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 The discipline of ecology long ago moved away from viewing systems as static 

entities where disturbance processes, environmental stochasticity, and spatiotemporal 

variability play minor roles in determining ecosystem structure and function. Ecological 

theory continue to develop frameworks and statistical techniques capable of describing 

the inherent complexity in natural systems. However, in dealing with the complexity in 

nature, many applied disciplines have yet to adopt such frameworks or statistical 

techniques. The objective of this study was bridge the gap between ecological theory and 

application by using complex systems theory to describe grassland vegetation dynamics 

at the fire-grazing-drought nexus. Chapters 2 and 3 take advantage of one of the most 

severe growing season droughts on modern record in the southern Great Plains and a 

long-term pyric herbivory experiment to investigate spatiotemporal patterns in vegetation 

at the fire-grazer interface. Through the application of metacommunity theory, Chapter 2 

reveals scale switching in complex feedbacks between grassland productivity, fire 

behavior, forage quality, and grazer selection before and during extreme drought. 

Through the application of information-theoretic model comparison, Chapter 3 provides a 



method for applied fire modeling systems to quantitatively assess the impact of favoring 

central tendency in the characterization of grassland fuel properties that are the basis for 

predicting wildfire risk and behavior. Chapter 4 identifies thresholds in the flammability 

of J. virginiana (Eastern redcedar), a commonly planted horticultural tree rapidly 

invading across the Great Plains, across a gradient of fuel moisture contents to improve 

wildland fire risk assessments and monitoring programs. The results of these case studies 

will become even more important during the next century, when climate models forecast 

an increase in frequency and severity of growing season droughts across much of the 

Great Plains. 
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CHAPTER I 

INTRODUCTION 

A BRIEF HISTORY ON ECOLOGICAL THEORY 

 Ecological models are scientific perceptions of how nature operates (DeAngelis and 

Waterhouse 1987). The more we investigate and understand ecological systems, the more 

accurate models will become in predicting ecological system dynamics (Wu and Loucks 1995). 

The idea that nature has a “balance,” or “natural order,” has been the root of early ecological 

theory and model development (Egerton, 1973; McIntosh 1985; O’Neil et al. 1986). Continuing 

on this idea, an equilibrium model was established that stresses the importance of self-regulation, 

biotic feedbacks, and climax communities (Wu and Loucks 1995; DeAngelis and Waterhouse 

1987; Vetter, 2005). Such a view states that, with no management input, populations, 

communities, and ecosystems will remain in stable equilibrium through self-regulatory processes 

such as biotic regulation, density dependence, and carrying capacity (Nicholson, 1933; Milne 

and Milne 1960; Ellis and Swift 1988). Tightly coupled relationships between herbivores and 

their resources further stabilize community dynamics (Ellis and Swift 1988; Vetter, 2005). 

Dominating in the 1960s and 1970s (Wu and Loucks 1995), equilibrium models have been well 

accepted in ecological theory and have served as basis for many management strategies and 

decisions (Fuhlendorf and Engle 2001). Modern derivatives such as steady-state, stability, and 

homeostasis have emerged from the equilibrium view (DeAngelis and Waterhouse, 1987; 

Botkin, 1990). However, since the early 20th century, ecologists have been challenging this 

paradigm due to lack of direct evidence that an equilibrium state is a fundamental characteristic 

of ecological systems (Elton, 1930; Holling, 1973; Wiens, 1977; Wu, 1992). Modern ecological 

perspectives recognize that spatial heterogeneity, history, variability, stochasticity, and 
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disturbance processes have been shown to be important factors in determining ecosystem 

structure and function (Holling, 1973; Steele, 1978; Pickett, 1980; Fuhlendorf, 2012). Increased 

recognition of the importance of such factors led to the establishment of the dynamic-equilibrium 

model. Dynamic-equilibrium models stress the importance of spatiotemporal variability, 

environmental stochasticity, and disturbance processes in determining ecosystem structure and 

function (Wu and Loucks 1995). The dynamic-equilibrium paradigm has become a dominant 

view in many areas of ecology due to an increased awareness that patchiness occurs over a wide 

range of organizational, spatial, and temporal scales in both terrestrial and aquatic systems 

