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Following numerous 954 ACSR SD Wire failures from 2010 to 2012, Nebraska Public 

Power District (NPPD) implemented an inspection program to determine the extent of 

condition for this type of widely used conductor.  Other companies which have had 

related issues with similar types of corrosion have simply replaced their existing 

insignificant miles of conductor; however NPPD transmission system includes over 2000 

miles of this particular conductor.  Throughout 2012, many other conductor spans were 

discovered with either broken or missing steel wire in the bundled conductor. 

Transmission line splices are installed every 15-20 spans, with failures being located in a 

span containing a splice.  NPPD worked with Kinectrics to complete electromagnetic 

field inspections for three days in 2013, with retesting performed in 2015.  Throughout 

this inspection of 54 spans of conductor, 36 were found to have some level of 

deterioration/corrosion ranging from marginal (5) to fair (1) to good (30). 

Over 80% of the corrosion noted in the report was found on a conductor span containing 

a splice; only 45% of the spans tested contain a splice.  All of the failures occurred in 

spans where a compression sleeve or compression dead-end was present.  In all cases, 

only the steel core broke internal to trapezoidal aluminum wire layers. The results of the 

inspection indicated that there is a notable amount corrosion in more than 50% of the 



 
spans inspected, mainly located in the middle 300 feet of the span.  The corrosion is 

“marginal” in a few locations, but generally not indicative of an acute problem. 

Removal of spans testing “marginal” occurred in April 2015, along with the physical 

evaluation of the conductor validating the results of the electromagnetic inspection tool.  

Broken strands were found in all of the tested conductors scored as “marginal” following 

removal 2 years after initial testing. None of the conductors were rated as poor, which 

would indicate no imminent failures exist.  Since none of these localized areas were in 

poor condition, it could be several years before more frequent findings of broken wire 

and related problems are observed.
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Chapter 1 – History of Transmission Conductors 

1.1 Overhead Copper Conductor 

In the late 1800s large outdoor arc lighting systems were powered by high-

voltage (HV) alternating current (AC).  Power transmission methodology resulted in the 

War of Currents in determining the optimum system to transmit electricity from a 

generating power plant[1].  Converting DC power to a higher voltage resulted in 

increased difficulties and power losses, while power transformers designed for the AC 

system had high efficiency and low maintenance.  Power transmission from hydro 

sources resulted in the adoption of the alternating current system. 

 

Figure 1 - Telephone and Electrical Wires in New York, 1887 (Library of Congress) 

The first high-voltage transmission line for three phase alternating current was 

108 miles long connecting Frankfurt to Lauffen on the Neckar, operating at 15,000V[2]. 

For efficient power transmission, conductor cables were initially produced with copper 

and insulated with paper through the turn of the century (Figure 1).  Electric wiring has 
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been performed with copper since the invention of the telegraph, and the adoption of the 

telephone created further demand for copper as an electrical conductor.   

 

Figure 2 - a) Three-core 20kV paper insulated clover leaf cable b) Cables de Lyon continuous current 
cable, 1905 

Benefits around the mechanical and electrical properties of copper resulted in it 

being widely used throughout the generating facilities and power electrical grid, but for 

power transmission superior options were considered in overhead conductor design. 

Nearly half of all copper mined was used to manufacturer cable and electrical wiring by 

the late 1800’s[3]. 

1.2 Aluminum Conductor 

The strength-to-weight ratio for aluminum is 30% greater than copper, and the 

conductivity-to-weight ratio is double as compared to copper(Figure 2).  For all known 

nonprecious metals, the volume conductivity of aluminum is second only to copper.  

Aluminum conductor requires a 56% larger cross sectional area than copper for the 

same current carrying capability[4].  
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The first aluminum stranded transmission line constructed by Connecticut 

Electric in 1899 remained in service until the 1950’s[2].  It was quickly realized that the 

strength-to-weight ratio for aluminum conductor was not enough in itself, resulting in the 

development of  an aluminum-steel composite cable.  As electric power transmission 

voltages increased, the conductor height followed since air was used for insulation.  By 

1914, operating voltage had increased to over 150,000V with more than fifty systems 

operating above 70,000V[4]. Reinforcing the preferred aluminum stranded conductor 

with the high strength of galvanized steel core helped in the electrification of the United 

States throughout the 1920’s[5]. 

1.3 Aluminum-conductor Steel-reinforced (ACSR) 

Reinforcing the high-purity aluminum conductor with steel allows for increased 

mechanical tension to be applied.  The strength of steel is higher than aluminum, but 

offers a reduced elastic/inelastic deformation characteristic for mechanical loading due 

to wind and ice.  Aluminum-conductor steel-reinforced (ACSR) diminishes the amount of 

sag as compared to conductors made solely out of aluminum (Figure 3). 

  

Figure 3  - Cross-section for band of aluminum-conductor steel-reinforced (ACSR) 
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ACSR is not fully supported by the steel, therefore the tensile strength of the 

aluminum limits the continuous operating temperature to the annealing temperature of 

aluminum (75-100°C).  On the other hand, aluminum-conductor steel-supported (ACSS) 

depends entirely on the steel for the conductor strength allowing operating temperatures 

up to 250°C[6]. 

Standard ACSR is manufactured with round strands of galvanized steel and an 

even number of aluminum layers which helps to minimize hysteresis losses.  The even 

number of aluminum layers is due to atomic dipoles within the core steel.  The altering 

direction with induction from the 60Hz alternating current in the conductor results in 

around a 10% lower ampacity rating due to hysteresis losses[7]. 

