possess the advantages of SLN, including low toxicity, biodegradation, protection, 

slow release, and elimination of organic solvents use, but also be able to overcome the 

limitations of SLN by creating a less ordered lipid matrix with many imperfections, 

which could allow for a higher loading capacity and decrease the risk of expelling of 

bioactives during storage (Fathi et al., 2012; Tamjidi, Shahedi, Varshosaz, & Nasirpour, 

2013; Pardeshi et al., 2012).  Due to the improved stability, high loading capacity and 

controlled release, NLC are widely used in the pharmaceutical field (Naseri, Valizadeh, 

& Zakeri-Milani, 2015). 

 There are several requirements needed for creating a suitable lipid blend for NLC 

(Tamjidi et al., 2013). Firstly, the solubility of the active compound in lipid matrix is 
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essential, as this influences loading capacity and the subsequent usefulness of the NLC 

(Jaspart, Piel, Delattre, & Evrard, 2005; Kasongo, Pardeike, Müller, & Walker, 2011). 

Secondly, the liquid and solid lipids should be spatially incompatible, meaning the oil 

molecules should not be participated in the solid crystalline matrix of solid lipid and the 

crystals of solid lipid should not be dissolved in the liquid lipid. Moreover, it is a 

prerequisite that the liquid and solid lipids used to form NLC are miscible at specific 

concentration; this means that macroscopic phase separation should not be occurred at a 

temperature below melting point of fat (Kasongo et al., 2011; Radtke & Müller, 2001). 

Thirdly, stability of the lipid phase should be confirmed, particularly as it relates to 

oxidation and lipolysis stability (Tamjidi et al., 2013). Fourth, the lipid phase should be 

biodegradable and able to easily produce NLC in the nanometer range, normally with a 

low viscosity or interfacial tension (Walstra, 2003). Finally, accepted toxicological 

profile of the lipid should be met to produce NLC (Tamjidi et al., 2013). Typically, lipids 

used to prepare NLC are mono-, di- and triacylglycerols, fatty acids and waxes (Tamjidi 

et al., 2013). 

 

2.2.4.1. Production methods 

 Compared to emulsions and liposomes, NLC can retain the encapsulated 

compound better and also prevent particles from coalescing by solid lipid matrix (Üner, 

2006). As a matter of fact, the addition of a certain nanostructure could enhance the 

encapsulation load of bioactives and limit the expulsion phenomenon (Chen, Han, Cai, & 

Tang, 2010; Müller et al., 2002). NLC can be produced by simply mixing solid and liquid 

lipids, together with surfactants, leading to a less perfect solid with imperfections or 
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amorphous type (Üner, 2006; Shin et al., 2015; Anandharamakrishnan, 2013). Similar to 

SLN, NLC can be manufactured through HPH (either cold or hot), microemulsion 

formation, ultrasonication, high shear homogenization, or/and solvent emulsification-

evaporation methods (Üner, 2006; Gasco, 1993; Trotta et al., 2003). It is also reported 

that the particle size is smaller compared to SLN (Fang, Fang, Liu, & Su, 2008). 

 

2.2.4.2. Applications and features 

 NLC are an advanced delivery system and appeared to possess the advantages 

associated with emulsions, liposomes and SLN, but at the same time, overcome some of 

the problems of SLN such as limited loading capacity and expulsion during storage 

(Westesen & Siekmann, 1997; Pardeshi et al., 2012). Lacatusu, Badea, Ovidiu, Bojin, and 

Meghea (2012) loaded lutein in NLC with omega-3 fatty acids as a liquid oil and 

carnauba wax and glycerol stearate as solid lipid. They reported that the particle size was 

below 200 nm and the loading efficiency reached up to 89%. In addition, a high blocking 

effect and oxygen scavenging of 98% was also demonstrated. Curcumin-loaded NLC 

were also studied for intragastric administration (Fang et al., 2012). Their results 

proposed that NLC are promising delivery system for improving solubility of water-

insoluble bioactives such as curcumin. Additionally, β-carotene was successfully 

entrapped in NLC by HPH technique with Tween 80 as emulsifier (Hentschel et al., 

2008). The mean diameter was 144 to 249 nm, and the particle size decreased as the 

emulsifier concentration increased. During the storage period, the mean particle size was 

around 0.3 µm of 9 weeks at 20 °C and 30 weeks at 4-8 °C. Furthermore, the addition of 

tocopherol improved the stability of β-carotene-loaded NLC. 
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2.2.4.3. Advantages and limitations 

 Compared to conventional carriers, NLC have some distinct advantages. Firstly, 

they can increase the solubility of the bioactive materials since the solubility of lipophilic 

bioactive compounds tends to be higher in liquid oils than in solid fats (Tamjidi et al., 

2013). Secondly, NLC have the ability to enhance storage stability due to reduced 

mobility in the solid phase and could improve permeability and bioavailability of the 

bioactive materials (Tamjidi et al., 2013; Pardeshi et al., 2012). Finally, with the addition 

of liquid oil in the solid fat, NLC could increase payload capacity compared to SLN 

(Jenning et al., 2000; Westesen & Siekmann, 1997). 

 The major disadvantage associated with NLC is the occurrence of partial 

coalescence. This phenomenon would happen if lipid particles are partly crystalline, then, 

a crystal from one particle can penetrate into the liquid oil portion during a contact or 

collision which causes the particles to stick together, and may lead to a decrease in NLC 

stability to aggregation or gelation (Tamjidi et al., 2013). Various factors that could 

influence partial coalescence have been discussed elsewhere (McClements, 2005; 

Walstra, 2003). Based on those discussions, the types of lipids and emulsifiers, the ratio 

of solid to liquid lipid and the particle size pose significant influences on partial 

coalescence. If nanoparticles have amorphous structure with no presence of any crystal, 

then we would not expect any partial coalescence in NLC to occur (Tamjidi et al., 2013). 
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2.3. Supercritical fluid (SCF) technology  

2.3.1. Introduction 

 A supercritical fluid (SCF) is defined as a fluid for which both pressure and 

temperature are above its critical point (Fig. 2.1), namely Pc and Tc, respectively 

(Subramaniam, Rajewski, & Snavely, 1997; Nalawade, Picchioni, & Janssen, 2006). 

When pressure and temperature are very close to the critical point, the fluid reveals 

unique physical properties that are significantly different from its normal behavior, in 

which it is neither liquid nor gas but possesses the properties of both (Montes, Gordillo, 

Pereyra, & Martinez de la Ossa, 2011). SCF shows a density similar to a liquid, and 

appreciable for solvent power, while the gas-like viscosity and diffusivity facilitate 

increased rates of mass transfer (Pasquali, Bettini, & Giordano, 2008). SCF is dense but 

highly compressible, in particular near the supercritical region. The density of SCF can 

be easily tuned by small changes in pressure within the critical region, and consequently 

the solvent power can be affected (Subramaniam et al., 1997; Nalawade et al., 2006; 

Montes et al., 2011; Brunner, 2005). The special combination of gas-like viscosity, 

diffusivity, and compressibility and liquid-like density of a SCF makes it excellent for 

various applications such as solvents, antisolvent, or solute in polymer and lipid 

processing: e.g. polymer modification, polymer blending, polymer synthesis, lipid 

extraction and particle formation (Nalawade et al., 2006; Cooper, 2000; Tomasko et al., 

2003; Temelli, 2009; Fahim et al., 2014; Knez & Weidner, 2003; Yeo & Kiran, 2005). 

Moreover, elimination of organic solvents to improve product quality makes SCF another 

wonderful candidate for different roles in various applications (Nalawade et al., 2006). 
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Figure 2.1. Phase diagram of supercritical fluids. 

 

 When processing with SCF, the driving potential for heat and mass transfer is 

dictated by the difference from the equilibrium state (Brunner, 2005). The equilibrium 

state provides information on: 1) the solvent power (capacity) of a supercritical solvent; 

2) the amount of solvent and the equilibrium composition of these phases; 3) the 

selectivity of a solvent; and 4) the dependence of solvent properties on conditions of state 

(p, T) (Brunner, 2005). If capacity and selectivity are known for a solvent, then a good 

guess could be made about whether a separation problem can be solved with SCF 

(Brunner, 2005). The solubility of a low volatile substance in SCF (solvent) increases at 

constant pressure up to a temperature slightly below the Tc of the solvent; however, 

further increase in temperature at “low” pressures (below 100 bar) lead to a decrease in 

solubility in SCF. The same dependence of the solubility and temperature higher than Tc 

can also be observed. At “low” pressures, solubility decreases with increasing 

temperature since density of SCF decreases rapidly with increasing temperature at near-
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critical pressures. Nevertheless, at “high” pressures, density changes with temperature are 

far more moderate, and solubility increases with temperature (Brunner, 2005). 

 

2.3.2. Supercritical carbon dioxide (SC-CO2) technology 

 Among many substances that can be used as SCF, carbon dioxide (CO2) has been 

most commonly and widely used in pharmaceutical, chemical and food industries 

(Subramaniam et al., 1997). It is a clean and versatile solvent and a promising alternative 

to noxious and toxic organic solvents. Since CO2 has a relatively lower critical 

temperature and pressure (31.1 °C, 74 bar), it can achieve a more gentle processing 

condition, avoiding the degradation of heat liable compounds. In addition, CO2 is a 

generally regarded as safe (GRAS) substance, is chemically inert, non-flammable, 

inexpensive, and environmental friendly (Ciftci & Temelli, 2014; Vemavarapu, Mollan, 

Lodaya, & Needham, 2005; Nalawade et al., 2006). Moreover, many polymers and lipids 

possess melting point depression and volumetric expansion in the presence of CO2, 

allowing for relatively low temperature processing (Ciftci & Temelli, 2014; Nalawade et 

al., 2006). Pressurized CO2 has a substantial impact on the properties of components with 

which they are mixed, including increasing solubility, affecting phase behavior, 

drastically decreasing the viscosity of condensed phases and surface tension of liquid 

which enables mixtures to move freely in small pores and tiny structures (Brunner, 2010).  

 The solvent power of SC-CO2 can be summarized by a few rules (Brunner, 2005; 

Del Valle & Aguilera, 1988): 1) it dissolves non-polar or slightly polar compounds; 2) 

the solvent power for low molecular weight compounds is high and decreases with 

increasing molecular weight; 3) SC-CO2 has high affinity with oxygenated organic 
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compounds of medium molecular weight; 4) free fatty acids and their glycerides exhibit 

low solubility; 5) pigments are even less soluble; 6) water has a low solubility (<0.5%, 

w/w) at temperatures below 100 °C; 7) proteins, polysaccharides, sugars and mineral 

salts are insoluble; and 8) SC-CO2 is capable of separating compounds that are less 

volatile, have a higher molecular weight and/or more polar as pressure increases.  

 SC-CO2 is a good solvent for many non-polar low molecular weight compounds 

and a few polymers; but it is a generally very poor solvent for high molecular weight 

polymers under controllable conditions (Nalawade et al., 2006).  

 

2.4. Particle formation using supercritical fluid (SCF) technology 

 SCF, especially CO2, and their potential use for process development have gained 

the industries’ interest in the recent decades. SCF have been adopted as a green and 

effective alternative to organic solvents to produce particles (Yeo & Kiran, 2005). Some 

extraction processes such as decaffeination and extraction of bioactives have already 

become commercialized. Particle formation may likely be the next commercialized 

application using SCF technology (Yeo & Kiran, 2005). 

The unique properties, such as gas-like diffusivities, liquid-like densities, 

continuously adjustable solvent power/selectivity and the easiness of complete removal at 

the end of the process, make SCF particularly more attractive than conventional methods 

including freeze drying, spray-cooling, spray-drying, air micronization, coacervation, 

recrystallization from the liquid solution and sublimation, due to it is lack of 

contamination of the extracts, residues and environment (Fahim et al., 2014; Thereza, 

Gomes, Santos, & Meireles, 2012; Reverchon & Adami, 2006; Hakuta, Hayashi, & Arai, 
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2003). In some precipitation methods, organic solvent is completely eliminated, while in 

others organic solvent is used, but in greatly reduced amounts, which can be removed 

thoroughly due to their high solubility in SCF, therefore avoiding potential of product 

contamination (Martín & Cocero, 2008; Hakuta et al., 2003). Several techniques use the 

sudden changes of properties by adjusting pressure and temperature to achieve 

homogeneous supersaturation, leading to fine powder production with a narrow particle 

size distribution (Martín & Cocero, 2008; Priamo et al., 2013; Hakuta et al., 2003). Better 

control of particle size, size distribution and morphology can be obtained by SCF 

technology than the current methods to form solid lipid particles such as cold HPH and 

ultrasonication. Different morphologies can be easily obtained by adjusting process 

parameters including pressure, temperature, nozzle diameters, depressurization rate, and 

the amount of dissolved CO2 (Nalawade et al., 2006). Furthermore, if a SCF with a 

relatively lower critical temperature is used, such as CO2, the process could be conducted 

in a mild condition, thus prevent the compounds from thermal degradation (Martín & 

Cocero, 2008; Hakuta et al., 2003).  