(Taylor, 1990, Wu and Loucks 1995). Unlike the equilibrium model that states equilibrium is as 

a fundamental property of ecological systems, a dynamic-equilibrium model states that 

equilibrium exists as an emergent and transient property of a system (DeAngelis and Waterhouse 

1987). Few experimental landscapes, however, have conserved patterns and processes that create 

highly dynamic systems. This has led to a scarcity of experimental studies to genuinely improve 

the dynamic-equilibrium model. 

 Dynamic experimental grassland landscapes provide an opportunity to improve current 

understanding of dynamic-equilibrium ecological models and therefore should be a focus of 

scientific research describing ecological systems. However, very few experimental grassland 

landscapes have conserved historical patterns and processes that create both spatially and 

temporally dynamic landscapes. An example of a dynamic experimental landscape is one that 

uses fire and grazing to create a shifting mosaic of focal disturbances and vegetation pattern that 

vary both spatially and temporally (Fuhlendorf et al. 2004). Historically, heterogeneous 

grasslands were created through the predictable response of vegetation to time since fire and 

grazing (Knapp et al. 1999). In grassland landscapes, plant biomass and litter typically 
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accumulate with greater time since fire (Allred, 2011). Correspondingly, forage quality decreases 

as plants senesce (Haddad et al. 2002; Sensening et al. 2010; Augustine and Derner 2014). As a 

result, grazers are attracted to recently burned patches due to higher forage quality (Allred et al. 

2011). The strong relationship between grazer preference of recently burned patches has been 

termed pyric herbivory (Fuhlendorf et al. 2009). Over time, fire-grazer interactions create a 

shifting mosaic of vegetation structure, resulting in a heterogeneous distribution of plant biomass 

and forage quality across a landscape (Fuhlendorf et al. 2004, 2012). Experimental grassland 

landscapes that mimic the spatial and temporal variability of focal disturbance and vegetation 

pattern via pyric herbivory represent landscapes managed for dynamic-equilibrium 

characteristics and should serve as novel opportunities to improve current scientific 

understanding of ecological systems. 

 I aim to improve current understanding of the dynamic-equilibrium paradigm and its role 

in ecology by applying complex systems thinking and dynamic modeling approaches to 

investigate a multitude of factors in highly dynamic grassland landscapes managed for dynamic-

equilibrium. Chapters 2 and 3 take advantage of an extreme drought event and a long-term pyric 

herbivory experiment to investigate spatiotemporal patterns in vegetation at the fire-grazer-

drought interface. Chapter 2 applies metacommunity theory to investigate scales of heterogeneity 

and complex feedback loops between grassland productivity, fire behavior, forage quality, and 

grazer selection before and during drought. Chapter 3 applies complex systems thinking and 

information theoretic model comparison to quantify the amount of information currently lost in 

the characterization of wildland fuels in fire behavior fuel models. Chapter 4 identifies 

flammability thresholds of J. virginiana (Eastern redcedar) across a gradient of fuel moisture 

content to improve wildland fire risk assessments and monitoring programs. 
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CHAPTER II 

DROUGHT ALTERS METACOMMUNITY DYNAMICS DRIVEN BY PYRIC HERBIVORY 

 

INTRODUCTION 

Greater precipitation variability, coupled with higher atmospheric temperatures, will have 

profound impacts on grassland dynamics during an era of climate change (Knapp et al. 2002). 

