NETWORK PAVEMENT EVALUATION USING FWD AND GPR

Dwayne Harris, M.Sc.

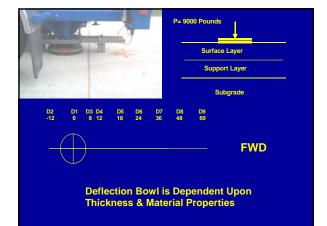
Samy Noureldin, Ph.D., PE

Research Division – INDOT

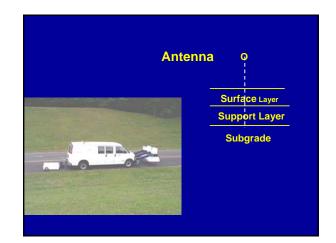
Objectives:

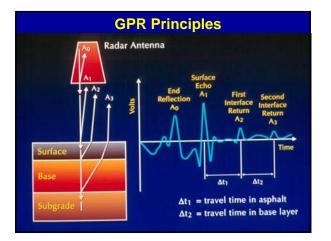
- 1. Prepare for Full Implementation of AASHTO 2002 (Mechanistic Information)
- 2. Support Pavement Layers Thickness Inventory & Minimize the Need for Coring
- 3. Possible Integration with Pavement Management

Thickness Information


- How deep the pavement surface can be milled before resurfacing

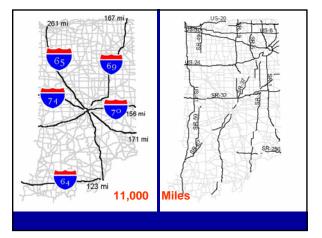
Rehabilitation Strategies


Pavement Stiffness


- Center Deflection in mils , 9000 Pounds (40 KN), 68 F (20 C)

	Interstates	Heavy Traffic	Medium Traffic	Light Traffic	
Excellent	< 4	< 5	< 6	< 8	
Very Good	4 - 6	5 – 7	6 – 8	8 – 10	
Good	6 – 8	7 – 9	8 – 10	10 – 12	
Fair	8 – 10	9 – 11	10 – 12	12 – 14	
Poor	>10	>11	>12	>14	
ESALs. Mill	ions > 30	10 – 30	3 – 10	< 3	

GPR


- Ground Penetrating Radar (GPR) pavement related technology was developed during the SHRP program
- Short wave pulses of electromagnetic energy are transmitted into the pavement
- These pulses are reflected at each interface back to the radar antenna with the voltage amplitude and arrival time that is related to the thickness and material properties pavement layers

Material	Mean	Range
PCC	9	6 – 12
Rock	7	6 – 12
НМА	5	3 – 7
Dry Aggregate	7	5 – 9
Wet Aggregate	15	10 – 20
Subgrade	15	5 – 20
Water	80	
Air	1	

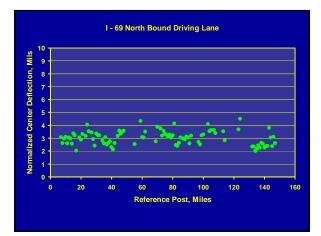
FWD Data Collection

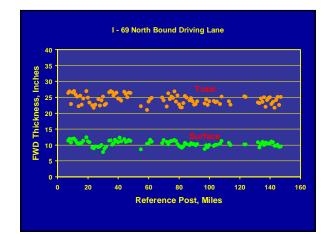
- Truck Lane, Both Bound Directions
- 5 Points/Mile
- 9000 Pounds Load, 68 F Temperature

GPR Data Collection

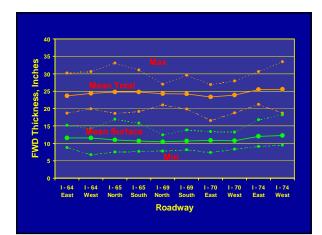
- Truck Lane, Both Bound Directions Thickness Picks, at least 5 Points/Mile