Particle formation using SCF technology can be divided into three groups 

depending on their role in the processing: a) SCF as a solvent: Rapid Expansion of 

Supercritical Solutions (RESS); b) SCF as a solute: Particles from Gas-Saturated 

Solutions (PGSS); and c) SCF as antisolvent: Gas Anti-solvent (GAS), and Supercritical 

Anti-solvent (SAS). 
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2.4.1. Rapid Expansion of Supercritical Solutions (RESS) 

 In this process, SCF is a solvent. The active substance is firstly dissolved in a SCF 

and becomes saturated at a fixed temperature and pressure, and then a sudden 

depressurization takes place in a nozzle, which sprays particles containing active 

substance at a high velocity, creating high supersaturation, due to rapid decrease in the 

solvent power and temperature (Martín & Cocero, 2008; Hakuta et al., 2003; Priamo et 

al., 2013; Fahim et al., 2014).  

 The advantages of RESS process for fine particle formation include: 1) it allows 

high supersaturations which are transmitted rapidly and homogeneously to the whole 

fluid, leading to forming particles in small size and narrow size distribution (Martín & 

Cocero, 2008); 2) it can be conducted under relatively mild temperature (typically below 

80 °C), and is thus suitable for heat sensitive active substance (Martín & Cocero, 2008); 

and 3) it eliminates the use of organic solvents (Martín & Cocero, 2008; Fahim et al., 

2014). However, there is a major limitation of the RESS process: it can only apply to 

substances with high solubility in the SCF, mainly non-polar compounds or volatile polar 

compounds such as ethanol, while non-soluble compounds such as acids could not be 

processed (Jung & Perrut, 2001; Reverchon, 1999; Martín & Cocero, 2008). 

Additionally, the production capacity may be limited; however, the benefit of elimination 

of organic solvent is sacrificed by the addition of a cosolvent to alleviate this problem 

(Martín & Cocero, 2008). Furthermore, the extremely fast precipitation could lead to 

difficulty in controlling the loading and morphology of the particles (Yeo & Kiran, 

2005). 
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 In the recent two decades, several groups have studied the RESS process for 

particle formation, such as pharmaceuticals including carbamazepine (Gosselin, Thibert, 

Preda, & McMullen, 2003), griseofulvin (Hu, Johnston, & Williams III, 2004), ibuprofen 

(Kayrak, Akman, & Hortacsu, 2003), and functional food compounds such as 

phytosterols (Jiang, Chen, & Zhao, 2003; Türk & Lietzow, 2004). Türk and Bolten 

(2010) reported the formation of submicron particles of naproxen by using the RESS 

process with the particle size in a range of 0.56-0.82 µm. Mishima et al. (2000) 

encapsulated protein in polymer. They dissolved protein and polymer both in SC-CO2 

with or without a cosolvent. The mixed solution is then depressurized through a nozzle to 

form microparticles. Oliveira, Pinto, and Dariva (2005) investigated formation of 

polypropylene microparticles from solution mixture with n-butane. They demonstrated 

that the concentration of polymer has a profound effect on particle morphology, relatively 

lower polymer concentrations favored particle formation with reduced agglomeration. 

 

2.4.2. Particles from Gas-Saturated Solutions (PGSS) 

 In contrast to RESS, the PGSS process takes advantage of the SCF as a solute 

rather than a solvent since the solubilities of compressed gases in liquids and solids are 

usually much higher than those of such liquids and solids in the compressed gases (Fahim 

et al., 2014; Martín & Cocero, 2008). In the PGSS process, the SCF is firstly dissolved in 

a melted solid or a liquid suspended solution, and then the gas-saturated solution is 

suddenly depressurized and expanded through a nozzle from supercritical conditions to 

ambient pressure, leading to the precipitation of the fine particles as the dissolved SCF 

leaves the system in gas form (Željko, 2006; Martín & Cocero, 2008). This process is in 
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particular suitable for substances such as polymers, oils and fat, in which SCF not only 

has a large solubility but also leads to a considerable reduction in melting point, viscosity 

and interfacial tension (Martín & Cocero, 2008; Fahim et al., 2014; Martín & Weidner, 

2010; Weidner, 2009). Again, the driving force is the sudden pressure drop and intense 

cooling effect produced by the escape of SCF. PGSS process can only be applied to 

substances for which the antisolvent effect of SCF is small, because otherwise, the solute 

would precipitate and not expand in the vessel (Martín & Cocero, 2008). 

 The advantages of PGSS process for particle formation include: 1) low SCF 

consumption and a reduced operating pressure due to the high solubility of SCF in melted 

solid or liquid suspended solution (Priamo et al., 2012; Jung & Perrut, 2001); 2) 

elimination of organic solvents (Tabernero, Del Valle, & Galán, 2012); 3) lower cost 

compared to other processes (Fahim et al., 2014), and 4) ease of adaptation to large scale 

production (Yeo & Kiran, 2005). However, the major disadvantage of PGSS process is 

the difficulty producing submicron-sized particles and poor control of particle size 

(Fahim et al., 2014; Weidner, 2009).  

 Up to date, more than 100 substances have been powderized with the PGSS 

process, including polymers, waxes and resins, natural products (extracts from spices, 

phospholipids, methanol) and fat derivatives (fatty acids, diglycerides, fatty alcohols, 

cocoa butter) (Weidner, 2009; Münüklü, 2005; Jung & Perrut, 2001). The atomization in 

the PGSS process can be improved by using a second gas such as air as an addition in the 

expansion vessel, generating the Gas-assisted Melting Atomization process (GAMA) 

(Salmaso, Elvassore, Bertucco, & Caliceti, 2009). Another application of the PGSS 

process is PGSS-drying, which dries aqueous solution into powder form (Priamo et al., 
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2012; Thereza et al., 2012). This technique promotes the mass transfer between the SCF 

and the aqueous solution, and then the mixture is depressurized (Tabernero et al., 2012). 

Recently, Varona, Kareth, Martín, and Cocero (2010) used this technique to encapsulate 

lavandin oil in starches by removing water from an O/W emulsion stabilized with N-

octenyl succinic anhydride starches as surfactants. Gitin, Varona, and Cocero (2011) 

encapsulated garlic essential oil by PGSS process where polyethylene glycol (PEG) was 

used as a carrier. They reported that the particle size was within 71-206 µm, and the 

encapsulation efficiency was 26-49%.  

 

2.4.3. Gas Anti-solvent (GAS) 

GAS is devised to recrystallize solid materials that are not soluble in SCF 

(Tabernero et al., 2012). The SCF is used in batch mode in this process (Yeo & Kiran, 

2005; Fahim et al., 2014). The technique is especially suitable for polymers and fats and 

oils because most them are not soluble in SCF or gases (Yeo & Kiran, 2005). The molten 

solid is firstly dissolved in conventional liquid organic solvent as in SAS, and the 

solution is then introduced into the SCF from the bottom by a filter by a disperser, at a 

predetermined constant rate and temperature, leading to a rapid volume expansion of 

organic solvent (Fahim et al., 2014; Martín & Cocero, 2008; Yeo & Kiran, 2005; 

Franceschi et al., 2008). As a result, the solvent power of the conventional organic 

solvent decreases and supersaturation in which the gas concentration in solution increases 

with pressure and in turn causes precipitation of the particles (Fahim et al., 2014; Martín 

& Cocero, 2008; Yeo & Kiran, 2005). In this process, the antisolvent gas does not have to 

be at supercritical condition (Yeo & Kiran, 2005). After the solute material has 
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completely precipitated out, fresh antisolvent SCF or gases is used to flush the system to 

remove away the solvent (Jung & Perrut, 2001; Yeo & Kiran, 2005). 

 The advantages of GAS process include: 1) ability to load a large amount of 

solute material at one time; 2) flexibility in choosing organic liquid solvent that has less 

operational problems compared to other techniques; and 3) the potential to obtain 

solvent-free particles in micron and submicron sizes (Fahim et al., 2014; Knez & 

Weidner, 2003; Silva & Meireles, 2014). However, the major drawback is the possible 

toxic solvent residue (Fahim et al., 2014; Knez & Weidner, 2003; Silva & Meireles, 

2014). Moreover, there is a lack of control over particle size, which prevents the 

formation of mono dispersed particles (Fahim et al., 2014). 

 Some of the most remarkable applications among varieties of materials processed 

with SC-CO2 as antisolvent are pharmaceuticals, polymers, superconductor precursors, 

and natural substances and colorants (Martín & Cocero, 2008). Kim et al. (2011) formed 

cyclotetramethylenetetranitramine particles using GAS process, and the particle size was 

within 1-133 µm. However, studies that address the mechanism and kinetics of particle 

formation in the GAS process are scarce (Martín & Cocero, 2008). 

 

2.4.4. Supercritical Anti-solvent (SAS) 

 In SAS process, SCF acts as an antisolvent, saturates the liquid solvent that 

reduces the solubility of a solute dissolved into a conventional liquid solvent, resulting in 

precipitation of solute. Due to the phase behavior of SCF with many solvents, the 

solution expands and its viscosity is reduced, and therefore solubility of the active 

substance in the liquid phase decreases (Fahim et al., 2014; Hakuta et al., 2003). Upon 
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depressurization, the expanded solution becomes supersaturated, thus forcing the active 

substance to deposit as micron-sized particles (Hakuta et al., 2003; Reverchon, Adami, 

Caputo, & De Marco, 2008). There are different types of SAS techniques where the 

substance is firstly dissolved in a conventional solvent (dichloromethane, methanol, 

ethanol, dimethylsulfoxide, etc.) and then leads to the precipitation of the particles 

(Fahim et al., 2014). Indeed, SAS process is a modified GAS process in a continuous or 

semi-continuous operation.  

 The advantages of SAS process include: 1) it controls of the particle morphology 

on a very wide range from nanoparticles to microparticles; 2) is amenable to continuous 

processing which is suitable for large scale production of micro- and nanoparticles; and 

3) freshly precipitated particles can be easily collected and the SCF with organic solvent 

can be drained continuously from the system (Fahim et al., 2014). Nevertheless, the 

major limitation of SAS process is the usage of organic solvents which may have toxic 

residual solvent in the final product (Fahim et al., 2014). In addition, longer washing 

period is required due to agglomeration and aggregation of the particles in the nozzle 

(Jung & Perrut, 2001; Yeo & Kiran, 2005; Byrappa, Ohara, & Adschiri, 2008). 

 The use of SCF as antisolvent can usually be performed at pressure lower than 

100 bar and temperature slightly above the Tc of SCF. Falk, Randolph, Meyer, Kelly, and 

Manning (1997) produced composite microspheres by the SAS process. In their study, a 

homogeneous solution of the solutes and polymers were sprayed, thus co-precipitation of 

polymers and solutes occurred where both composite microspheres and microcapsules 

were formed. Young, Johnston, Mishima, and Tanaka (1999) produced the lysozyme 

with a biodegradable polymer by precipitating with a vapor-over-liquid antisolvent, and 
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the obtained particles were in a range of 1-10 µm. There are only few reports on the use 

of GAS for food and food ingredients. Generally, SAS process has been demonstrated to 

have industrial potential not only for drugs or polymers, but also for food applications 

(Weber, Beutin, Tschernjaew, & Kummel, 1997; Rantakylä, 2004; Thiering, Dehghani, 

& Foster, 2001). 

 

2.5. Lipid particle formation using supercritical carbon dioxide (SC-CO2)  

The need for incorporation of lipophilic bioactive compounds into food and 

beverages to improve bioactive solubility and bioavailability, leading to improved food 

quality and health benefits, has led the development of lipid-based particle formation in 

food industry. Lipids are promising delivery vehicles for lipophilic bioactives due to their 

biocompatibility and enhanced absorption (Dolatabadi et al., 2015; Severino et al., 2012). 

Contrary to larger lipid particles, micro- and nano- lipid particles could help prevent 

separations of bioactives from solidifying lipid matrix and bioactives can be evenly 

dispersed in the matrix, therefore maintaining integrity in case of degradation due to 

thermal or mechanical stress (Müller et al., 2002). In addition, because of the extremely 

small size, nanocarriers have shown advantages including improvement of the aqueous 

solubility, enhancement of residence time in GI regions, better physicochemical stability 

in GI tract, intracellular delivery and transcellular delivery (Oehlke et al., 2014).  

The utilization of solid lipids rather than liquid oils has advantages of achieving 

controlled bioactive release and bioactive stability against thermal and mechanical stress 

(Dolatabadi et al., 2015; Scalia, Young, & Traini, 2015), thus SLN have become one of 

the most promising lipid-based delivery system for bioactives and drugs. Nevertheless, to 
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some extent, current conventional methods producing SLN have restricted the full 

potential of developing an efficient delivery system. Safety concerns due to solvent use in 

solvent emulsification/evaporation method; bioactive instability in hot homogenization 

and high shear homogenization methods, and potential metal contamination and particle 

physical instability in ultrasonication method are the limitations of the current methods 

(Beh, Mammucari, & Foster, 2012; Ekambaram et al., 2012).  

SC-CO2 technology could address these problems by decreasing the melting 

temperature of the solid lipids, thus making particle formation under moderate conditions 

to process heat sensitive bioactives (Ciftci & Temelli, 2014). SC-CO2 has a substantial 

impact on the properties of components with which they are mixed, including increasing 

solubility, affecting phase behavior, drastically decreasing the viscosity of condensed 

phases and surface tension of liquid (Brunner, 2010), thus used to optimize process 

parameters to generate ideal particles with preferred size and morphology (Hakuta et al., 

2003; Knez & Weidner, 2003; Nalawade et al., 2006; Mishima, 2008). Moreover, 

increasing operating pressure within a specific range under the critical low temperature 

obtained by melting study could enhance the solubility of either CO2 or lipids in the other 

one, which in turn affect the supersaturation of the solute in the solvent and the mass 

transfer of that solvent, which are both substantial for micronization and formation of 

composite particles (Yasuji, Takeuchi, & Kawashima, 2007).  