There are several variations to standard ACSR due to the overall economic 

advantages and conductor design efficiency.  These special ACSR variants include: 

• Trapezoidal wire (TW) conductor – Variation of ACSR which provides trapezoidal 

aluminum strands with a more compact design.  TW conductor provides a nearly 

20% greater cross-sectional area of aluminum conductor by “filling in the gaps” of 

the round aluminum strands[7]. 

• Aluminum-conductor steel-supported (ACSS) – High temperature (200°C) 

conductor made with annealed aluminum allows for lower tension reducing the 

need for additional Stockbridge-type dampers[7]. 

• ACSR Self-Damping (ACSR-SD) – Provides a small annular gap between 

conductor layers allowing the steel core and aluminum layers to vibrate at 

different frequencies and impact damping.  Reducing the tension, structure 

height and need to Stockbridge-type dampers[7]. 
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1.4 ACSR Conductor Splicing 

With many transmission line lengths over 100 miles and standard reel package 

size of around 3 miles (15,000 ft.), this requires numerous spliced connection locations.  

Full tension splice installation involves measurement/cleaning preparations, swaging, 

inspection, compound and plugs. 

 

Figure 4  - Full tension ACSR splice installation with swage system 

Spliced connections require high electrical current rating and physical strength to 

ensure a weakened design point is not introduced[8].  The temperature of the splice 

connector is lower than the bulk conductor with less resistance due to the increased 

cross-sectional area for the splice connector design.  Compression-type splice designs 

are relatively inexpensive and easy to install.   

Special two-piece splices are required for self-damping (ACSR-SD) as the gap 

between the steel core and trapezoidal aluminum inhibits the compression force to reach 

the steel core shown in Figure 4.  The interior smaller splice for the core is installed first, 
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then the larger diameter splice is slide down over the aluminum and compressed.  Splice 

connections for ACSR-SD conductor are somewhat more intricate, making it more 

difficult to obtain a solid splice connection. 

Common origins for splice failures are insufficient wire prep/cleaning to eliminate 

the aluminum oxide layer which has a high resistance, Aeolian vibration of the aluminum 

strands near the end of the splice, and improper splice installation.  Improper conducting 

grease application, compression location within the splice, and compression forces are 

likely causes for conductor compression splice failures.  
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Chapter 2 – NPPD Transmission Conductors 

2.1 Conductor Selection at NPPD 

Design and construction for new 230kV and 345kV lines was extensive in the 

1970’s, and Nebraska Public Power District (NPPD) transitioned to the use of an 

aluminum-conductor steel-reinforced (ACSR) conductor which provided for self-damping 

(SD).  The SD conductor was selected to dampen Aeolian vibration without the use of 

external dampeners which allows for increased tension on transmission lines.  Overall, 

increased tension allowed designers to reduce the construction costs with longer span 

lengths or lower tower heights.   

 

Figure 5 –Example of 954 Type 7 self-damping ACSR installed on over 1400 miles on the NPPD 
transmission system, center steel strands extended 

The 954 Type 7 SD ACSR which was installed in the 1970’s contains 21 

trapezoidal aluminum strands and 7 steel strands (Figure 5).  Following more than 30 
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years in service, NPPD began to have multiple steel strand failures on the SD/ACSR 

conductor.  Broken steel strands in the conductor are easily identified during line patrol 

inspections since the conductor tension change results in the span to sag when 

compared to neighboring spans.  This type of ACSR has since been redesigned with 46 

smaller circular aluminum strands, resulting in 3 layers of aluminum to better protect the 

steel core strands.  

2.2 Line Patrol Inspections 

Throughout line patrol inspections in 2012, more than 4 additional miles of 

corroded/failed conductor were identified (Figure 6).  All of these locations were 

ACSR/SD type conductor with failed transmission conductor being placed in service 

during the late 1970’s and early 1980’s.  Steel core conductor failed transmission lines 

were constructed with final design tensions of 5,000 pounds; two-piece transmission line 

splices connect the two ACSR/SD conductor reels during the original construction.  

Prior to removal of the failed sections of conductor, a rare earth magnet test is 

used to find the ferrous steel beneath the aluminum; this is performed to determine the 

steel core contraction within the conductor bundle following a break for repair of the 

composite conductor.  Once this is determined, the damaged portion of the conductor is 

removed and replaced to return the transmission line to service.   
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Figure 6 –The bundled conductor being tipped demonstrates the visual identification for a failed 

steel core due to loss of tension 

Corrosion has been noted adjacent to steel wire breaks, with the interior steel 

wire found to be rusted and rather brittle throughout informal assessments.  Preventive 

line maintenance is greatly preferred as opposed to corrective line maintenance.  A 

planned removal of a transmission line from service during the spring or fall is ideal for 

maintenance, repair, or replacement.  
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2.3 NPPD ACSR/SD design, experience, and observations 

ACSR/SD is also known as a “gap conductor”, where the wire is specifically 

designed such that there is an internal gap between the steel core and the first layer of 

aluminum.  This design feature helps to reduce the amount of tuned damping necessary 

for wind-induced vibrations.  The existence of mass (Stockbridge) dampers require 

additional system outages for constant maintenance and repair on this system. 