Aboveground annual net primary productivity (ANPP) in grasslands is more responsive to 

rainfall variability than all other biomes in North America (Knapp and Smith 2001). An increase 

in precipitation variability has been shown to reduce ANPP in grasslands to the same degree as a 

30% reduction in total rainfall quantity (Knapp et al. 2002; Fay et al. 2003). Such climate 

conditions are expected to manifest in grassland-dominated regions of North America, where 

forecasting models project precipitation will become more variable by the end of the century, 

resulting in more intense rainfall events coinciding with longer, more severe, dry intervals during 

the growing season (Walsh et al. 2014). 

The discipline of landscape ecology has long recognized the importance of spatial and 

temporal heterogeneity in ecological patterns and processes and how many patterns and 

processes are scale-dependent (Turner 1989). Attempts to identify functional relationships 

between pattern and process has led to the integration of metacommunity theory into landscape 

ecology concepts (Leibold et al. 2004; Holyoak et al. 2005). Metacommunity theory provides a 

framework to measure patterns and processes at multiple scales simultaneously. Further, recent 

advances in metacommunity theory now account for the contribution of spatial variability of 

local communities to the temporal stability of biomass production (Wang and Loreau 2014; 

McGranahan et al. 2016). Metacommunity theory predicts that greater temporal stability at 
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landscape scales is associated with greater spatial variability across local communities, whereas 

variability within local communities decreases temporal stability (Wang and Loreau 2014). In 

grassland landscapes where grazing is driven by fire (termed pyric herbivory), local communities 

occur as discrete patches that differ in structure and composition with time since focal 

disturbance (Fuhlendorf et al. 2009). Temporal stability in biomass production should therefore 

increase as a result of pyric herbivory, and a recent meta-analysis confirms this expectation 

(McGranahan et al. 2016). However, the robustness of the relationship between spatial 

variability and temporal stability has not been assessed. Extreme events, like the extreme 

droughts that have recently occurred throughout the central and southwestern United States 

(Hoerling et al. 2014; Twidwell et al. 2014; Smith et al. 2015), might alter metacommunity 

dynamics and are important to consider with future expectations for climate change. 

In this study, I use data from a long-term experimental site to quantify the robustness of 

metacommunity dynamics to one of the most severe droughts events on modern record in the 

southern Great Plains. In 2011 and 2012, soil moisture monitoring of the fraction of available 

water content (FAW) revealed plants were exposed to severe drought conditions (defined as 

FAW < 40%; Sridhar et al. 2008) for 3 and 6 months, respectively, whereas severe drought 

conditions usually occur for one month or less in a calendar year (Figure 2.1). Extreme plant 

water stress (FAW < 20%) occurred for 88% and 80% of those months, respectively (Allen et al. 

1998; Sridhar et al. 2008). Growing season precipitation was 40% and 56% below historical 

norms in 2011 and 2012, and growing season temperatures were 4°C and 3°C warmer, 

respectively (Figure 2.S1). Such trends are consistent with expectations for future conditions 

under climate change for the southern Great Plains, and they are expected to occur more 

frequently by the end of the century (Walsh et al. 2014). This drought thus provides a unique 
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opportunity to study, within long-term experimental landscapes, the potential for future climate 

change events to alter the spatial and temporal patterns in productivity predicted by 

metacommunity theory (Wang and Loreau 2014; McGranahan et al. 2016). 

In terms of aboveground plant biomass production, metacommunity theory predicts that 

low variability within-patches (alpha variability) and high variability among-patches (beta 

variability) coincide with temporal stability (gamma variability) at landscape scales. I test these 

predictions during drought. Specifically, I test for changes in the temporal stability (gamma 

variability) in aboveground plant biomass production during drought. I also test for changes in 

the scale of heterogeneity in aboveground plant biomass and forage quality during drought. 

Lastly, I explore changes in the underlying feedback mechanisms that drive pyric herbivory and 

are responsible for promoting metacommunity stability in previous research. 