Understanding the melting behavior of solid lipids in pressurized CO2 is 

important for the production of solid lipid particles using SC-CO2 (Ciftci & Temelli, 

2014). Fundamentals concerning melting point depression, phase behavior and 

volumetric expansion have been explored to design particle formation process for 
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controlling the micronization (Knez & Weidner, 2003). Salmaso et al. (2009) reported 

that the melting temperature of the protein lipid mixture decreased to 35-40 °C under 150 

bar CO2 pressure. Moreover, Ciftci and Temelli (2014) reported a positive correlation 

between the melting point depression and volumetric expansion of the solid lipids in 

pressurized CO2. 

Lipid particle formation using SC-CO2 is a fairly new research area. Badens, 

Magnan, and Charbit (2001) formed microparticles with size ranging from 1 to 40 μm 

from soy lecithin by the SAS process with ethanol as cosolvent. Using the same SAS 

process, Kunastitchai, Pichert, Sarisut, and Müller (2006) generated liposomes in a dry 

and reconstitutable form. In addition, Dos Santos, Richard, Pech, Thies, and Benoit 

(2002) coated protein particles of BSA with two commercial lipids, either Gelucire® 50-

02 or Dynasan® 114, by depressurizing the suspension of BSA particles in SC-CO2 

solution of lipids. Gelucire® 50-02 consisted of a mixture of glycerides and fatty acid 

esters, whereas Dynasan® 114 only had trimyristin. The protein release of the particles 

coated with both lipids were more controllable than that of the uncoated protein. 

However, particles coated with trimyristin experienced an initial burst release of about 

70% in 30 min at 37 °C due to the crystallization, leading to a rather homogeneous 

coating, whereas a prolonged release has been achieved over a 24 h period from particles 

coated with Gelucire® 50-02. Moreover, Mandžuka and Knez (2008) determined the 

Solid-Liquid-Gas equilibrium data in 50-600 bar for monostearate/CO2 and 

tristearate/CO2, and formed particles using batch PGSS micronization. Micronizations of 

monostearate and tristearate were performed in pressure range of 60-210 bar at 70 and 80 

ºC, and at 60 and 70 ºC, respectively. The average size of monstearate and tristearate 
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particles were 10-40 µm depending on pre-expansion pressure and temperature. Particles 

after micronization had irregular and porous shape. Polymorphic form remained the same 

but the degree of crystallinity for both was lower when compared to original samples. 

Using SCF assisted emulsion/diffusion method, which was proposed to improve the 

classical emulsification/diffusion by the addition of a continuous SCF processing step to 

eliminate organic solvent, Campardelli et al. (2013) produced lipid nanoparticles of 

stearic acid. They tested different formulations for stearic acid nanoparticles and 

processed by supercritical continuous extraction at 80 bar and 25 ºC/or 45 ºC (liquid/gas 

ratio of 0.1). The mean particle size was 33 and 41 nm, respectively, achieving one order 

of magnitude smaller than the ones obtained by conventional emulsion/diffusion method, 

and the supercritical flow did not damage the particles. Similar to the PGSS process, 

supercritical melting micronization (ScMM) process was adopted by Lubary, De Loos, 

Ter Horst, and Hofland (2011) to produce microparticles from milk fat. Both anhydrous 

milk fat (AMF) and a diacylglycerol-based modified milk fat (D-AMF) had the ability to 

dissolve 30% (w/w) CO2 in up to 130 bar and 25-70 ºC, and melting point depression was 

observed in both systems with pressurized CO2. The AMF particles were composed of 

mainly the β’ polymorph, regardless of morphology, whereas D-AMF seemed to 

crystallize predominately as α polymorph. Furthermore, Bertucco, Caliceti, and Elvassore 

(2007) reported a similar process for the formation of SLN using Gas-assisted Melting 

Atomization (GAMA). In their process, molten mixture was pressurized with CO2, and 

then a semisolid or liquid mixture was created with a second gas (air) which did not 

completely dissolve into the mixture, and then the mixture was expanded with 

evaporation of CO2 to form solid lipid micro- and nanoparticles. 
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SC-CO2 technology, specifically the PGSS process, has been reported to achieve 

loading of lipophilic bioactives in the solid lipid particles (Salmaso et al., 2009; Vezzù et 

al., 2010). Pedro et al. (2016) produced curcumin-loaded solid lipid particles by the 

PGSS technique. The lipid matrix studied was tristearin + soy phosphatidylcholine 

(PC)/dimethylsulfoxide (DMSO) + curcumin, with ratios from 65.6:1 to 3:1. The loading 

yield was found to be in the range of 30-87% (w/w) drug/lipid. Curcumin-loaded solid 

lipid particles were more homogeneous in size with low DMSO feed, whereas the 

formulation with the highest DMSO feed yielded a bimodal particle size distribution with 

significant aggregation. The PGSS process was found to be properly set-up to produce 

solid lipid particles without degrading drugs. De Paz, Martín, and Cocero (2012a) 

formulated β-carotene with soybean lecithin by PGSS-drying process. They firstly 

prepared organic-on-water β-carotene emulsions and aqueous β-carotene suspensions, 

and then precipitated the lecithin by PGSS-drying to obtain the β-carotene-encapsulated 

lecithin particles. The particle size ranged from 10-500 µm, constituted by fused 

spherical particles less than 10 µm. The encapsulation efficiency was up to 60%. By 

hydrating these particles, β-carotene-loaded multilamellar liposomes of 1-5 µm were able 

to be obtained. In the same year, the same group formulated β-carotene with poly-(ε-

caprolactones) by PGSS process (De Paz, Martín, Duarte, & Cocero, 2012b). The particle 

size was in the range of 270-650 µm with a β-carotene content up to 340 ppm when using 

polycaprolactone with molecular weight of 10000 g/mol, whereas the decreased to 110-

130 µm when using polycaprolactone with molecular weight of 4000 g/mol. They also 

investigated the effects operating conditions on the particle formation. Bigger particles 

were obtained when the pressure and temperature were 150 bar and 50 ºC, compared to 
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the particles obtained at 110 bar and 70 ºC. Moreover, García-González et al. (2010) 

investigated the encapsulation efficiency of solid lipid hybrid particles prepared using the 

PGSS technique and loaded with different polarity active agents. The lipid hybrid 

contained a glyceryl monostearate (Lumulse® GMS-K), and a waxy triglyceride (Cutina® 

HR). All experiments were performed at 130 bar and 71 °C based on the previous 

measurements of lipid melting points. Solid lipid particles were loaded with silanized 

TiO2 and caffeine, glutathione or ketoprofen in 6-7% (w/w) for the mineral filler and 4.5, 

5.6 and 16.1% (w/w) for the active agents. They found that hydrophilic drugs, such as 

caffeine and glutathione, had a limited interaction with the lipophilic matrix and thus a 

limited capacity to be encapsulated. On the contrary, hydrophobic ketoprofen was 

entrapped in the lipidic particles as a molecular dispersion, and this formulation can be 

used for a sustained release (t2h = 20%). Furthermore, Sampaio de Sousa, Simplício, De 

Sousa, and Duarte (2007) produced caffeine-loaded solid lipid particles of glyceryl 

monostearate using the PGSS technique at 130 bar and 61 °C and had a mean particle 

size D[3,2] of 5.49 µm. The particles were loaded with 140 mg of caffeine/g particle.  

 

2.6. Conclusions 

 Development of bioactive-carriers to improve the solubility, stability and 

bioavailability of lipophilic bioactives has become a target for food industry to produce 

health and wellness promoting foods and beverages. Lipids are especially preferred in 

formulation of dietary controlled delivery systems, due to their biocompatibility, 

enhancement of the absorption of bioactive in the GI tract, and targeted delivery. 

Production of the bioactive-carrier hollow solid lipid micro- and nanoparticles using SC-
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CO2 is a relatively new area. Hollow solid lipid micro- and nanoparticles have the 

advantages of SLN such as better protection of the loaded bioactive but higher loading 

capacity and minimized or no bioactive expelling due to hollow structure using a simple 

and green process. 
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CHAPTER 3. FORMATION OF HOLLOW SOLID LIPID MICRO- AND 

NANOPARTICLES USING SUPERCITICAL CARBON DIOXIDE* 

 

3.1. Abstract 

Hollow solid lipid micro- and nanoparticles were formed from FHSO using 

atomization of the carbon dioxide (CO2)-expanded lipid. Melting point of FHSO 

decreased from 68.5 °C to 57 °C (0.096 °C/bar) above 120 bar in pressurized CO2. 

Processing conditions of 50 µm nozzle diameter and 200 bar CO2 pressure yielded 

smaller (d50% = 278 nm) hollow solid lipid particles. Increasing nozzle diameter and 

pressure affected the particle morphology and size negatively. Shell thickness of the 

particles decreased with increasing pressure at the same nozzle diameter. Decreasing the 

nozzle diameter yielded the polymorphism of the particles from β to α. Melting point of 

the particles shifted to a lower melting range and broadened the melting range compared 

to FHSO. The results showed that the reported supercritical CO2-assisted atomization 

process is a promising method to form hollow solid lipid micro- and nanoparticles to 

develop bioactive delivery systems. 

Keywords: Nanoparticle; Supercritical carbon dioxide; Lipid; Melting; Oil 

 

3.2. Introduction 

The growing demand for “natural” and “clean” products along with the increase 

in the prevalence of diet-related illnesses such as obesity, type-2 diabetes, cardiovascular 

disease and cancer have led the food industry prioritize the development of health and 
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wellness promoting foods by incorporating bioactive components into foods and 

beverages. Many researches have verified that by incorporating functional ingredients 

into consumers’ daily diet could have a significant positive effect on health promotion as 

well as relief of the above-mentioned illnesses (Qin et al., 2004; Shu et al., 2009; 

Bradford & Awad, 2007). However, many bioactives are lipophilic, resulting in poor 

water solubility that requires extra processes such as emulsification to make their addition 

into water possible, and result in poor absorption through gastrointestinal tract and 

limited bioavailability due to various physiochemical transformations during digestion 

(Ting et al., 2014). In addition, many of these bioactives are chemically sensitive, prone 

to degrade or decompose when exposed to light, oxygen, and heat during processing and 

storage. Therefore, inclusion of lipophilic bioactives in foods and beverages to produce 

functional foods and beverages has been a main challenge in the food industry.  

Lipids are promising delivery vehicles for lipophilic bioactives due to their 

biocompatibility and enhanced absorption (Dolatabadi et al., 2015; Severino et al., 2012). 

The utilization of solid lipids rather than liquid oils has the advantages of achieving 

controlled bioactive release and bioactive stability against thermal and mechanical stress 

(Dolatabadi et al., 2015; Scalia et al., 2015), thus solid lipid nanoparticles (SLN) have 

become one promising lipid-based delivery system for bioactives and drugs. 

Nevertheless, to some extent, drawbacks of the SLN and their conventional production 

methods have restricted the full potential of developing an efficient delivery system. 

Safety concerns due to solvent use in solvent emulsification/evaporation method; 

bioactive instability in hot homogenization and high shear homogenization methods, and 

potential metal contamination and particle physical instability in ultrasonication method 
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are the limitations of the current methods (Beh et al., 2012; Ekambaram et al., 2012). 

Moreover, SLN possess poor loading capacity, and also may expel the loaded bioactive 

during crystallization, because it is a full solid lipid particle (Mukherjee, Ray, & Thakur, 

2009).  

A promising strategy to overcome above-mentioned problems in manufacturing 

fine solid lipid particles can be realized by using supercritical fluid technology, which has 

been considered as an effective and green alternative to process materials in the 

pharmaceutical, chemical and food industries (Subramaniam et al., 1997; Fahim et al., 

2014; Campardelli et al., 2013). Among many substances that can be used as supercritical 

fluid, CO2 is the most common one since it has a relatively mild critical temperature and 

pressure (31 °C, 74 bar), and also it is nontoxic, nonflammable, environmental friendly, 

cheap, and safe. SC-CO2 has a substantial impact on the properties of components with 

which they are mixed, including increasing solubility, affecting phase behavior, 

drastically decreasing the viscosity of condensed phases and surface tension of liquid 

(Brunner, 2010), thus serving as the most important phenomenon used to optimize 

process parameters to generate ideal particles with preferred size and morphology 

(Hakuta et al., 2003; Knez & Weidner, 2003; Nalawade et al., 2006; Mishima, 2008). 

Though have been recognized as an efficient alternative to liquid oils and/or 

colloidal systems, the potential of solid lipid carrier systems for food applications has not 

yet been fully explored. In this study, we investigated the formation hollow solid lipid 

micro- and nanoparticles that can be used as bioactive-carrier systems using SC-CO2 

technology. The hollow structure can increase the loading efficiency significantly 

compared to SLN, and solve the bioactive expelling problem. There are few reports on 
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the formation of solid lipid particles using supercritical fluid technology reporting 

formation of only microsize particles using the Particles from Gas-saturated Solutions 

(PGSS) technique (Sampaio de Sousa et al., 2007; Mandžuka & Knez, 2008; García-

González et al., 2010; Lubary et al., 2011). Previously, Bertucco et al. (2007) reported a 

similar process for the formation of SLN using a similar process Gas-assisted Melting 

Atomization (GAMA). In their process, molten mixture was pressurized with CO2, and 

then a semisolid or liquid mixture was created with a second gas (air) which did not 

completely dissolve into the mixture, and then the mixture was expanded with 

evaporation of CO2 to form solid lipid micro- and nanoparticles (Bertucco et al., 2007). 