Throughout the past 40 years in service, the self-damping conductor has proven 

to have less external vibration as there have been fewer hardware repairs for external 

connections to the outer aluminum layer.  In theory, the self-damping attribute results in 

some internal vibration of the steel conductor separately from the aluminum layers.  The 

frequency of the steel wire vibration is not known, but is a function of the wire tension 

and wind speed.  Vibration may contribute to the corrosion spacing found in Figure 7. 

 

Figure 7 – Steel wire corrosion with the galvanization layer attacked in 8 to 10 inch intervals 

The first phase of the resulting corrosion appears to be the internal vibration of 

the steel wire within the aluminum wire, which results in abrasion on the steel wires.  The 
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galvanization layer on the steel wire has a thickness of around 0.002 inches.  From 

multiple dissections it has been observed that the abrasion intensifies approximately 

every 8 to 10 inches as shown in Figure 7, which is roughly the same as the lay (or 

rotation spiral) of the interior steel wire. 

Removal of the galvanization layer is the first phase of the steel wire corrosion 

and resulting failure, while the next phase appears to be ingress of moisture.  The water 

tightness of the aluminum is compromised near a compression splice as the outer 

aluminum layer is deformed, resulting in a “birdcaging” effect where the aluminum layer 

is uncoiled.  This deformation allows moisture to seep into the annular gap which was 

designed for damping. As shown in Figure 8, the moisture collects at the low point (i.e. 

belly) of the span which is more tightly sealed as it is further from the splice and more 

uniform.  This hypothesis has been detected, as water has been “drained” in the past 

while lowering the conductor down to the ground for repair or replacement. 

 

Figure 8 – ACSR/SD conductor moisture ingress/entrapment within self-damping gap provided in 

conductor design 

Broken steel wire(s) such as those in Figure 9 were found on a span with a splice 

installed.  The outer layers of aluminum are quite homogeneous for many miles along 
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the conductor, but the connection points appear to indicate a likely failure point.  Once 

the protective zinc layer has been eroded from the steel and an electrolyte has been 

introduced, a galvanic corrosion cell may occur. 

 

Figure 9 – ACSR/SD broken steel strands due to localized corrosion 

Dissection analysis revealed that general uniform corrosion does not occur, but 

instead the corrosion is localized with a distinct pattern with a reduced amount of 

intensity each 8-10 inches for a few recurrences until the corrosion is completely absent.  

As an individual outer steel strand rotates around the center strand, it contacts the 

moisture, then exits and contacts the aluminum, then again regains contact with the 

electrolyte[10].  Conductor dissection revealed some zinc-oxide on the steel surface 

away from the isolated aggressive corrosion locations, but in general the Zinc appears to 

be intact protecting the steel. 

  



13 
Chapter 3 – Failure Analysis 

3.1 Extent of Condition 

As shown in Table 1, NPPD has over 1800 miles of the problematic ACSR/SD 

conductor energized throughout the state of Nebraska.  Mass replacement of the 

problematic conductor is not an option, as this replacement can run upwards of $60,000 

per mile, bringing the total cost to more than $100 million.  Replacement expense would 

need to be distributed over at least 20 or more years to decrease the impact for 

replacement of the conductor.   

Table 1 - ACSR/SD Conductor types throughout the NPPD transmission system 

 

3.2 EPRI Broken Strand Analysis 

Broken conductor samples which have been removed from service were sent to 

the Electric Power Research Institute (EPRI) for a laboratory analysis.  A macroscopic 

visual examination of the failed specimen shows corrosion products on the steel strands, 

varying from blackish-brown to reddish-brown.  The surface was found to be heavily 

pitted near the failed section; away from this section the surface has white zinc oxide 

deposits while the pH was found to be neutral[12]. 

Airborne particulates in the rural area of the failed conductor are apparent due to 

the surrounding agricultural production.  Transmission structure variations, vegetation 

type, and terrain anomalies were noted in the EPRI report[12].  Location specific 
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differences in environment were not found to be significant, and similar environmental 

conditions exist in areas which are not overcome by ACSR/SD conductor failures. 

EPRI performed a microscopic examination shown in Figure 10 for the core 

strands; although it is unclear which layer of the galvanizing is exposed[12].  Trace 

amounts of zinc and zinc oxide with outer steel sections showing signs of iron oxide 

deposits.  These surface anomalies include no less than four iron oxide deposit types 

along with heavy localized corrosion contributing to the indication of trapped moisture.   

 

Figure 10 – Microscopic examination of broken ACSR/SD Conductor performed at EPRI 

According to the EPRI report[12], surface anomalies were noted throughout the 

steel core sample and many different iron oxide deposit types which show heavy 

localized corrosion (Figure 11).  Film thickness in samples ranged from 5-7 microns for 

the steel strand diameter of 0.0971 inches. The oxide film types observed were; 

red/black powder Iron Oxide (Magnetite Fe3O4), brown Iron Hydroxide (Goethite 

FeO(OH)), white Iron Hydroxide II (Fe(OH)2), and red/brown Iron Oxide III (Hematite 

Fe2O3). 
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Figure 11 - Localized corrosion, iron oxide deposit shown through microscope 

Initial pitting of the steel wire was likely due to mechanical damage and/or 

localized stresses near the compression splice, while vibration following installation 

could damage the passive film to expose the metal surface.  Free ends of the ACSR 

conductor stored on reels have increased vulnerability to environmental conditions to 

introduce reactive products.  