 

METHODS 

Study Site 

I conducted this study on three long-term experimental grassland landscapes at the 

Oklahoma State University Research Range (located near Stillwater, Oklahoma, USA; lat 

36°06’N; long 97°23’W). Grassland vegetation dominates the site. Grasses consists primarily of 

Schizachyrium scoparium (Michx.) Nash, Andropogon gerardii Vitman, Panicum virgatum L., 

Sorghastrum nutans (L.) Nash, and Sporobolus asper (Michx.) Knuth. Dominant forbs include 

Ambrosia psilostachya DC. and Gutierrezia dracunuloides (DC.) S.F. Blake. Grassland areas are 

separated by riparian corridors consisting primarily of Quercus stellata Wang., and Q. 

marilandica Münchh, and low levels of encroachment by Juniperus virginiana L. have resulted in 

scattered juniper trees within some grassland areas. Soils at this site consist primarily of Grainola 
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series (fine, mixed, thermic Vertic Haplustalf), and Coyle series (fine-loamy, siliceous, thermic 

Udic Argiustoll), comprising approximately 60 and 35% of the area, respectively (Gillen et al. 

1990). Typically, precipitation in this region is unimodal, with approximately two-thirds falling 

during the growing season from April to October. The average frost-free growing period is 204 d 

from May to October. Mean annual temperature is 15°C with normal annual extremes ranging 

from -4.3°C in January to 34°C in August (Fuhlendorf and Engle 2004). Average annual 

precipitation is 960 mm. 

 

Experimental design and sampling 

Three experimental grassland landscapes were established in 1999 at this research site to 

implement patch-level fire treatments in grazed landscapes (Figure 2.S2). Each landscape 

replicate was moderately stocked (3.0 AUM/ha) with mixed-breed yearling cattle from about 1 

December to 1 September. Stocking rates were reduced in 2012 by 30% to maintain similar 

aboveground plant biomass production across the landscapes than before the drought. Only 

external fences were present on the landscapes, providing grazers the opportunity to move freely 

among patches within their designated landscape. Six patches of equal area (64 ha. each) were 

established within each landscape replicate to implement fire treatments. Historic fire intervals 

for this region were implemented by burning each patch once every three years. On any given 

year, one patch has been burned in the growing season, and one has been burned in the dormant 

season. As a result, each landscape replicate functions as a shifting mosaic and consists of the 

following patches; burned in the growing season this year, last year, and two years ago, and 

burned in the dormant season this year, last year, and two years ago. I focus on growing season 

fire treatments only.  
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In 2011 and 2012, extreme drought and higher than normal temperatures occurred 

throughout the southern Great Plains that is an example of the type of events projected to occur 

more frequently by the end of the century (IPCC 2013; Walsh et al. 2014). Growing season 

precipitation in 2011 and 2012 was 40% and 56% below historical norms, respectively. Growing 

season temperatures in 2011 and 2012 were 4°C and 3°C warmer than the historical average, 

respectively (Figure 2.S1). The proportion of the year (days) undergoing extreme plant stress at 

our site increased from 5% in 2009 to over 40% in 2012 (Figure 2.1). Following Krueger et al. 

(2015), I obtained environmental data from the Oklahoma Marena Mesonet station and 

calculated the degree of plant stress was calculated as: 

𝐹𝐴𝑊 =
𝑃𝐴𝑊

𝐴𝑊𝐶
 

where FAW is the fraction of plant available water (PAW) to available water content (AWC). 

PAW describes how much moisture is available in the soil for plant uptake, and AWC is the 

maximum PAW that the soil can store. Plants begin to experience moisture stress below FAW of 

about 0.5 (Allen et al. 1998), and values of 0.2 or less indicate extreme drought (Sridhar et al. 

2008). AWC varies greatly across soils and is a function of soil properties such as texture and 

porosity (Pellizzaro et al. 2007; Qi et al. 2012). Accordingly, FAW is a preferred method for 

calculating plant water stress from soil moisture because it accounts for variation in soil 

properties over space in terms of moisture availability (Allen et al. 1998; Kruger et al. 2015). 

These conditions resulted in one of the most severe droughts in the southern Great Plains in 

modern record and caused major die-off for multiple woody plant species (Twidwell et al. 2014). 