Production of solid lipid submicron particles for protein delivery (Salmaso et al., 2009) 

and bioactive-containing solid lipid microparticles (Vezzù et al., 2010) were also 

reported. To the best of our knowledge, there is no report on the formation of hollow 

solid lipid particles at both micro- and nanosize using SC-CO2. 

The main objective of this study was to form hollow solid lipid micro- and 

nanoparticles (nanospheres) from fully hydrogenated soybean oil (FHSO) that will be 

used as biocompatible lipophilic bioactive delivery systems using SC-CO2. The specific 

objectives were to investigate the effects of pressure and nozzle diameter on the particle 

morphology, size and size distribution, melting properties, and polymorphism. 

 

3.3. Materials and methods 

3.3.1. Materials 

FHSO was kindly provided by ConAgra Foods Inc. (Omaha, NE, USA). CO2 

(99.99% purity) was purchased from Matheson (Lincoln, NE, USA). 
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3.3.2. Determination of melting behavior of the FHSO in pressurized CO2 

Melting behavior of the FHSO in pressurized CO2 was studied according to Ciftci 

and Temelli (2014) in a jacketed high pressure vessel equipped with two sapphire 

windows, microscope and camera systems, refrigerated circulator (model 1162A, VWR 

Inc., Radnor, PA, USA). The temperature of the vessel was controlled by circulating 

water through the jacket of the vessel. The molten FHSO was placed into a glass gas 

chromatograph vial insert (200 µL) between two windows, then the vessel with CO2 

pressurized using a syringe pump (Model 250D, Teledyne Isco Inc., Lincoln, NE, USA). 

After 1 h stabilization time, the temperature of the vessel was decreased to 5 °C below 

the solidification temperature of the FHSO that was observed via the microscope-camera 

system. Then, the temperature of the vessel was increased at a rate of 0.3 °C/min until 

first melting of the sample was observed. The melting temperature and pressure of the 

lipid under pressurized CO2 was recorded as the pressure and temperature at which the 

first melting was observed. 

 

3.3.3. Production of hollow solid lipid micro- and nanoparticles using SC-CO2 

The hollow solid lipid particles were produced from FHSO using the particle 

formation system shown in Figure 3.1.  The system consisted of a high-pressure syringe 

pump, pre-heating section, 100 mL high-pressure expansion vessel, magnetic drive, 

magnetic drive controller, pressure gauge, thermocouple, sampling port, rupture disk, 

depressurization valve, and nozzle. The expansion vessel, depressurization valve, and 

nozzle were heated with heating tapes, and digital temperature controllers were used to 

control temperature of the heating tapes. Temperature of the expansion vessel was 
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maintained at 57 °C that is the melting point of FHSO under CO2 at 120 bar. Temperature 

of the depressurization valve and nozzle was set to 5 °C above the melting point of the 

FHSO under atmospheric conditions.  

 

 

Figure 3.1. Schematic diagram of the particle formation unit. (1) CO2 cylinder; (2) 

needle valve; (3) high pressure syringe pump; (4) pre-heating section; (5), (6), (8) 

temperature controller; (7) CO2 inlet valve; (9) 100 mL high pressure expansion vessel; 

(10), (18) heating tape; (11) magnetic drive; (12) thermocouple; (13) pressure gauge; (14) 

magnetic drive controller; (15) sample inlet port; (16) rupture disc; (17) depressurization 

valve; (19) CO2 exhaust; (20) sample collection vessel. 

 

The FHSO sample was firstly melted on a heater at 130 °C and then 20 mL of 

molten FHSO was injected into the expansion vessel through the sampling port. Then, the 

CO2 inlet valve was slowly opened, and the expansion vessel was pressurized with CO2 

with the syringe pump until the set pressure was reached. The magnetic drive was turned 

on at 1000 rpm to mix the pressurized CO2 and the FHSO to obtain the maximum 

expansion of SC-CO2-dissolved solid lipid for 1 h. Then, the magnetic drive was turned 

off and waited for 10 min for stabilization of the SC-CO2-expanded solid lipid. The 
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pressure of the syringe pump was set to 10 bar above the pressure of the expansion 

vessel, and CO2 inlet valve was opened, then depressurization valve was opened. Upon 

opening depressurization valve, CO2-expanded lipid was atomized through the nozzle, 

solid lipid particles were formed and collected in the sample collection vessel, and CO2 

left the system in the gas form. During atomization, the pressure in the expansion vessel 

stayed constant due to continuous feeding CO2 into the vessel. 

 

3.3.4. Determination of the particle size and size distribution 

Particle size and size distribution of the samples were measured using a laser 

diffraction particle size analyzer (Mastersizer 3000, Malvern Instruments Ltd., 

Worcestershire, UK). Samples (30 mg) were dispersed in 25 mL distilled water 

containing 0.4% (w/w) of Tween 80. Suspensions were sonicated in an ultrasonic water 

bath (3510 R-MTH, Branson Ultrasonics Corporation, Danbury, CT, USA) for 30 min 

before each analysis. The refractive index (RI) of the material was set as 1.46 with 

distilled water (RI = 1.33) as dispersant.  The obscuration value was in the range of 5% - 

7% for each analysis. 

 

3.3.5. Determination of the particle morphology 

Morphology of the obtained particles was analyzed by using a Field Emission-

Scanning Electron Microscope (FE-SEM) (S4700, Hitachi High-Technologies 

Corporation, Japan). A thin layer of the sample was placed onto a sample mount using 

double-sided carbon tape and sputter coated with chromium using a HiPace 80 (Pfeiffer 

Vacuum, Germany) in argon atmosphere. 
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Morphology of the filtered nanoparticles obtained at 50 µm nozzle diameter and 

200 bar was analyzed using a Transmission Electron Microscopy (TEM) (H7500, Hitachi 

High-Technologies Corporation, Japan). Drops of 2% (w/w) suspension dispersed in 

water after filtration were deposited on a carbon-coated copper grid (200 mesh) and 

negatively stained with 2% uranyl acetate solution, and waited to dry before examination. 

 

3.3.6. Separation of the nanoparticles from microparticles 

 Samples (30 mg) were dispersed in 25 mL distilled water containing 0.4% (w/w) 

of polyoxyethylene sorbitan monooleate (Tween 80). Suspensions were sonicated in an 

ultrasonic water bath (3510 R-MTH, Branson Ultrasonics Corporation, Danbury, CT, 

USA) for 30 min. Then, the suspension was filtered through 0.45 μm pore size syringe 

filter. The filtrate was analyzed for the particle size and size distribution and morphology 

as described in Sections 3.3.3. and 3.3.4., respectively. 

 

3.3.7. Determination of the melting profile  

Melting profile of the obtained particles was determined using a Differential 

Scanning Calorimeter (DSC) (Pyris 1, Perkin Elmer, Waltham, Massachusetts, USA). 

The samples (5-7 mg) were placed and hermetically sealed in a stainless steel pan with an 

O-ring attached. An empty sealed pan was used to serve as a reference. The pans were 

placed in the calorimeter and equilibrated at 25 °C for 1 min. The samples were heated 

from 25 °C to 100 °C at a heating rate of 5 °C/min to observe the fusion of the particles.  
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3.3.8. Determination of the polymorphism 

The polymorphism of the obtained lipid particles was determined using 

PANalytical Empyrean Diffractometer (XRD) unit (Empyrean, PANalytical, 

Westborough, MA, USA), operated with Cu Kα radiation at a voltage of 40 kV and 

intensity of 45 mA. A mask of 20 mm and a divergence slit of 1/4 degree were used on 

the incident beam path. Before XRD analysis, the powder samples were filled in 27 mm 

diameter, 2 mm deep pockets of stainless steel holders and the surface was levelled. A 

15-position, automatic sample exchanger was used to measure the batch of samples. The 

sample holders were continuously spun at the rate of 22.5 deg/s during the measurement. 

Samples were run from 2 to 50 degrees under continuous scan at 2θ min-1 with a step size 

of 0.026, and a diffracted beam monochromator for the PIXcel detector was utilized to 

improve the signal to noise ratio. 

 

3.4. Results and discussion 

Expansion of the lipids under pressurized CO2 due to the solubility of the CO2 in 

the lipids is the key to the formation of micro- and nanoparticles using atomization of 

CO2-expanded lipid mixtures. Previously, it was shown that solid lipids expand when 

mixed with pressurized CO2, and melting point of the lipids decrease significantly in 

pressurized CO2 (Ciftci & Temelli, 2014). Therefore, it is crucial to conduct a separate 

study to determine the melting point of the lipid that will be used for particle formation 

using the atomization of CO2-expanded lipid method. Melting point of the FHSO in 

pressurized CO2 was determined (Fig. 3.2), and the obtained melting temperature of the 

FHSO in the pressurized CO2 was used as the temperature in the particle formation 
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experiments. Melting point of FHSO at atmospheric conditions was 68.5 °C; however, it 

decreased to 57 °C above 120 bar under pressurized CO2 (Fig. 3.2). Melting temperature 

of 57 °C was the lowest temperature that FHSO will melt under pressurized CO2; 

therefore, 57 °C was used for all particle formation experiments. Pressure range used in 

the particle formation experiments started from the lowest pressure (120 bar) where the 

lowest melting point of the FHSO (57 °C) was obtained (Fig. 3.2). Melting point 

depression in pressurized CO2 is important; a lower temperature will be used to keep the 

lipid and bioactive mixture in the liquid state, and lower process temperatures will enable 

us to minimize the degradation of the heat sensitive bioactives when lipid and bioactive 

are mixed to obtain bioactive-loaded lipid particles. 
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Figure 3.2. Melting point depression of fully hydrogenated soybean oil (FHSO) in 

pressurized CO2. 
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3.4.1. Effect of particle formation conditions on the particle morphology 

Figure 3.3 shows the effect of particle formation conditions (nozzle diameter and 

pressure) on the morphology of the lipid particles. Nozzle diameter and pressure was 

critical to control the morphology of the lipid particles. Hollow solid lipid particles were 

successfully obtained with 50 μm nozzle diameter at all studied pressures (120, 200, and 

300 bar). Increasing nozzle diameter affected the particle morphology negatively; 

particles lost their spherical shape and smooth surface at 75 and 100 μm nozzle diameters 

at all studied pressures. It was targeted to obtain spherical particles because spherical 

shape provides homogenous mixing during product formulation, and more controlled 

release of the bioactives (Mu & Feng, 2003). Solubility of CO2 in the molten lipid was 

the key phenomena for the particle formation by atomization of the SC-CO2-expanded 

FHSO. Upon pressurization with SC-CO2, liquid FHSO expanded due to dissolution of 

the CO2 in the lipid phase. Volumetric expansion of the lipids is a function of CO2 

solubility in the lipid phase (Jenab & Temelli, 2012), and recently Ciftci and Temelli 

(2014) reported the volumetric expansion of various solid lipids (fully hydrogenated 

canola oil, cocoa butter, coconut oil, tristearin, trilaurin, monostearin, stearic acid, lauric 

acid) in pressurized CO2.  
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Figure 3.3. Scanning electron microscopy (SEM) images showing the effect of the 

particle formation conditions on the particle morphology. 

 

Ciftci and Temelli (2014) showed that degree of the volumetric expansion of the 

solid lipids due to dissolution of the CO2 in the lipid phase depends of the fatty acid 

composition (chain length) of the lipid; it increases up to a certain level with increasing 

pressure but then reaches a plateau. They reported that fully hydrogenated canola oil, 

which is very similar to FHSO in terms of fatty acid composition (88% stearic acid) 

expands by 9.7%, reaches plateau at 122 bar, and further increase in the pressure does not 

increase the volumetric expansion further, meaning the concentration of the CO2 in the 

lipid phase does not change after 122 bar. Based on the findings of Ciftci and Temelli 

(2014), the amount of the CO2 in the expanded FHSO above 120 bar was constant, and 
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this was supported by the decrease in the melting point of the FHSO in pressurized CO2 

up to 120 bar and staying constant above 120 bar (Fig. 3.2). The proposed mechanism of 

hollow solid lipid particle formation using the atomization of the CO2-expanded lipid is 

presented in Figure 3.4. Upon atomization of the CO2-expanded lipid through the nozzle, 

small droplets of lipid and CO2 mixture were formed. Due to pressure drop, CO2 in the 

atomized liquid lipid expanded, and the atomized lipid formed a spherical denser shell. 

During CO2 expansion, cooling at the nozzle and surrounding area took place due to 

Joule-Thompson effect. The dense lipid shell formed by the expansion of CO2 solidified 

when contacted with the cold environment, and formed the hollow spherical solid lipid 

particles. Both pressure and nozzle diameter played critical role in the formation of 

spherical hollow lipid particles. At higher pressures and bigger nozzle diameters (100 

μm), the size of the atomized lipid + CO2 droplet was bigger and there was more CO2 

dissolved in the lipid droplet, and this caused a more powerful CO2 expansion that broke 

the particles. However, nozzle with 50 μm diameter formed smaller droplets of lipid and 

CO2 mixture; smaller droplets contained smaller amount of CO2; therefore, expansion of 

the CO2 was less powerful, which resulted in unbroken spherical hollow solid lipid 

particles. Pressure was critical to control the shell thickness of the particles. SEM images 

showed that the shell thickness of the lipid particles decreased with increasing pressure 

(Fig. 3.5). At higher pressure (300 bar), a bigger force was exerted onto the forming 

liquid lipid shell during CO2 expansion in all directions; therefore, the diameter of the 

lipid shell was bigger and the thickness of the liquid shell was smaller when the 

solidification took place. 
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Figure 3.4. Proposed mechanism of the hollow solid lipid particle formation using 

atomization of CO2-expanded lipid. 