The localized pitting corrosion of the steel wire is an electrochemical oxidation-

reduction process occurring deep within the galvanization layer.  Anodic reactions within 

the pit resulted in the dissolution of iron (Fe        Fe2+ + 2e-) with discharged electrons 

reacting with the electrolyte engulfing the pit.  Electrolyte pH levels adjacent to the pit 

and the anode to cathode ratio result in further acceleration of the corrosion.  The 

corrosion product Iron Oxide III (Fe2O3) forms around the pit. 

3.3 Experimental Techniques 

Linear polarization resistance (LPR) measurements were taken for these steel 

core samples with a measured potential of -149.3 mV utilizing deionized water.  This 

technique monitors the existing relationship between the current from charged electrons 

and the electrochemical potential to the estimate the polarization resistance and in turn 

the corrosion rate.  The reaction rate or corrosion current is assumed to be proportional 

to for an anodic and cathodic reaction.  
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Table 2 - Sectional remaining area following loss of galvanization, correlated to tensile design 

strength remaining 

 

The corrosion rate determined throughout the LPR measurements was found to 

be slightly less than 1 mil-per-year (mpy), as compared to the approximately 49 mil 

radius for the steel core.   

With the assumption that the galvanizing is worn away, extrapolating the sample 

corrosion rates of 0.936 mils-per-year shows that the strength remaining is around 60% 

of the original design strength as shown in Table 2.   Without the consideration for 

potential wind, ice, or amp-hour loading, the initial line tension is typically set around 

25% of the rated strength.  Design loading with other load factors result with the steel 

core accounting for nearly 50% of the overall rated strength. 

Energy-dispersive X-ray spectroscopy (EDX) analysis was performed on the 

broken portion of the steel core strands.  EDX testing performed stimulates X-ray 

emission from the steel strands, the difference in results in higher and lower energy 

shells are released in the form of an X-ray.  Samples were ground with alcohol instead of 

water to avoid removal of any water soluble corrosion products during the grinding 

process.  Steel strand samples were not mounted in epoxy prior to grinding. 
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EDX analyses resulted in chlorides and sulfates being found within the oxide 

formations.  The concentrations were found to be 2,400 ppm for chlorides and 2,200 

ppm for sulfates. The heightened sulfur and chloride anion levels within the steel strands 

influences corrosion. Both chlorides and sulfates are electron acceptors and 

depolarization changes the interaction within the corrosion cell.  Cathodic cells lose 

electrons, essentially accelerating the oxidation process. 

 

Figure 12 - EDX analysis locations for corroded steel wire of samples 2B1 and 2B3  

Monitoring of locations susceptible to corrosion was also performed in 

conjunction with this analysis from EPRI[12].  The source of chlorides and sulfates is 

uncertain, but a nearby fossil plant or heavy road salting may be the source of chlorides.  

Further testing to understand the effects of the permeated anions is necessary to 

associate actual service life with the extrapolated data.  
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Chapter 4 – Conductor Evaluation Methods 

4.1 Conductor Corrosion Causal Factor Analysis 

Conductor analysis up to this point has been performed in a destructive manner 

with the removal of corroded conductor.  For the many failed steel core strands thus far, 

each has arisen in a transmission span that include a compression splice.  Line splices 

typically occur every 15 to 20 spans, and generally exist on less than 10% of all circuit 

spans on the transmission system.   

 

Figure 13 - Extreme example of conductor birdcaging by uncoiling/deformation of the outer 
aluminum conductor wire strands 

Line technicians installing splices need to ensure that the conductor is 

adequately sealed along with confirming that “birdcaging” has not occurred on either 

side of the splice (Figure 13).  Incorrect conductor/strand tension or loss of conductor 

bundle rotation can result in birdcaging at spliced locations, resulting in increased 

abrasion potential, water capture, and exposure of the steel strands to the environment. 

The zinc galvanization layer on the steel strands delays the base metal 

deterioration, although this protective film wear from years of abrasive erosion and 

exposure to the environment.  Visual inspection of ACSR conductor through our 

binocular or helicopter inspection programs is quite ineffective due to the issues 
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experience with steel core failure within the trapezoidal aluminum layer of conductor.  

Visual evidence of iron oxide or corrosion not fully assess the degraded conductor with 

respect to determination of the remaining life and urgency of repair. 

 

Figure 14 – Degradation stages of ACSR steel core 

Corrosion is often a problem encountered with galvanized steel shield wires and 

became an amplified problem for NPPD for aluminum conductor with galvanized steel 

core.  Prioritizing conductor replacements activated a need to develop acceptance 

criteria and assessment methods for inspection shown in Figure 14.  Determination of 

the core steel cross-sectional material loss will provide the ability to directly assess the 

most vital ACSR/SD parameter to determine; steel core remaining strength and 

determine remaining life with multiple measurements. 
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4.2 Non-Destructive Testing Methodology  

The ability to inspect transmission assets and verify rates of deterioration to 

determine the design margin remaining helps a utility make good decisions.  Non-

destructive testing to assess the condition of the interior steel strands is a desirable 

capability.  This non-destructive sensing head was developed by Kinectrics to inspect 

steel ropes for the mining industry, but reconfigured for remote travel along energized 

transmission lines of up to 500kV for conductor assessment.  Lab verification by EPRI is 

outlined in a December 2012 report[13], which was designed to detect loss of metallic 

area and local flaws in steel strands surrounded by aluminum in ACSR.   