This event from 2011-2012 will hereafter be referred to as a drought, while acknowledging the 

higher than average temperatures that also occurred during this period of lower than average 

precipitation. 
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Prior to the drought, a study was conducted in 2009 to test the strength and identify 

causal mechanisms of the fire-grazing interaction in tallgrass prairie. Full details of the study are 

available in Allred et al. (2011). The most pertinent components of the study are given here. 

Aboveground plant biomass was harvested biweekly from April to November in 2009 in patches 

burned during the growing season. Aboveground plant biomass was collected within four 

randomly placed 0.1-m x 0.1-m plots. Following collection, samples were dried at 70°C until a 

constant weight was obtained. Percent crude protein was then determined using a dry combustion 

analyzer (LECO Corp., St. Joseph. MI). 

We conducted a complimentary, but more intensive sampling effort to Allred et al. 

(2011) to measure spatiotemporal patterns of plant production following the drought. 

Aboveground plant biomass was harvested biweekly from March 2012 to December 2013, 

except during winter months when snowfall or high moisture conditions made harvesting 

infeasible. Aboveground plant biomass was harvested from patches burned in the growing 

season only. A stratified random sampling technique was used to lay out parallel transects, one 

for each biweekly sampling period, in order to avoid repeated harvesting of biomass over the 

course of the study. Transects spanned the length of each burned patch. Twelve 0.5-m x 0.5-m 

plots were randomly located along each transect using computer-generated random numbers 

established a priori. All live and dead aboveground herbaceous biomass was collected within 

each plot. Following collection, samples were dried at 70°C until a constant weight was 

obtained. Proportion of crude protein in each sample was then derived using a dry combustion 

analyzer (LECO Crop., St. Joseph, MI) in the Oklahoma State University Soil, Water and Forage 

Analytical Laboratory (further details on forage quality analyses are provided in Allred et al. 

2011). 
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Analysis 

I measured temporal (gamma) variability in aboveground plant biomass as the mean 

standard deviation in aboveground plant biomass across a landscape over time. Spatial variability 

in aboveground plant biomass was measured as the mean standard deviation in plant biomass 

across (beta) and within (alpha) patches. Following McGranahan et al. (2016), I avoided 

measuring variability as the coefficient of variation (CV) because patch-contrast in patch-burn 

grazing landscapes depends on variable means, and CV scales with the mean. Consequently, 

using CV as a measure of variability would result in disproportionately small differences in the 

recently burned patch (McGranahan et al. 2016). 

I used Allred et al.’s (2011) data from before the drought to develop a pre drought model 

describing typical spatiotemporal patterns of aboveground plant biomass as a result of pyric 

herbivory. To develop the pre drought model, I used standard randomization procedures (Fortin 

2000; Legendre and Legendre 1998, Anderson 2001; Crowley 1992). Randomizations were 

restricted to biweekly sampling periods corresponding to each time-since-fire patch, following 

recommendations from Dutilleul et al. (1993), Fortin and Jacquez (2000), and Legendre and 

Legendre (1998). Restricted randomizations were used to maintain the presence of temporal 

autocorrelation in ecological data, which is common in most ecological studies and an a priori 

expectation for this study. A total of 999 permutations were performed. 

To test for a decrease in metacommunity stability in aboveground plant biomass, I 

calculated the mean temporal (gamma) variability in aboveground plant biomass that would be 

expected in the pre drought model and compared it to temporal (gamma) variability occurring 

during the drought. Following Legendre and Legendre (1998), I determined significance by 
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dividing the number of times values for temporal (gamma) variability in aboveground plant 

biomass were less than the pre drought model by the total number of permutations plus the 

original dataset, 1,000. 