 

Shell thickness determines the volume in the hollow particle, in turn loading 

capacity, and also the strength of the particles. Moreover, shell thickness is important for 

the protection of the loaded bioactive and its release properties. Thinner shells will result 

in bigger inner volume; however, the particles may be fragile. Figure 3.5 shows the SEM 

images of the selected particles that were broken to show the hollow structure. As shown 

in Figures 3.5a and 3.5b, increasing the pressure from 120 to 300 bar using the 50 μm 
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nozzle diameter decreased the shell thickness and made the particles fragile. Similarly, 

increasing the pressure from 120 to 200 bar using 75 μm nozzle diameter decreased the 

shell thickness; however, the particles were not fragile due to presence of more lipid to 

form the shell (Figs. 3.5c and 3.5d). The particles obtained with 50 μm nozzle diameter at 

200 bar were intact hollow solid lipid particles and they were not damaged during 

handling. 

 

 

Figure 3.5. Scanning electron microscopy (SEM) images of the broken hollow solid lipid 

particles. (a) 120 bar, 50 μm nozzle; (b) 300 bar, 50 μm nozzle; (c) 120 bar, 75 μm 

nozzle; (d) 200 bar, 75 μm nozzle. 

 

3.4.2. Effect of processing conditions on the particle size 

Figure 3.6 presents the size distribution of the lipid particles obtained with 

different nozzle diameters (100, 75 and 50 µm) and pressures (120, 200, and 300 bar). 

Nozzle diameters of 75 and 100 μm formed particles with similar size; whereas, 50 μm 

a	 b	

c	 d	

40 µm	5 µm	

2 µm	5 µm	
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nozzle diameter formed smaller particles at 200 and 300 bar because smaller nozzle 

diameters generated smaller lipid droplets containing smaller amount of lipid and 

compressed CO2. Size distribution of the particles obtained using nozzle diameters of 75 

and 100 μm was unimodal at 120 bar, whereas they were bimodal at 200 and 300 bar. 

 

  

Figure 3.6. Effect of the particle formation conditions on the size distribution of the 

hollow solid lipid particles. 

 

Size distribution of the particles obtained using nozzle diameters of 50 μm was 

bimodal at all pressures. It should be noted that the pieces of the broken particles may 

cause smaller particle size resulting at high pressures; therefore, it is important to 

evaluate the morphology of the particles with SEM. Figure 3.6 shows that fifty percent 
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(d50%) of the particles obtained with 100 μm at 300 bar was smaller than 28.6 nm; 

however, SEM images showed that the small size distribution was primarily due to the 

presence of the pieces of the broken particles. Based on the particle size data and 

morphology of the particles, processing conditions of 50 μm and 200 bar was found to be 

the optimum processing conditions to obtain spherical hollow lipid particles. Ten percent 

(d10%) and fifty percent of the particles (d50%) obtained with 50 μm and 200 bar were 

smaller than 35.7 nm and 278 nm, respectively. Previously, Mandžuka and Knez (2008) 

reported particle sizes of 10 to 40 µm for the tristearin particles obtained with a similar 

process, but they did not report a hollow structure for their particles. Presence of 

nanoparticles in the particles formed at 50 μm and 200 bar was further confirmed by 

separation of the nanoparticles by filtration, and the morphology of the particles 

investigated by TEM which showed the presence of spherical nanoparticles (Fig. 3.7). 

 

 

Figure 3.7. a) Size distribution of the particles formed at 50 µm nozzle diameter and 200 

bar; b) Size distribution of the nanoparticles obtained from the particles formed at 50 µm 

nozzle diameter and 200 bar through filtration using 0.45 μm syringe filter; and c) 

Transmission electron microscopy (TEM) image of the nanoparticles obtained from 

particles formed at 50 µm nozzle diameter and 200 bar through filtration using 0.45 μm 

syringe filter. 
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3.4.3. Effect of processing conditions on the polymorphism 

Polymorphism of the bioactive-loaded solid lipid particles affects the melting 

properties of the particles and release profile of the bioactives. Figure 3.8 reveals the 

effects of nozzle diameter and pressure on the polymorphism of the hollow solid particles 

obtained from FHSO. Fats can crystallize in three main polymorphic forms, namey, α, β’, 

and β. Polymorphic form α is the unstable form, β is the most stable form, and the β’ is 

the metastable form (Rousseau, Marangoni, & Jeffrey, 1998). The polymorphic forms are 

characterized by short spacings (d) obtained from XRD patterns, which is the distance 

due to lateral packing of the fatty acid chains on the triacylglycerol molecules (Ten 

Grotenhuis, Van Aken, Van Malssen, & Schenk, 1999). The short spacing at d=0.37 nm 

and d= 0.46 nm indicated that the predominant polymorphic forms of bulk FHSO were β 

and β’, respectively. The main polymorphic form in all particles changed to α (d= 0.41 

nm) with decreasing nozzle diameter and pressure. The shift from β to α form was 

observed as a main XRD peak at d=0.41 for the particles obtained with 75 and 50 µm 

nozzle diameters. Main polymorphic form of the particles obtained with 100 µm was β at 

300 bar; however, α form became more pronounced with decreasing nozzle diameter to 

50 µm. The particles obtained with 100 µm and 120 bar had a major peak for α and a 

small β peak. The nozzle diameter of 75 µm yielded a main polymorphic form of α and a 

less pronounced form of β at 200 and 300 bar; however, 120 bar yielded particles with 

only α polymorphic form. Different from nozzles with 75 and 100 µm diameter, nozzle 

with 50 µm diameter formed particles with a single polymorphic form of α at all studied 

pressures.  
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Figure 3.8. X-ray powder diffraction (XRD) patterns showing the effect of the particle 

formation conditions on the polymorphism of the hollow solid lipid particles. 

 

The more stable the crystal structure (β), the more organized the molecules 

packing within the lattice and could make expelling of the entrapped compounds out of 

the particle possible (Lawler & Dimick, 2008; Helgason et al., 2009). This kind of 

expelling is not expected for the particles obtained in this study because the particles are 

hollow, which can be an advantageous over SLN which are full solid lipid particles. The 

dense packing of the β form may also prevent the release of the loaded bioactives 

(Heurtault, Saulnier, Pech, Proust, & Benoit, 2003).  

 

3.4.4. Melting properties 

Melting properties of the lipid particles are of great importance for achieving ideal 

and controlled release of lipid micro and nanoparticles loaded with bioactives or/and 
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drugs. Figure 3.9 presents the DSC melting curves of FHSO and the lipid particles 

obtained from FHSO using different nozzle diameters and pressures. Understanding the 

melting behavior of the particles was complicated due to the presence of different 

polymorphic forms and particle size in the same sample. 

 

 

Figure 3.9. Differential scanning calorimetry (DSC) curves showing the effect of the 

particle formation conditions on the melting profile of the hollow solid lipid particles. 

 

Lipid particles presented a different melting profile compared to the FHSO. 

FHSO exhibited a single endothermic peak, whereas lipid particles exhibited a stepwise 

melting and a broader melting range, and also melting temperature of the particles 

decreased compared to the FHSO. Even though the fatty acid composition of the lipid 

particles did not change, they had two major melting peaks as opposed to single melting 

peak in FHSO. The differences in the melting profiles of the particles obtained with 
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different processing conditions were attributed to the particle size differences and the 

presence of different polymorphic forms. The main reason for the lower melting point of 

the particles was attributed to particle size. From thermodynamics point of view, melting 

temperature of colloidal substances decreases with decreasing particle size (Defay, 

Prigogine, Bellemans, & Everett, 1966). This behavior has been observed for both 

inorganic (Lai, Guo, Petrova, Ramanath, & Allen, 1996) and organic nanoparticles 

(Westesen et al., 1997). Bunjes et al. (2000) reported that the melting behavior of 

triacylglycerol nanoparticles strongly depended on particle size irrespective of the matrix 

material. Lipid particles obtained in this study had a broader melting range and lower 

onset temperatures compared to the single sharp melting peak of FHSO. Melting point 

depression of the triacylglycerol nanoparticles compared to their bulk phase has also been 

explained using the Gibbs-Thompson equation previously (Siekmann & Westesen, 1994). 

The broading in the melting range and shift in the onset temperature to lower 

temperatures were due to the small size of the particles. In a good agreement with our 

findings, Bunjes et al. (2000) reported that the coarser dispersions of monoacid 

triacylglycerols melt in a single transition at a slightly lower temperature that of the bulk 

one; however, the melting range broadens and shifts to lower temperatures with 

decreasing particle size. They also reported that the melting of both monoacid and 

complex very fine triacylglycerols is stepwise rather than a continuous melting. Particles 

obtained with 75 and 100 µm nozzle diameters at all pressures had similar melting 

profiles except the one obtained with 100 µm and 300 bar; it had a melting curve similar 

to that of FHSO due to the main polymorphic form of β and presence of very weak α 

form. Particles obtained with 75 and 100 µm nozzle had three melting peaks (53 °C, 
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63 °C, and 67 °C); whereas particles obtained with 50 µm nozzle exhibited two melting 

peaks (53 °C and 63 °C). The presence of the peak at 53 °C became more pronounced 

with increasing intensity of the α peak on the XRD graph, and the peak at 63 °C was 

attributed to the β form. The α form was less pronounced in the particles obtained with 

100 µm and 300 bar; therefore, their melting peak at 63 °C was smaller. Similarly, 

particles obtained with 75 µm nozzle and 120 bar had a more intense α peak (Fig. 3.8); 

therefore, it had a bigger melting peak at 63 °C (Fig. 3.9). All particles had a lower 

melting point peak at 53 °C, which was not available in the FHSO regardless the nozzle 

diameter, pressure, and the XRD peaks. The XRD patterns showed that the particles 

obtained with 50 µm had a single α peak; however, they exhibited two DSC melting 

peaks. The melting peak of the particles from 50 µm nozzle diameter at 63 °C was due to 

the α form, whereas the lower melting point melting peaks at 53 °C was attributed to the 

small size of the particles from all nozzle diameters.  

 

3.5. Conclusions 

Hollow solid lipid micro- and nanoparticles were successfully formed from FHSO 

by the atomization of the SC-CO2-expanded molten FHSO. Hollow solid lipid 

microparticles were obtained using 75 and 100 µm nozzle diameters between the pressure 

range of 120 and 300 bar; whereas, a mixture of micro- and nanoparticles were obtained 

using 50 µm nozzle diameter. Processing conditions of 50 µm and 200 bar was found to 

be the optimum conditions to yield intact smaller hollow solid lipid particles. The size of 

the 50% of the particles obtained with 50 µm nozzle diameter was smaller than 278 nm. 

Increasing nozzle diameter and pressure affected the particle morphology and size 
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negatively. Shell thickness of the particles decreased with increasing pressure at the same 

nozzle diameter. Decreasing the nozzle diameter changed the polymorphism of the 

particles from β to α. Particles obtained with 50 µm nozzle diameter had only α form. 

Melting behavior of the FHSO particles strongly depended on the particle size; 

decreasing particle size broadened the DSC melting range and shifted the melting range 

to lower temperatures. Hollow solid lipid micro- and nanoparticles are promising carriers 

for bioactives that can be used as food ingredients to develop health and wellness 

promoting foods and beverages. They are more advantageous over SLN because the 

hollow particles have higher loading capacity, and the dry free-flowing powder form 

makes it easy to use, transport, and store. 
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CHAPTER 4. DEVELOPMENT OF ANTIBACTERIAL FREE-FLOWING 

PEPPERMINT ESSENTIAL OIL-LOADED HOLLOW SOLID LIPID MICRO- 

AND NANOPARTICLES USING SUPERCRTIAL CARBON DIOXIDE* 

 

4.1. Abstract 

The main objective of this study was to overcome the issues related to the 

volatility and strong smell of essential oils that limit their utilization as “natural” 

antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid 

micro- and nanoparticles were formed using a novel “green” method based on 

atomization of CO2-expanded lipid mixture. The highest essential oil loading efficiency 

(47.5%) was achieved at 50% initial essential oil concentration at 200 bar expansion 

pressure and 50 μm nozzle diameter. After 4 weeks of storage, 61.2%, 42.5%, 0.2%, and 

2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, 

and 50% (v/v) initial essential oil concentrations, respectively. Moreover, essential oil-

loaded particles obtained at 50% initial essential oil concentration caused 3 log decrease 

in the growth of Pseudomonas fluorescens, which was significant higher than only 2 log 

decrease at free essential oil (p<0.05). This innovative simple and clean process can form 

spherical hollow micro- and nanoparticles loaded with essential oil that can be used as 

food grade antibacterials.  