  
 

Figure 15 – Hall Effect sensors measure cross-sectional area, coil sensors detect pitting 

Point discontinuities cause the magnetic flux to leak radially from the steel when 

a flaw is discovered; sensors detect the magnetic flux leakage and measure the 

magnetic flux. The sensing head saturates the steel conductor core with a magnetic flux 

using permanent magnets shown in Figure 15. 
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The proportional relationship of the cross-sectional area of steel and flux 

introduced by the permanent magnet resulted in a NDE method to detect pitting, broken 

strands, and quantitatively measure the gross loss of steel cross sectional area[9].  As 

the device travels along the ACSR conductor, average Loss of Metallic Area (LMA) 

measurements and Local Flaw (LF) detect severe pitting or broken steel wires and are 

captured with resolution down to an inch[14].  Fluxgate sensors (Hall sensors) need to 

be inserted directly into the magnetic flux path such that the sensors require intersection 

with the flux[15].   

Instrumentation using fluxgate sensors indirectly determine the axial flux for the 

ACSR conductor.  Some flux density external to the ACSR conductor is measured, 

which is then used to estimate the longitudinal conductor flux.  The coil must encompass 

the ACSR conductor, the annular coil provides uncommon resolving power and signal 

fidelity to verify accuracy. 

  
Figure 16 – Main-Flux Method, Return-Flux Method visualization 

The Return Flux Method uses Hall Sensors to quantify the magnetic flux 

surrounded by the magnetic return pathway of the instrument[11].  Outside stray flux 
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along with the average axial flux with the ACSR conductor, providing a method to 

estimate the average cross-sectional area for the conductor within the sensor head[14].  

The flux gate sensors can be located in the air gap between the ACSR conductor and 

permanent magnets poles or as shown in Figure 16 at the interior of yoke plate for the 

magnetic device assembly. 

4.3 Test Signal Data Correlation  

 In interpreting outcome for the test, correlations between the response signal, 

and the actual ACSR condition the device operator must understand the equipment 

capabilities and limitations.  ACSR degradation characteristics found through strand 

dissection is vital to determine the current status of the steel core.  The sensor head 

produces several electrical signals, detecting step changes for the steel core cross-

sectional area. 

  

Figure 17 – Input and Output Signals of an Idealized Loss of Metallic Area (LMA) Test Instrument 

Interpretation of LMA signal output is much less straightforward for inspection 

equipment operators, LMA signal overshoot can cause equivocal measurements.  Data 
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resolution and scan length for LMA will determine the length for anomaly detection, the 

signal averaging length results in the loss of data definition.  Significant steel 

deterioration throughout a relative short distance will essentially be unnoticed through 

the LMA analysis[14].   

This step change is referred to as a fundamental defect, resulting in a step 

response of the LMA and LF signals.  The LF sensor signal approximates the first 

derivative of the cross-section for the ferrous steel strand for most test equipment.  The 

alternate LF signal shown in Figure 18 depicts the second derivative for the steel core 

cross section[11].  The modeling performed with the high-pass filter operation 

emphasizes the fast changes in signal which indicate corrosion pitting and broken steel 

core strands. 

  

Figure 18 – Input and Output Signals of an Idealized Local Flaw (LF) Test Instrument 

Early detection of corrosion for susceptible conductor sections is necessary to 

ensure electrical clearances and eliminate unplanned conductor repair.  Initial and 

periodic electromagnetic inspections are effective to assess the health of self-damping 
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ACSR conductor.  Corrosion pitting of the steel wire causes stress concentrations, 

eventually resulting in the rapid deterioration of the steel wire.  Internal steel wire breaks 

will be undetected until the eventual failure of the entire steel core, which results in the 

loss of symmetry of the different conductor phases. 

In determining the overall health for a given conductor span, other factors such 

as the relative circuit importance, availability for maintenance, and standby availability all 

help to determine the relative importance for a conductor span.  The estimated 

remaining life found does not have sensitivity for these factors, and is simply a sign of 

the degradation.  Results indicating corrosion require evaluation on a case-by-case 

basis to optimize the capital improvement budget.  
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Chapter 5 – Conductor Examination (April 2013) 

5.1 Conductor Test Scope  

Non-destructive examination for conductor still in service is desired without 

removal, Kinectrics was contracted.  Susceptible similar conductor locations and sizes 

were selected, with some including an in-line splice. The goal of the initial inspection is 

to carry out a susceptibility analysis for conductor spans with and without a compression 

splice connector.  Confirmatory test results are expected to show degradation only on 

spans which have a compression splice. 

 

Figure 19 – NDE device used for condition assessment of ACSR conductor 

The inspection device shown in Figure 16 travels down the conductor bundle at 

approximately 150 feet/minute gathering data to detect anomalies, driving down the line 

and back for abnormality confirmations.  This machine is connected wirelessly to a 

laptop on the ground, live data streaming for the technician operating the device.  

Calibration is also performed for the tested conductor type prior to operation.   
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Following a thorough review of susceptible transmission lines and available line 

outages, 54 conductor spans were selected to determine extent of condition. Locations 

identified were scheduled for line outages to provide access for the field inspection 

device occurring in April 2013. The initial 54 inspections performed on conductor spans 

varying mostly from 700 feet to 1000 feet of inspected length; the Kinetrics reports[15] 

are referenced in this analysis, being evaluated in their entirety. 

5.2 Inspection Corrosion Detection 

 The transmission line test equipment travels the line with both LMA and LF 

measurements output.  The LF channel detects localized faults presumed to be broken 

steel wire strands or corrosion pitting.  Signal measurement amplitude ranges from 0 to 

+/- 30,000 with the scale adjusted for correlation to the category range[16]. 