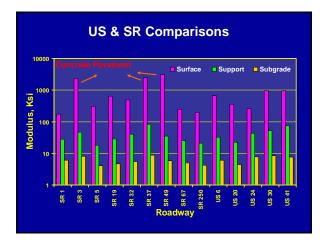
Thickness Data

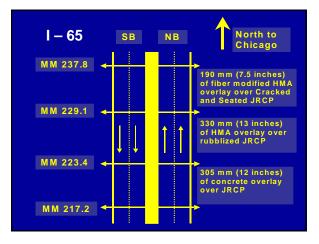

- GPR - FWD - Cores

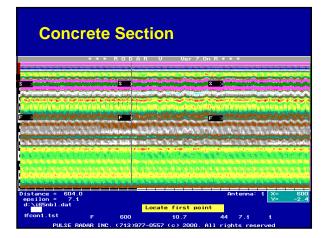

FWD Response Variables

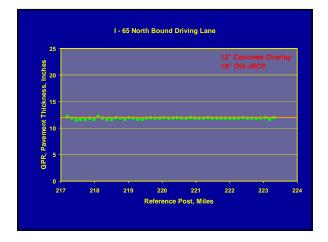
- Normalized Deflection
 Subgrade MR & CBR
- Surface Modulus and Layer Coefficient
 Support Modulus and Layer Coefficient

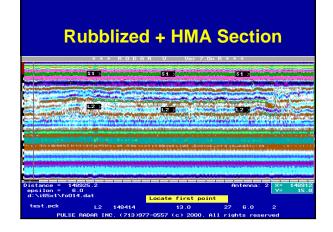

- Surface Thickness & Structural Number
 Support Thickness & Structural Number
 Total Thickness and total Structural Number

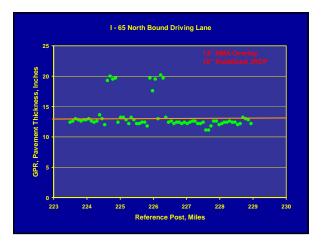

- Remaining Life, Years
 Overlay Thickness Required

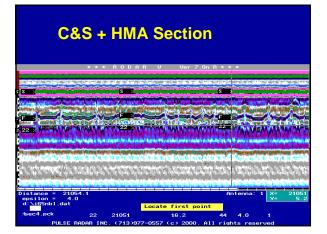


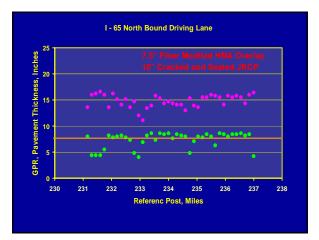


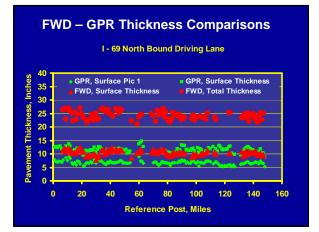


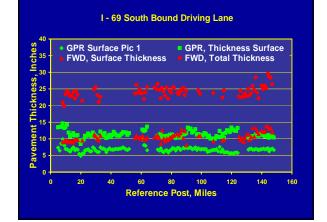


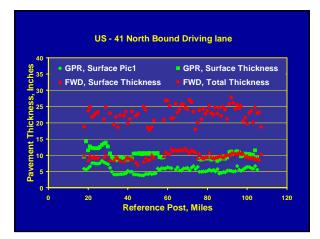


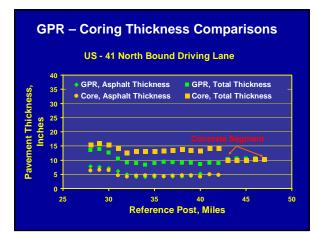












		Ţ			0/	Antenna
Surface Layer	Support Layer	0	 0 	 0 		
	Subgrade		Ų			-

FINDINGS & CONCLUSIONS

A pavement thickness and structural capacity inventory of INDOT Interstate Highways was developed.

INDOT Interstate Highway pavements are currently in a very good structural condition.

FINDINGS & CONCLUSIONS

GPR estimates concrete thickness of concrete pavements, HMA thickness of flexible pavement and HMA thickness of composite pavements almost perfectly.

GPR thickness estimation of pavement layers underneath these layers is not as accurate and needs adjustment through very limited coring.

GPR did not provide any estimate of unbound pavement layers or total pavement thickness

FINDINGS & CONCLUSIONS

FWD can be used to estimate combined surface thickness and total pavement thickness.

Estimate of combined surface thickness matched the GPR estimate in some situation or was slightly lower.

GPR is not expected to completely eliminate the need for coring. GPR can be used to establish the coring requirements to help interpret the GPR data fill the gaps in thickness estimation and verify thickness results.

FINDINGS & CONCLUSIONS

Network level testing employing FWD and GPR is a worthwhile, technically sound program that can be integrated in pavement management strategies.

FWD data on 2200 lane miles of the INDOT network is recommended annually for network level pavement evaluation.

Only three FWD tests per mile in the driving lane of one direction are recommended. The information collected will allow the equivalent of 100% coverage of the whole network in 5 years.

U.S. Roads and State Routes may need more emphasis in network level testing than Interstate Highways.