Keywords: Essential oil; Microparticle; Nanoparticle; Lipid; Supercritical carbon 

dioxide; Encapsulation. 
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4.2. Introduction 

In recent years, there is a growing demand for foods prepared using “natural” 

antimicrobials and antioxidants. However, many of those “natural” compounds that can 

be used as antimicrobials and antioxidants are lipophilic, meaning water-insoluble, and 

degrade easily during storage when exposed to oxygen and light. Therefore, addition of 

the lipophilic compounds into foods and beverages has been a major challenge in the 

food industry and remained as a barrier in front of the utilization of many “natural” 

compounds to be used as antimicrobials and antioxidants. The need for efficient, simple, 

and clean methods to incorporate lipophilic bioactive compounds in food systems has 

urged the development of new delivery systems. Lipids could play a key role in the 

delivery systems due to their physiological composition well tolerated by the human body 

(Davis, 2004; Heurtault et al., 2003; Severino et al., 2012). Among lipid based carrier 

systems, solid lipid nanoparticles (SLN) have advantages over other colloidal carriers 

such as liposomes and nanoemulsions regarding the better stability and protection of the 

incorporated bioactive compounds (Müller et al., 2002; Scalia et al., 2015). Nevertheless, 

as mentioned in Chapter 3, current SLN production methods are either multi-steps, or 

some of them involve organic solvents, or have severe processing conditions damaging 

sensitive bioactives (Sampaio de Sousa et al., 2007). Moreover, SLN have low loading 

capacity, and may expel the loaded bioactive during crystallization and storage due to 

solid lipid core (Mukherjee et al., 2009). 

 As presented in Chapter 3, formation of free-flowing hollow solid lipid micro- 

and nanoparticles using SC-CO2 can overcome the limitations of the current SLN. In that 

process, SC-CO2 was used as an expander and atomizer to form hollow solid lipid micro- 
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and nanoparticles. The process is also able to decrease the melting point of the solid 

lipids, which allows us to decrease the energy consumption and also protect the heat 

sensitive compounds during processing. Single step process without the use of any 

organic solvent, need for moderate pressurization, and need for low amount of CO2 make 

it feasible to scale up. 

In this study, the process developed in Chapter 3 was used to load the hollow 

solid lipid micro- and nanoparticles with a lipophilic bioactive oil, namely essential oil, to 

develop food grade antibacterials, and also to test the performance of the hollow solid 

lipid particles as liquid oil carrier. Peppermint essential oil is a “natural” antimicrobial, 

but its high volatility, vulnerability to heat, light and oxygen, and strong smell make it 

difficult to use as antimicrobials in foods (Varona et al., 2010). In this work, essential oil 

was loaded into the hollow solid lipid micro- and nanoparticles using the developed 

hollow solid lipid micro- and nanoparticle formation process to overcome the above-

mentioned limitations associated with the use of essential oils in foods. 

Previously, Varona et al. (2010) formed lavandin essential oil with biopolymers 

by a similar process called Particles from Gas Saturated Solutions (PGSS) and PGSS-

drying processes, respectively, and found out that encapsulation efficiency of lavandin oil 

was between 14-66% in polyethylene glycol (PEG) microcapsules. Varona et al. (2013) 

further explored the antimicrobial activity of the same lavandin essential oil formulations 

against pathogenic foodborne bacteria. They showed that lavandin oil’s antibacterial 

activity could be enhanced by encapsulation, and encapsulation might present an 

opportunity to facilitate the action of essential oil as antimicrobial agent penetrating 

inside the outer membrane.  
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The main objective of this study was to load the hollow solid lipid micro- and 

nanoparticles with essential oil to develop food grade free-flowing powder antibacterials 

using the process developed in Chapter 3. The specific objectives were to: i) load 

peppermint essential oil into the hollow solid lipid micro- and nanoparticles made of 

FHSO, ii) determine the essential oil loading efficiency, particle morphology, particle 

size and size distribution, and melting properties, iii) determine the release profile of the 

loaded essential oil, iv) investigate the storage stability of the essential oil-loaded 

particles in terms of particle morphology and size, and v) evaluate the antibacterial 

activity of the essential oil-loaded hollow particles on Pseudomonas fluorescens. 

 

4.3. Materials and methods 

4.3.1. Materials 

FHSO was kindly provided by ConAgra Foods Inc. (Omaha, NE, USA). CO2 

(99.99% purity) was purchased from Matheson (Lincoln, NE, USA). Peppermint 

essential oil (100% purity) was purchased from Nature’s (Streetsboro, OH, USA). 

Pseudomonas fluorescens was obtained from American Type Culture Collection 

(ATCC®), Manassas, VA. Tryptone Soya Broth (TSB) and Tryptone Soy agar (TSA) 

were purchased from Becton, Dickinson and Company (Franklin Lakes, NJ, USA). 

 

4.3.2. Production of the essential oil-loaded hollow solid lipid micro- and 

nanoparticles using supercritical carbon dioxide  

Essential oil-loaded hollow solid lipid micro- and nanoparticles were produced 

using particle formation system described in Section 3.3.3. Temperature of the expansion 
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vessel was maintained at 57 °C which is the melting point of FHSO at 120 bar CO2 

pressure, and at this temperature the mixture of the FHSO and the essential oil is in the 

liquid state. Temperature of the depressurization valve and nozzle was set to 20 °C above 

the melting point of the FHSO under atmospheric conditions. Molten FHSO was placed 

into the expansion vessel and then predetermined volumes of essential oil was injected 

into the expansion vessel through the sampling port to obtain initial essential oil 

concentrations of 5, 7, 10, 20, and 50% (v/v) in the FHSO. For each run, the total volume 

of the FHSO and essential oil mixture in the vessel was kept constant at 20 mL; therefore, 

the volumes of the essential oil injected into the vessel were 1, 1.4, 2, 4, and 10 mL for 

initial essential oil concentrations of 5, 7, 10, 20 and 50% (v/v), respectively. The 

sampling port was closed immediately after injecting the essential oil to prevent 

evaporation of the essential oil.  Then, the expansion vessel was pressurized with CO2 at 

200 bar and the mixture in the vessel was mixed at 1000 rpm using the magnetic drive. 

Upon mixing, the lipid mixture expanded due to dissolution of the SC-CO2 in the lipid 

mixture. Then, the magnetic drive was turned off and the expanded lipid mixture was 

stabilized for 10 min. The pressure of the syringe pump was set to 10 bar above the 

pressure of the expansion vessel, and the CO2 inlet valve was opened, then 

depressurization valve was opened and the mixture was atomized through a 50 µm 

diameter nozzle. Upon depressurization, particles were formed and collected in the 

sample collection vessel. Particle formation conditions (200 bar expansion pressure and 

50 µm nozzle diameter) were based on the optimized conditions that yielded smallest 

(d50% = 278 nm) hollow solid lipid micro- and nanoparticles in Chapter 3. 
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4.3.3. Determination of the essential oil loading capacity and efficiency 

Essential oil-loaded lipid particles (1 g) were spread on a light aluminum dish as a 

thin layer and heated at 150 °C for 30 min to evaporate the essential oil. Essential oil 

loading capacity (LC) and loading efficiency (LE) were calculated according to Eq. (4.1) 

and Eq. (4.2), respectively: 

 

𝐿𝐶 (%) =
(𝑚𝑖−𝑚𝑓)

𝑚𝑓
×100            (4.1) 

 

where mi is the initial mass of the sample, and mf is the mass of the sample after heating. 

 

𝐿𝐸 (%) =
𝐿𝐶𝑒

𝐿𝐶𝑡
 ×100            (4.2) 

 

where LE is the loading efficiency, LCe is the experimental loading capacity obtained 

from Eq. (4.1), and LCt is the theoretical loading capacity, which is the initial weight 

concentration of the essential oil in the lipid mixture used for particle formation. Weight 

concentrations were calculated by weighing the amounts of the FHSO and the essential 

oil used for each particle formation. 

 

4.3.4. Determination of the particle size and size distribution 

Particle size and size distribution of the essential oil-loaded lipid particles were 

measured using a laser diffraction particle size analyzer (Mastersizer 3000, Malvern 

Instruments Ltd., Worcestershire, UK) as described in Section 3.3.4. 
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4.3.5. Scanning Electron Microscopy analysis 

Morphology of the particles was analyzed using a Field Emission-Scanning 

Electron Microscope (FE-SEM) (S4700, Hitachi High-Technologies Corporation, Japan) 

as described in Section 3.3.5.  

 

4.3.6. Transmission Electron Microscopy analysis 

Hollow structure of the nanoparticles was examined using a Transmission 

Electron Microscope (TEM) (H7500, Hitachi High-Technologies Corporation, Japan) as 

described in Section 3.3.5. 

 

4.3.7. Confocal fluorescence microscopy analysis 

 Essential oil-loaded lipid particles obtained at 10, 20 and 50% (v/v) initial 

essential oil concentration were analyzed using a confocal fluorescence microscope (A1, 

Nikon Instruments Inc., Japan) to investigate the loading of the essential oil in the hollow 

solid lipid micro- and nanoparticles since peppermint essential oil exhibits visible 

florescence. Essential oil-loaded lipid particles were dispersed in distilled water without 

the addition of Tween 80. The dispersions were then vortexed and sonicated using an 

ultrasonic water bath (3510 R-MTH, Branson Ultrasonics Corporation, Danbury, CT, 

USA) for 30 min before each analysis. The confocal images were recorded by a 

fluorescence microscope (90i, Nikon Instruments Inc., Japan) using z series scanning at 

each distance of 0.5 µm. Analyses were conducted at the excitation wavelengths of 405 

nm and 488 nm and emission wavelengths of 450 nm and 525 nm. 
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4.3.8. Determination of the melting profile 

Melting profile of the essential oil-loaded lipid particles was determined using a 

differential scanning calorimeter (DSC) (Pyris 1, Perkin Elmer, Waltham, Massachusetts, 

USA) as described in Section 3.3.7. 

 

4.3.9. Release profile of the essential oil loaded in the hollow solid lipid micro- and 

nanoparticles  

 Four grams of essential oil-loaded particles with 5, 10, 20 and 50% (v/v) initial 

essential oil concentration were stored in closed containers at room temperature (22 °C) 

for 6 weeks and the amount of released essential oil was determined from the weight 

difference weekly over 6 weeks. 

 

4.3.10. Storage stability of the essential oil-loaded hollow solid lipid micro- and 

nanoparticles 

 The storage stability of the essential oil-loaded hollow solid lipid micro- and 

nanoparticles (5, 10, 20 and 50%, v/v, initial essential oil concentration) was investigated 

in terms of changes in particle size and size distribution and particle morphology over 6 

weeks of storage at room temperature (22 °C) in closed containers. Samples were 

analyzed every week with particle size analyzer and FE-SEM as described in Sections 

3.3.4 and 3.3.5, respectively.  
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4.3.11. Antibacterial assays 

4.3.11.1. Bacterial strain and culture media 

The strain studied in evaluating the antibacterial activity of the essential oil-

loaded hollow solid lipid micro- and nanoparticles was a Gram-negative bacterium, 

Pseudomonas fluorescens. The culture media used for the strain was Tryptone Soya 

Broth (TSB). 

 

4.3.11.2. Plate count assay 

 The plate count assay was performed to determine the antibacterial activity of free 

peppermint essential oil and peppermint essential oil loaded into the hollow solid lipid 

micro- and nanoparticles. Briefly, a predetermined quantity of free essential oil (111 µL), 

particles obtained at 50% (v/v) initial essential oil concentration (0.5 g) to achieve 

essential oil concentration of 10 mg/mL or empty unloaded particles alone (0.2 g) was 

dissolved in 10 mL bacteria suspension (106 CFU/mL) in TSB medium and incubated at 

25 °C during 24 h with a gentle agitation (100 rpm). Control was performed with only 

bacteria suspension in TSB medium. After incubation, appropriate serial dilutions of each 

culture in physiologic solution were conducted and spread on the surface of the solidified 

agar plates (TSA medium). Microorganism colonies were counted after 24 h of 

incubation at 25 °C to calculate the percentage of log inhibition of each system according 

to the following equation (Pettit et al., 2005), where C is the bacterial colonies counted 

for the negative control (bacteria free growth without addition of essential oil) and 

samples (bacteria growth in the presence of free or loaded essential oil). 
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% 𝑙𝑜𝑔 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 
𝐶 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)− 𝐶 (𝑠𝑎𝑚𝑝𝑙𝑒)

𝐶 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
 ×100                                             (4.3)  

 

4.3.12. Statistical analysis 

 Data are presented as mean ± standard deviation based on triplicate experiments 

and analyses. Statistical analysis of the data was performed by using SAS (version 9.3) 

software package (SAS Institute Inc., NC, USA) at 95% confidence interval.  