 

Figure 20 - Line 2309 results showing LF level throughout the conductor span length 

LMA data points were also collected throughout this analysis, generally the 

averaging length of the LMA masked the concentrated pitting found.  The 40 year old 

conductor had not experienced general corrosion throughout the steel strand, but 

instead the concern is aggressive localized corrosion.  Areas with notable levels of LF 
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amplitude typically resulted in some adjacent areas with LMA detecting reduced cross-

sectional area of all steel wires[16]. 

5.3 Collective Inspection Results  

Non-destructive examination of the ACSR conductor located many instances of 

heavy surface rust with medium levels of pitting.  Throughout these inspections, 18 

tested conductor bundles did not exhibit signs of corrosion.  It is important to note that 17 

of the 18 spans which did not have signs of corrosion did not contain a splice.  Over 95% 

of the spliced spans revealed signs of corrosion as only one (1) spliced conductor span 

was corrosion-free out of the 24 spans analyzed in Table 3[16]. 

Table 3 - Corrosion severity categories results summary

 

Comparing this to the 30 non-spliced spans, only 13 exhibited signs of corrosion.  

Corrosion analysis on this small sample size shows that 44% of non-spliced sections 

were diagnosed with lower levels of corrosion.  This original theory regarding splice 

locations being more susceptible to corrosion or failure appears to be correct. 

Corrosive signs that were noted included a severity rating from “poor” to “very 

good”, with “very good” showing no signs of corrosion.  For the 5 locations identified as 



28 
“marginal”, four (4) of them included a splice in the span.  For these locations identified 

in the analysis, the “marginal” typically suggests that either a deep corrosion pit or a 

broken strand exists, resulting in only 6 steel strands in tension[17]. 

Overall, around 10% of the total tests spans were found in the fair or marginal 

category where the potential exists that steel core galvanized protection is lost.  

According to the LPR measurements in the EPRI analysis discussed previously, cross 

sectional thinning is beginning to occur on some spans with 15 years of remaining 

service life.  A significant ice or winding load on the conductor will likely break the core 

steel for many of these weakened conductor spans. 

Following a review of the 6 spans which were either marginal or fair in severity 

[Table 3], with most occurring near the midpoint (i.e. low-point or belly) of the span.   

• Marginal - Outer surface of the steel strands likely has heavy surface rust with 

medium pitting.  The extent of corrosion is estimated with approximately 33% 

loss of the zinc galvanizing layer, with indicated localized total loss with the base 

metal being exposed. 

• Fair – Significant low frequency amplitude was indicated near the midpoint of the 

span for a distance of 20 feet.  Again, the extent of corrosion was estimated to be 

a loss of approximately 33% of the zinc galvanizing layer, with some localized 

exposure of the base metal. 

For locations with splices, the corrosion points ranged from 8 to 100 feet away from 

the existing splice within the span.  An indication of corrosion was frequently noted on 

the downhill side of the splice occurring basically between the splice to the low-point of 



29 
the span.  Instances of corrosion were often found throughout the spans with “good” 

rated severity either near the mid/low-point of the span or near a splice if one existed. 

Overall, the electromagnetic testing indicated 5 or 6 potential problems out of the 

54 spans analyzed for this pilot program.  This resulted in basically a 10% failure rate for 

the selected spans shown in Figure 21, further proving the need to develop a NDE 

corrosion program for the ACSR/SD wire on the transmission system. 

Repair by removal of a section wire exhibiting corrosion will likely compound the 

problem, since the single splice with be replaced with a length of the redesigned ACSR 

954 46 Al - 7 Steel conductor and two splices.   Performing this sort of testing biannually 

or annually could provide for follow-up testing for borderline results, as well as identifying 

other susceptible spans.   

 

Figure 21 - Comparison of Spliced & Un-spliced Spans 

Prioritization, planning and evaluation of corrosion indications will support finding 

an explanation for the ACSR/SD steel strand failures.  Testing of 54 spans of ACSR/SD 
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is a very small sample size, when compared to the approximately 10,000 spans 

throughout the 1800 miles of conductor owned by NPPD. 

Two additional samples were also shipped to EPRI for further microscopic 

analysis of broken strands with similar results. The five marginal locations had line 

outages in 2015 for replacement to allow for further analysis and testing to determine 

causal factors. ASTM A90/A90M testing was performed to determine the amount of zinc 

remaining by comparison of the steel strand weight before and after hydrochloric acid 

strips the galvanizing layer.  

NPPD has performed further additional testing of susceptible circuits to help 

conclude overall extent of condition with testing on the 115kV transmission lines in 2016.  

Specific locations identified for ACSR/SD wire where conductor is not bundled to reduce 

the difficulty and increased time for non-destructive testing with testing device. 
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Chapter 6 – Corrosion Sample Dissection - L2312 Middle 

6.1 Defective Conductor Lab Testing 

In April 2015, the removal of the five defective conductor spans occurred with the 

acute corrosion locations were marked red tape for reference during separation.  Our 

line crew assisted with the dissection of the wire with the removal of the outer aluminum 

layers to expose the center core layer of seven steel strands.  NPPD set aside 2 out of 5 

conductors for shipment to Canada (Kinectrics) for lab testing, analysis, and dissection.  

Accuracy of the electromagnetic inspection device was verified for location and severity 

of degradation of the conductor[17]. 