 

4.4. Results and discussion 

4.4.1. Essential oil loading efficiency 

Figure 4.1 presents the essential oil loading efficiency obtained at different initial 

essential oil concentrations. There was no significant difference between the loading 

efficiencies at 5, 7, 10, and 20% initial essential oil concentrations (p>0.05); however, it 

was significantly higher at 50% initial essential oil concentration (p<0.05). The essential 

oil loading efficiency increased from 39.0 to 47.5% when the initial essential oil 

concentration increased from 20 to 50%. During particle formation, the 

amount of essential oil available for loading is lower than the initial amount of essential 

oil introduced into the expansion vessel. Two phases were formed in the expansion 

vessel; the bottom phase was CO2-expanded liquid phase that consisted of mixture of 

FHSO, essential oil, and CO2, and the upper gas phase consisted of SC-CO2. Upon 

mixing, the essential oil was equilibrated between the two phases by diffusing into the 

upper SC-CO2 phase. Because the amount of total lipid mixture was kept constant in each 
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run, the amount of the SC-CO2 in the upper phase was constant. At higher essential oil 

concentration, there was more essential oil in the liquid phase after the upper phase was 

saturated by the essential oil; therefore, there was more essential oil in the CO2-expanded 

lipid phase. As a result, more essential oil was loaded into the lipid particles during 

depressurization of the CO2-expanded lipid mixture. A similar phenomenon was reported 

for enzymatic synthesis of fatty acid methyl esters from methanol and corn oil (Ciftci & 

Temelli, 2011). It was reported that the substrate molar ratio of methanol to oil changed 

in the reaction mixture due to diffusion of methanol into the upper SC-CO2 phase which 

resulted in less methanol in the CO2-expanded liquid phase where the reaction took place 

(Ciftci & Temelli, 2011). These results suggested that the amount of essential oil loaded 

into the particles will be different than the initial concentration depending on the particle 

formation conditions, namely, pressure, temperature, ratio of lipid mixture to the SC-CO2 

phase, and expansion time. 

 

Figure 4.1. Loading efficiency at varying initial peppermint essential oil concentrations. 
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4.4.2. Particle morphology 

Figure 4.2 shows the morphology of the essential oil-loaded lipid particles 

obtained at different initial essential oil concentrations. In Chapter 3, it has been found 

that increasing nozzle diameter affected the particle morphology negatively; particles lost 

their spherical shape and smooth surface at bigger nozzle diameters (75 and 100 μm) at 

all studied pressures (120, 200 and 300 bar). Essential oil-loaded spherical particles were 

successfully generated, which could provide homogenous mixing during formulation, and 

achieve more controlled release of the loaded essential oil (Mu & Feng, 2003). As 

explained in Chapter 3, the CO2-expanded lipid was atomized through the nozzle, and 

formed small liquid lipid droplets containing pressurized CO2. Upon atomization, the 

compressed CO2 in the lipid droplets expanded and formed a liquid lipid bubble. At the 

same time, the temperature decreased below the solidification temperature of the solid 

lipid due to Joule-Thompson effect and the lipid bubble solidified and formed a spherical 

hollow solid lipid particle. During solidification, the FHSO encapsulated the liquid 

essential oil in the inner cavity. 
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Figure 4.2. (a)-(e) Scanning electron microscopy (SEM) images of the essential oil 

loaded hollow solid lipid microparticles obtained at varying initial essential oil 

concentrations (v/v): (a) 5%, (b) 7%, (c) 10%, (d) 20%, and (e) 50%; (f) Transmission 

electron microscopy (TEM) image of the essential oil-loaded lipid nanoparticles obtained 

at 50% initial essential oil concentration after filtration using 0.45 μm filter. 

  

 SEM images shown in Figure 4.2 indicated that the initial essential oil 

concentration affected the morphology of the essential oil-loaded lipid particles. At lower 

initial essential oil concentrations (5-7%), the essential oil-loaded lipid particles had a 

smooth surface; however, increasing initial essential oil concentration to 20-50% resulted 

in formation of particles with wrinkled-like surface. During particle formation, higher 

amount of essential oil evaporated from the lipid bubble due to high volatility and 

therefore particles had an irregular surface during sudden solidification. The 

agglomeration of the lipid particles became more pronounced with increasing initial 

essential oil concentration, suggesting that there was essential oil on the surface of the 

particles which made the final product sticky. A similar agglomeration was observed by 

Varona et al. (2010) for the production of lavandin essential oil-loaded biopolymer 
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polyethylene glycol (PEG) particularly with increasing the oil to PEG ratio from 0.25 to 

0.37.  

Figure 4.3 presents the cross-sectional images of the essential oil-loaded hollow 

solid lipid particles obtained by z series scanning by confocal fluorescence microscopy. 

Figure 4.3 reveals that the peppermint essential oil, shown in dark blue color, was loaded 

mainly in the cavity and some in the shell of the particles. When a laser z series scanning 

was applied, the fluorescence gradually appeared and became more predominant in the 

cavity, as well as in the particle shell. Presence of the essential oil in the solid lipid shell 

was due to entrapment of the essential oil in the shell during sudden solidification of the 

lipid mixture and also release of the essential oil through the solid lipid shell after particle 

formation for some particles.  

 

 
Figure 4.3. Confocal fluorescence microscopy z-series scanning images of the essential 

oil-loaded hollow solid lipid micro- and nanoparticles obtained at varying initial essential 

oil concentrations (v/v): (a) 10%, (b) 20%, and (c) 50%. 

 

4.4.3. Particle size and size distribution 

Particles obtained at all initial essential oil concentrations exhibited a bimodal 

size distribution (Fig. 4.4). Powder solid lipid particles consisted of both nanoparticles 



97 
 

 

and microparticles. The smallest particles were obtained at 5% initial essential oil 

concentration (d10%= 0.0809 µm, d50%= 6.06 µm, and d90%= 13.1 µm). Ten percent (d10%), 

fifty percent (d50%) and ninety percent (d90%) of the particles formed at 50% initial 

essential oil concentration were smaller than 0.0811 µm, 7.24 µm, and 18.3 µm, 

respectively. During particle formation, essential oil exerted pressure from inside of the 

liquid lipid bubble in addition to CO2 and expanded the bubble. At lower essential oil 

concentration, there was lower force acting from inside of the lipid bubble which resulted 

in smaller particles.  

 

 
Figure 4.4. Particle size and size distribution of the essential oil-loaded hollow solid lipid 

micro- and nanoparticles obtained at varying initial essential oil concentrations: (a) 5%, 

(b) 7%, (c) 10%, (d) 20%, and (e) 50%. 

 

The particle size and size distribution were similar among the particles obtained at 

all initial essential oil concentrations; however, the size of the essential oil-loaded lipid 
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particles increased compared to empty particles (d10%= 0.0357 µm, d50%= 0.278 µm, 

d90%= 11.2 µm). It should be noted that the particle size results may be affected by the 

agglomeration of the particles; therefore, it must be compared with the SEM analyses. 

When SEM images of the empty and loaded particles were compared, it was observed 

that the particles agglomerated due to the presence of smaller amounts of essential oil on 

the particle surface which made the particles sticky (Fig. 4.5). 

 

 
Figure 4.5. Scanning electron microscopy (SEM) images of the empty and essential oil-

loaded hollow solid lipid micro- and nanoparticles obtained at varying initial essential oil 

concentrations (v/v): (a) 0, (b) 5%, (c) 7%, (d) 10%, (e) 20%, and (f) 50%. 

 

Previously, Leimann, Gonçalves, Machado, and Bolzan (2009) reported that when 

the essential oil volume fraction increased from 3.4 to 7.4%, the size distribution tended 

to be bimodal, particle diameter increased, and particle size distribution became broader 

during microencapsulation of lemongrass essential oil by simple coacervation. Similarly, 

Varona et al. (2010) reported that the mean particle size (d50%) of the lavandin oil-loaded 
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polymer obtained with PGSS increased with increasing encapsulated lavandin oil content 

(d10% = 10 µm, d90%= 500 µm). In another study, encapsulation of essential oil using 

PGSS generated larger garlic essential oil-loaded PEG 6000 particles with a particle size 

ranging from 71 to 206 µm (Gitin et al., 2011). However, those studies did not report a 

hollow structure, and the particle sizes were only in the micron range. 

 

4.4.4. Melting properties 

Melting behavior of the essential oil-loaded solid lipid particles plays an 

important role in the storage and release properties of the loaded essential oil. Figure 4.6 

presents the DSC melting curves of the hollow solid lipid particles loaded with 

peppermint essential oil. The original FHSO melted between 69.4 °C and 73.1 °C with a 

single endothermic melting peak at 71.7 °C. Even though the fatty acid composition of 

the hollow solid lipid particles obtained from FHSO and the original FHSO is the same, 

the major melting peak of the lipid particles obtained at 5, 7, 10, 20 and 50% initial 

essential oil concentrations gradually shifted to relatively lower onset melting 

temperatures compared to the original FHSO, and this trend became more pronounced 

when initial essential oil concentration was increased to 50%. The major melting peak of 

the particles with 5% initial essential oil concentration was 70 °C, whereas it was 65 °C 

for the ones with 50% initial essential oil concentration. In Chapter 3, it was shown that 

the presence of lower melting peaks at 53 °C for the empty hollow solid lipid particles 

was due to presence of nanoparticles; however, no pronounced melting peak was 

observed at 53 °C at the initial essential oil concentrations above 7% in this study. This 
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was attributed to the agglomeration of the particles at increased initial essential oil 

concentrations. 

 

 
Figure 4.6. Differential scanning calorimetry (DSC) melting curves of the essential oil-

loaded hollow solid lipid micro- and nanoparticles obtained at varying initial essential oil 

concentrations. 

 

4.4.5. Release profile of the essential oil 

 Release profile of the essential oil from the lipid particles during storage is 

presented in Figure 4.7. The results indicated that the release of the loaded essential oil 

varied with its initial concentration used for particle formation. Although the lipid 

particles obtained at 5, 10 and 20% initial essential oil concentration had comparable 

essential oil loading efficiencies, they exhibited different release profiles during storage. 



101 
 

 

 

Figure 4.7. Release profile of the essential oil from the hollow solid lipid micro- and 

nanoparticles during 6 weeks of storage at room temperature (22 °C). 

 

 Particles obtained at 5 and 10% initial essential oil concentration exhibited higher 

release of the loaded essential oil than that of the lipid particles obtained at 20 and 50% 

initial essential oil concentration. The amount of essential oil released at 5, 10, 20 and 

50% initial essential oil concentration after 1 week of storage was 36.5, 20.9, 0.7, and 

1.6%, respectively. With increasing storage time, the amount of released essential oil 

increased for the lipid particles obtained at 5 and 10% initial essential oil concentration, 

whereas stayed almost constant for the particles obtained at 20 and 50% initial essential 

oil concentration. After 4 weeks of storage, the released essential oil in lipid particles at 

5, 10, 20 and 50% initial essential oil concentration reached 61.2, 42.5, 0.2, and 2.0%, 

respectively, and then stayed constant until week 6. Lower release from the particles 

obtained at higher initial essential oil concentrations was attributed to the stronger shell 

of the lipid particles obtained at high initial essential oil concentrations. During particle 

formation, there was more essential oil in the lipid mixture at higher initial essential oil 
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concentrations which formed a viscous lipid mixture and in turn formed a stronger lipid 

shell consisted of FHSO and essential oil compared to particles obtained at lower initial 

essential oil concentrations. Presence of more essential oil in the lipid shell, observed by 

confocal fluorescence microscopy, but no release of the essential oil from those particles 

confirmed this finding. Unchanged morphology of the particles obtained at 20 and 50% 

initial essential oil concentration during storage also showed that there was no release of 

the essential oil from those particles at the studied storage conditions (Fig. 4.8). The 

study of Varona et al. (2010) also suggested the amount of released essential oil mainly 

related to the initial amount of essential oil in the initial emulsion and the amount of oil in 

the final product where lavandin essential oil was encapsulated in starch in their study. 

However, it should be noted that the release profile does not only depend on the initial 

concentration of the loaded compound but also the encapsulation matrix as observed in 

this study. In another study, the release of the fragrances from a polymer matrix was 

dominated by the interaction between the fragrance and polymer matrix rather than vapor 

pressure and boiling point of the fragrance (Sansukcharearnpon, Wanichwecharungruang, 

Leepipatpaiboon, Kerdcharoen, & Arayachukeat, 2010).  

 We also tested the release of the essential oil from the particles obtained at 50% 

initial essential oil concentration stored at 25 °C after 24 h, which was the condition used 

for the further determination of antibacterial effect against Pseudomonas fluorescens. 

There was 2.77% essential oil released and was higher than that of the particles stored at 

room temperature (22 °C) releasing only 2.0% after 4 weeks (Fig. 4.7), which was due to 

the difference in storage temperature; relatively higher temperature prompted the release. 
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Figure 4.8. Scanning electron microscopy (SEM) images of the essential oil-loaded 

hollow solid lipid micro- and nanoparticles during 4 weeks of storage at room    

temperature (22 °C). 

 

4.4.6. Storage stability of the essential oil-loaded hollow solid lipid micro- and 

nanoparticles 

Storage stability is an important parameter that must be studied for such products 

intended to be used in food preparations that will be stored. Change in the morphology of 

the particles loaded with essential oil is one of the most important studies that needs to be 

conducted. Integrity of the particles is needed to keep the essential oil in the lipid 

particles. Change in the morphology of the particles will also give information about the 

release properties of the loaded essential oil. Figure 4.8 presents the change in the 

morphology of the essential oil-loaded lipid particles over 4 weeks of storage at room 
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conditions. Morphology of the particles changed at 5% and 10% initial essential oil 

concentration due to release of the loaded essential oil through the solid lipid shell. 