 

Figure 22 - Line 2312 results showing LF/LMA level throughout the conductor span length 

As shown in the test data in Figure 22; cross-sectional area of the steel wires at 

approximately 434 feet from structure 39 is approximately 85% to 90% of that of a 
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galvanized new section of the steel wires in the conductor. This is due to either a very 

deep corrosion pit or a broken steel wire strand recognized by the LF coil sensor[16]. 

Figure 23 - Line 2312 results showing LF level throughout 20 feet of the conductor detail 

The data from the LF channel, and supported by the LMA channel, indicates that 

extent of corrosion of the steel wires in this conductor are in Stage 2A condition. From 

Table 4 the outer surface of the steel wires has lost up to 33% of the zinc galvanizing 

layer in some sections of the conductor, exposing the base metal. The location of worst 

corrosion is approximately 434 feet from structure 39. 

Table 4 - Corrosion extent stage and severity categories

 
Data from the LF channel indicates that at the location of worst corrosion, the 

steel wires in this span of conductor are in Category 5 condition. From Table 4 the outer 

surface of the steel wires have significant rust on the surface with medium to a 
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significant amount of pitting[17]. The large spike in the LF channel at this location could 

be due to either a very deep corrosion pit or a broken steel wire strand. 

Table 5 - Galvanized steel wire tension and elongation L2312 middle phase 

 
Steel wire strands for this span of conductor were evaluated for ductility, breaking 

strength and elongation.  Samples for this testing had a length of 4 feet and were loaded 

at a rate of 2.4 in/min.  The calculated break strength of the steel core based on the 

values found in ASTM B498 is 9,590 lbf (7 wires x 1,370 lbf breaking strength for each 

wire)[19]. This indicates that the measured steel core strength is 97.5% of the Rated 

Tensile Strength even with a broken steel strand. The galvanized steel wire did not 

exceed the rated tensile strength value[18]. 

Torsional ductility testing was also performed on individual galvanized steel 

strand samples with an average length of about 5 feet.  The average number of turns 

was found to be just over 3.   Based on ASTM A938 the average number of turns to 

failure of new steel wire ranges from 30 to 35[20].  Torsional ductility of less than 5 turns 

is rated as poor ductility; this level of ductility is considered to be the result advanced 

corrosion and should be considered for replacement. 

Measurement of the remaining galvanization layer on the steel wire strands 

provides an indication of the extent to which the zinc has thinned due to mechanical 

wear and corrosion processes.  ASTM A90/A90M determines the weight of zinc 
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remaining on each steel wire as an average over a length of a 12 inch long sample[21].  

The minimum mass of zinc for a Class A galvanized steel wire is 229 g/m2. In addition, 

the center steel wire is better protected from corrosion to a large extent by the outer 

steel wires, and therefore the thickness of zinc on the center wire is considered to be a 

good reference for the outer wires. 

Table 6 - Galvanized steel wire remaining thickness for L2312 middle phase 

 

Test samples were prepared with the removal of loose impediments such as rust, 

dirt, and other corrosion flakes prior to testing.  Samples were cleaned and weighed prior 

to the application of hydrochloric acid for removal of the exterior zinc coating. The 

average remaining zinc of the six exterior steel wires was 81% as compared to the “new” 

center steel wire.  General mechanical wear on the outer steel wire layers is considered 

moderate as the remaining zinc coating thickness was found to be over 70% for the 

outer steel wire as compared to the core wire. 

Removed conductor lengths were shipped to Kinectrics for further examination 

and testing with similar results to our field analysis of other removed lengths. Broken 

steel conductor wire was uncovered throughout the dissection.  Analysis was again 
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performed to measure severity levels in an effort to determine the rate of corrosion with 

electromagnetic levels being measured again about 24 months later. 

Comparisons to previous test results were inconclusive due to failure of test 

duplication with the adjusted tension levels of the strands which resulted in differences in 

signal amplitude.  Steel wires were found to have a few additional minor corrosion 

locations following two years of continued service.  No significant changes were 

determinable with electromagnetic inspection with steel wire corrosion progressing 

slowly over the 2 year period. 

6.2 Visual Inspection 

Conductor removed from the 5 locations deemed “marginal” were all visually 

examined with an unaided eye and through a low magnification microscope.  Samples 

were all cleaned of loose dirt and other contamination, and aluminum layers were 

examined along with the steel wire section.  Below are the observations, photographs, 

and comments of this examination. 

 

Figure 24 - L2312, Str. 39-40, Middle Phase – Outer Aluminum Layer 
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During dissection, first the outer aluminum layer was observed to be grey in color 

with many handling mark on the outside surface shown in Figure 24.  It is likely that 

many of the handling marks were caused by compression wire grips installed for 

removal and or initial installation 40 years ago.  Removed conductor is often subject to 

being slid on coarse or jagged surfaces which will wear the relatively soft aluminum. The 

inner surface of the outer aluminum wire had a light grease coating containing some 

corrosion products. 

 

Figure 25 - L2312, Str. 39-40, Middle Phase – Inner Aluminum Layer 

Examination found that the inner layer of the aluminum had strands which were 

dull gray in color and had scuff marks which may have been caused by the compression 

clamp.  There was some very light fret marks along the outer surface that were likely 

caused by contact with the outer aluminum layer.  Figure 25 shows that location of the 

broken steel wire relative to the aluminum layer. 

Inspecting more closely, yellow corrosion products were identified on a few of the 

inner aluminum strands as shown in Figure 26. Grease was present on the inner surface 

of the wires; some areas had yellowish colored grease that was mixed with corrosion 
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products. Removal of the grease found that the surface was etched with light corrosion. 

A few of the areas examined had brown grease with rust corrosion product along with 

transfer of brown/red rust to the aluminum surface. 

 

 Figure 26 - L2312, Str. 39-40, Inner Aluminum Layer yellow corrosion products 

  Tension and elongation testing was performed on individual aluminum wires with 

results below minimum applicable standards for new wires.  Measured breaking strength 

for the inner and outer aluminum layer was found to be nearly 10% below the calculated 

strength for new aluminum from ASTM B230[22].  Elongation tests results showed 

tested values of 1.89% for the outer aluminum, 1.80% for inner aluminum.  ASTM B230 

elongation requirements are 2.1% for the inner layer, 2.3% for the outer layer[16]. 

 Aluminum is obviously deteriorated by the environment after more than 40 years 

of tensile fatigue throughout thermal, ice, and wind loading.  Damage to the aluminum is 

noted on both layers with visible distortion of the originally designed layer of the wire.  

This damage was likely caused during the initial installation, where the aluminum wire 
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layers must be crushed due to the annulus designed for the self-damping ACSR.  Gaps 

are introduced through the permanent deformation of the trapezoidal aluminum wire, 

which could allow for an electrolyte to be introduced into the annulus near a conductor 

splice. 

 

Figure 27 - L2312, Str. 39-40, Galvanized Steel Wires 

 The steel wires were uncovered to find grease present on the surface along with 

white corrosion products were found near the location that the zinc galvanizing was 

damaged.  Along the surface of the steel wires, a significant amount of rust was noted as 

displayed in Figure 27.  Some of the wires had severe corrosion and heavy pitting in 

various locations along the length of the sample. 

After removing the grease, the surface of the wires was mostly covered in white 

corrosion products which are possibly zinc oxide.  Steel wires were separated to 

examine the center steel core wire as shown in Figure 28.  The galvanized steel core 
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wire had grease and white corrosion products removed and were found to have no 

corrosion on the surface. 

 

Figure 28 - L2312, Str. 39-40, Galvanized Steel Wires (unstranded) 

6.3 Overall Assessment 

Laboratory testing for the examined ACSR self-damping conductor were 

generally inconclusive in determining a rate of corrosion.  The reduction in the overall 

tensile strength and ductility of the combined steel/aluminum conductor near the acute 

corrosion location were found to be consistent[23].   

It has been determined that a significant amount of life remains for the conductor 

a few feet away from the isolated corrosion with a high level of galvanization thickness 

remaining.  Harsh material handling near the conductor splice is likely to blame for the 

localized weakening of the galvanization and electrolyte access.   
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Chapter 7 – Final Discussion 

7.1 Summary of Results 

There were 5 spans that were classified as “marginal” during the April 2013 

inspection; these deteriorated sections were removed in 2015 with a couple hundred feet 

of new ACSR being spliced in the span in Figure 29.  Of the 54 wire spans inspected, 30 

spans contained a compression splice, while the remaining 24 spans did not contain any 

type of compression connection.   

• 96% of spans with compression sleeve splices have corrosion present in various 

stages.  83% of these spans were considered “Good” or “Very Good”.   

• 42% of spans without compression sleeves have corrosion present in various 

stages. 91% of these spans were considered “Good” or “Very Good” 

• About 40% of the spans in the system have localized areas of corrosion that are 

Category 3 or worse.  

• 33 of 36 maximum corrosion locations (91%) occurred within 150 ft. of the low 

point of the span.  

 

Figure 29 – Transmission line electromagnetic testing 
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• With the assumption that these results are representative of the system, the 

following generalization can be made: 

o Almost all spans with compression splices have corrosion at some 

location. 

o About ½ of spans without compression splices have corrosion at some 

location. 

o The point of maximum corrosion occurs within 150 feet of the low point of 

the span. 

• None of the conductors were rated as poor, which would indicate no imminent 

failures.  Since none of these localized areas were in poor condition, it could be 

several years before more frequent findings of broken wire and related problems 

are observed.  However, a plan/program needs to be developed to start 

addressing this deteriorating conductor. 

7.2 Progress since initial examination 

 Following the initial examination of spliced and non-spliced ACSR conductor 

spans in 2013, budget constraints put this project in a standstill until the replacement of 

these conductors could be accommodated.  Long range planning for assessment of 

spliced connection of the self-damping ACSR has been justified as a future preventative 

maintenance task. 

• NPPD to perform follow-up electromagnetic inspection in 2-3 years for a different 

population of SD conductors and include 2 or three locations from line 2309/2312 

to test so that a degradation trend can be started. (Action Complete in 2016 – 

Retests in April 2015 of two degraded locations were somewhat inconclusive) 
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• The 5 “marginal” locations found throughout test were scheduled for replacement 

in the next 1-2 years (as previously stated).  The removed conductor could be 

sent to EPRI or Kinectrics for testing to measure corrosion and predict corrosion 

rate in remaining conductor. (Action Complete April 2015) 

  
 

Figure 30 - Analysis of fault data based on the location in span for the corrosion locations identified 
 

• Low points in a span [Figure 9] with a splice seem to correlate well to the 

corrosion “faults” located in the electromagnetic analysis reports.   
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