Particles with 5 and 10% initial essential oil concentration lost their smooth surface but 

the particles preserved their spherical shape. The flaky surface structure was due to the 

evaporation of the essential oil through the solid lipid shell. Even though no major 

changes in the morphology of the particles obtained at 20 and 50% initial essential oil 

concentration were observed during storage, the change in the particles with 20% initial 

essential oil concentration was more pronounced compared to that of 50%. This was due 

to very low release of the loaded essential oil, which was also supported by the very low 

release of the essential oil from these particles shown in Figure 4.7. Even though 

morphology of the individual particle is important to understand the storage stability of 

the particles in terms of particle morphology, it is also important to understand the 

behavior of bulk particles. Figure 4.9 presents that the particles that exhibited change in 

the surface morphology during storage tended to stick to each other and form non-

spherical bigger agglomerates. During storage, essential oil released from the particles 

and formed a sticky surface; therefore, particles agglomerated. However, even though an 

agglomeration was observed for the particles obtained at 50% initial essential oil 

concentration, those particles stayed intact and spherical due to very low release of the 

essential oil. 
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Figure 4.9. Scanning electron microscopy (SEM) images of the essential oil-loaded 

hollow solid lipid micro- and nanoparticles in the third week of the storage at room 

temperature (22 °C): (a) 5%, (b) 10%, (c) 20%, and (d) 50%. 

  

Change in the morphology of the essential oil-loaded lipid particles was also 

studied at refrigeration condition, which is another storage temperature for food products 

in addition to room temperature. It was found that the change in the morphology was 

greatly affected by the storage temperature. Particles stored at refrigeration temperature 

(4 °C) did not exhibit the morphological changes observed at room temperature (Fig. 

4.10). The surface of the particles obtained at 5% initial essential oil concentration 

became flaky at room temperature, whereas there was no change in the same particles at 

refrigeration temperature because of very low release of the essential at low temperature 

due to lower evaporation of the essential oil. 

 



106 
 

 

 

Figure 4.10. Scanning electron microscopy (SEM) images of the morphology of the 

essential oil-loaded hollow solid lipid micro- and nanoparticles stored at 4 °C: (a) 

particles obtained at 5% initial essential oil concentration stored at 4 °C for 2 months, and 

(b) particles obtained at 20% initial essential oil concentration stored at 4 °C for 2 

months. 

 

Storage stability was also investigated in terms of particle size. Figure 4.11 

presents the change in the particle size of the essential oil-loaded particles during storage 

at room temperature. Particle size increased after 1 week of storage for all particles due to 

agglomeration caused by the released essential oil. The agglomeration was more 

pronounced after first week due to more released essential oil. The mean particles size 

increase during the 6 weeks of storage was from 5.9 to 37.5 µm, 6.0 to 37.1 µm, 7.8 to 

32.3 µm, and 6.7 to 32.1 µm for essential oil-loaded lipid particles obtained at 5, 10, 20 

and 50% initial essential oil concentration, respectively. This agglomeration was also 

observed by SEM imaging as mentioned before (Fig. 4.9). It should be noted that the 

particle size analysis and SEM analysis should be carried out together to understand if the 

differences in the size are due to agglomeration or broken pieces of the particles. The 

changes in particle morphology and size could help to explain release profile of the 

loaded essential oil. The release of the loaded essential oil not only depends on the shell 
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strength and the amount of essential oil trapped in the particle shell, but also on the 

particle size; smaller particles have higher surface-to-volume ratio which could result in a 

greater release of the essential oil (Pedro, Santo, Silva, Detoni, & Albuquerque, 2013). 

The mean particles size of essential oil-loaded lipid particles was 10.3 µm, 16.4 µm, 22.6 

µm and 25.9 µm at 5, 10, 20 and 50% initial essential oil concentration after the first 

week of storage, respectively. Initial essential oil concentration of 5% produced the 

smallest particles, whereas 20 and 50% produced the largest particles, and 10% was in 

between, suggesting that the release of essential oil was easier from the particles with 5 

and 10% initial essential oil concentrations, which agreed with the release profile results. 

Similar agglomeration was observed by Hill, Gomes, and Taylor (2013) for their essential 

oil-𝛽-cyclodextrin complexes. In another study, this agglomeration was attributed to the 

binding of oil together with spheres via capillary forces (Wendt, Brandin, Kilzer, 

Weidner, & Peterman, 2007). 
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Figure 4.11. Mean particle size of the essential oil-loaded hollow solid lipid micro- and 

nanoparticles stored for 6 weeks at room temperature (22 °C). 

 

4.4.7. Antibacterial effect of the essential oil in lipid particles on Pseudomonas 

fluorescens 

The antibacterial activity of the essential oil in both lipid particles obtained at 

50% initial essential oil concentration and free formulation tested against Gram-negative 

strain Pseudomonas fluorescens is presented in Fig. 4.12. It is more difficult to treat 

Gram-negative bacteria than Gram-positive bacteria due to the presence of an outer 

membrane, porin channels, antibiotics resistance, and both exotoxins and endotoxins. 

Therefore, Pseudomonas fluorescens, one of the major food spoilage Gram-negative 

bacteria, was selected in this study. The concentration of the essential oil in both loaded 

and free form was set at 10 mg/mL. This concentration was chosen to have sensitivity to 

detect differences of antibacterial activity among the samples, along with the fact that 

higher concentrations of essential oil lead to strong inhibition effect, and therefore, the 
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same result could be obtained with all formulations studied. Pseudomonas fluorescens 

tested in this study demonstrated some degrees of sensitivity of free and loaded essential 

oil. Both free essential oil and loaded essential oil in lipid particles exhibited interesting 

antibacterial activity against Pseudomonas fluorescens after 24 h of incubation in TSB 

medium at 25 °C. Moreover, loading of the essential oil in the hollow solid lipid micro- 

and nanoparticles significantly improved the efficiency of antibacterial activity of 

essential oil. It showed 3 log decrease in the bacterial growth compared to the empty 

particles and negative control, and achieved the maximal log inhibition of 75%. 

However, the inhibition caused by the free essential oil was significantly lower than the 

inhibition caused by the same concentration of loaded essential oil in lipid particles 

(p<0.05). Only 2 log decrease in the bacterial growth and 50% log inhibition was 

observed for the free essential oil treatment. The improvement in efficiency against 

bacterial growth of the essential oil in lipid particles could be due to the increment of the 

active compounds given by a decrease of the other ingredients, which may have a low 

volatile point (Arana-Sánchez et al., 2010). This improvement could also be related to the 

increased solubility of the oil in water, improving the stabilization and bioavailability of 

the guest molecule in broth mixture (Polyakov, Leshina, Konovalova, Hand, & Kispert, 

2004). Consequently, the physical, chemical and biological properties of the loaded 

molecules were modified (Mourtzinos, Kalogeropoulos, Papadakis, Konstantinou, & 

Karathanos, 2008), enabling the loaded essential oil to achieve a controlled release with 

higher potency. Previously, Varona et al. (2013) evaluated the antimicrobial activity of 

encapsulated lavandin essential oil particles using PGSS, PGSS-drying, and spray-drying 

against three pathogenic bacteria. They reported that lavandin oil antibacterial activity 



110 
 

 

could be enhanced by encapsulation since it provided the protection and controlled 

release of the oil.  

 

Figure 4.12. Antibacterial inhibitory effect of essential oil-loaded hollow solid lipid 

particles of 50% initial concentration at 10 mg/mL content. 

 

4.5. Conclusions 

  Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were 

successfully formed from FHSO by a novel process based on atomization of the CO2-

expanded lipid mixture. The study generated important information on the essential oil-

loaded hollow solid lipid micro- and nanoparticle formation, storage stability of the 

loaded particles, and the release properties of the essential oil from particles. The highest 

loading efficiency (47.5%) was obtained at 50% initial essential oil concentration.  

Storage stability studies showed that the release properties of the loaded essential oil 

depended on the initial essential oil concentration, which affected the physical strength of 

the solid lipid shell. During the 6 weeks of storage time at room temperature (22 °C), 

particles generated at 5 and 10% initial essential oil concentration released 61.0 and 
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42.5% of the loaded essential oil. Process could form spherical intact particles loaded 

with essential oil at all studied conditions. Another unique advantage of the process is our 

control over the shell thickness of the particles by changing the process pressure; thicker 

shells can be obtained at lower pressures. 

 This innovative process to encapsulate essential oil in solid lipids under mild, 

simple, and clean processing conditions allowed us to slow down the release of the 

essential oil and minimize the strong smell that will be important for their use as natural 

antimicrobials in foods. Study showed that the hollow solid lipid micro- and 

nanoparticles are promising novel “natural” carrier systems for various bioactives. Nano 

size allows us to prepare transparent beverages that contain lipophilic bioactives, which is 

a challenge in food industry. The novel hollow solid lipid micro- and nanoparticles are 

alternatives to the SLN, and overcome the issues associated with the SLN. The solid lipid 

shell provides protection for the loaded compound while the hollow structure increases 

the loading capacities. The dry free-flowing products also make the handling and storage 

more convenient, and the simple and clean process makes the scaling up more feasible. 

There is a growing demand for foods prepared using “natural” ingredients and therefore 

food industry is in a constant search for “natural” food grade antimicrobials to eliminate 

the artificial preservatives from foods. Developed peppermint essential oil-loaded hollow 

solid lipid particles have the potential to be used as “natural” food antimicrobials. Using a 

“clean” process is another advantage for food industry. 
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CHAPTER 5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

5.1. Summary and conclusions 

  This thesis has reported that hollow solid lipid micro- and nanoparticles from 

FHSO can be used as promising bioactive-carriers using a green method based on 

atomization of CO2-expanded lipids. Obtained hollow solid lipid particles were both in 

micro- and nanosize, with high loading capacity, minimized or no bioactive expelling, 

and provided bioactive protection and controlled release.  

In Chapter 3, it has been found that pressure and nozzle diameter affected the 

particle morphology negatively. Shell thickness of the particles decreased with increasing 

pressure. Optimal processing condition was selected at 50 µm nozzle diameter and 200 

bar expansion pressure, based on the particle morphology and size and distribution with 

the preference of intact spherical smaller particles. Fifty percent of the particles obtained 

under optimal condition was smaller than 278 nm. The major polymorphic form of the 

particles changed from β to α with decreasing pressure and nozzle diameter, with 

particles generated from 50 µm nozzle diameter had only α form. Decreasing particle size 

to nanosize broadened the melting range and shifted the melting to lower onset 

temperatures. 

 In Chapter 4, essential oil was successfully loaded in the hollow solid lipid micro- 

and nanoparticles at optimal particle formation conditions obtained in Chapter 3. The 

highest loading efficiency of 47.5% was achieved at 50% initial essential oil 

concentration. Initial essential oil concentration affected the particle morphology 

negatively. Loaded essential oil in the particles obtained at 5 and 10% initial essential oil 
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concentration released more than that of the particles obtained at 20 and 50% 

counterparts after four weeks of storage at room temperature, achieved 61.2, 42.5, 0.2, 

and 2.0%, respectively. Moreover, the particles obtained at 50% initial essential oil 

concentration showed significant antibacterial activity against Pseudomonas fluorescens 

than free essential oil, with 3 log decrease in bacterial growth after 24 h of incubation. 

The study suggested that the essential oil-loaded hollow solid lipid micro- and 

nanoparticles obtained by this simple and clean process can be used as food grade 

antibacterials.  

The hollow structure can increase the loading capacity significantly compared to 

SLN, and solve the bioactive expelling problem of the SLN. This study explored hollow 

solid lipid micro- and nanoparticles for food applications, and introduced a novel 

production method with several advantages: 1) simple, energy efficient, and easy to 

scale-up process; 2) green technology (i.e., no organic solvent was used and no waste 

generated); 3) no degradation of bioactives due to mild processing temperature and 

absence of oxygen; 4) can generate a variety of bioactive-loaded hollow solid lipid 

micro- and nanoparticles to deliver omega-3 fatty acids, carotenoids, phytosterols and 

natural antioxidants; 6) particles can be added directly to clear liquids without affecting 

clarity; and 7) particles are free flowing dry powder which makes handling, 

transportation, and storage convenient. 

 

5.2. Recommendations 

Understanding the effect of triacylglycerol structure and distribution of fatty acids 

on the glycerol backbone on the melting and volumetric expansion of the solid lipids is 
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critical to obtain particles from a number of solid lipids and to better understanding the 

particle formation mechanism. In this thesis, we selected fully hydrogenated soybean oil 

as the model solid lipid to construct the hollow solid lipid micro- and nanoparticles as the 

bioactive-carrier. In the future planning, different solid lipid matrix should be studied to 

further optimize the physicochemical properties of the lipid particles, for example, 

release properties, solubility, and stability. Modifying the lipid shell my using mixtures of 

mono-, di-, and triacylglycerols to create imperfections in the lipid shell to control the 

release of the bioactive will help create particles designed for controlled release. 

Even though we proposed a mechanism for the hollow particle formation in this 

process, it will be useful to use computational fluid dynamics to simulate the particle 

formation and temperature changes during atomization. In this thesis, it has been found 

that pressure and sudden cooling during atomization determine the particle size and shell 

thickness; however, such a simulation will help us better understand the effect of process 

parameters on particle size and morphology. 

Another future research that should be conducted to further complete the study is 

the investigation of performance of the bioactive-loaded particles in real food systems, 

and the in vitro and in vivo bioavailability of the loaded bioactives in the hollow solid 

lipid micro- and nanoparticle. We should be able to know if the loaded bioactives can 

withstand processing, be released from the food matrix after digestion and be 

bioaccessible in the GI tract, undergo metabolism and reach the blood serum for action to 

exert health benefits. Using the particles in selected food formulations and investigating 

the effect of the particles on the quality and sensory properties of the end products will 

help us determine specific food applications. 
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