To test for the occurrence and strength of temporal (gamma) autocorrelation of 

aboveground plant biomass with time since fire, coefficients of autocorrelation were calculated 

as a function of temporal lags both before and during the drought ((k = n / 4; Legendre and 

Legendre 1998). Temporal lags were defined by the number of days since fire that corresponded 

with each sampling period. Significant temporal autocorrelations were based on an α-level of 

0.05 and calculated using standard approaches (Crowley 1992; Legendre and Legendre 1998; 

Gotelli 2000; Goslee and Urban 2007). 

To test for a decrease in among-patch (beta) variability in aboveground plant biomass, I 

calculated the mean among-patch (beta) variability in aboveground plant biomass that would be 

expected in the pre drought model and compared it to among-patch (beta) variability occurring 

during the drought. Following Legendre and Legendre (1998), I determined significance by 

dividing the number of times values for spatial (beta) variability in aboveground plant biomass 

were less than the pre drought model by the total number of permutations plus the original 

dataset, 1,000. To determine the degree of dissimilarity among patches in aboveground plant 

biomass and forage quality, I used nonmetric multidimensional scaling (NMDS) with Bray-

Curtis distances (Legendre and Gallagher 2001). The mean and standard error for each patch 

were determined based on the first two axis scores of NMDS. 

To test for an increase in within-patch (alpha) variability in aboveground plant biomass, I 

calculated the mean within-patch (alpha) variability in aboveground plant biomass that would be 

expected in the pre drought model and compared it to within-patch (alpha) variability occurring 
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during the drought. Following Legendre and Legendre (1998), I determined significance by 

dividing the number of times values for spatial within-patch (alpha) variability in aboveground 

plant biomass were less than the pre drought model by the total number of permutations plus the 

original dataset, 1,000. I repeated this process for samples collected immediately following fire 

(days since fire < 14) and for each time-since fire time patch type. 

 

RESULTS 

Extreme drought reduced metacommunity stability in aboveground plant biomass 

production in landscapes managed with pyric herbivory, as evident by increased temporal 

(gamma) variability in aboveground plant biomass compared to data collected at the same site 

before drought (Figure 2.2; P < 0.001). Drought also resulted in landscape-level convergence 

among patches (Figure 2.3). Pyric herbivory was no longer the primary driver of plant 

productivity patterns during drought, as evident by decreased temporal (gamma) autocorrelation 

in aboveground plant biomass with respect to time since fire (Figure 2.4; P < 0.05). Plant 

biomass-time since fire relationships were strongly autocorrelated before drought and 

aboveground plant biomass could be predicted many months following fire treatments (Figure 

2.4). This relationship collapsed during drought. Significant temporal autocorrelation was 

reduced to from 13 time lags before drought to 4 time lags (8 weeks) during drought (Figure 

2.4). 

Drought significantly reduced among-patch (beta) variability in aboveground plant 

biomass, resulting in a uniform distribution of plant biomass and forage quality among patches 

(Figure 2.2; Figure 2.5; P < 0.001). Before drought, aboveground plant biomass increased in a 

logistic trend with time since fire (Figure 2.S3), resulting in a heterogeneous landscape 
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consisting of spatially distinct patches with differing levels of plant biomass (Figure 1.5). During 

drought, aboveground plant biomass was less predictable and exhibited a highly oscillatory 

relationship with time since fire treatments (Figure 2.S3). Crude protein (%) exhibited similar 

patterns of change during drought. Before the drought, crude protein (%) was highest the first 

year following fire treatment and then rapidly declined with time since fire, resulting in a 

heterogeneous distribution of crude protein across the landscapes (Figure 2.5; Figure 2.S4). 

Crude protein was less predictable during drought and was more uniformly distributed across the 

landscapes, regardless of time since fire (Figure 2.5; Figure 2.S4; P <0.001, data not shown). 

Correspondingly, patches became more similar in terms of both plant biomass and forage quality 

and spatial (beta) variability across the landscapes decreased (Figure 2.5). 

Within-patch (alpha) variability in aboveground plant biomass increased during drought 

for the first 400 days following fire (Figure 2.2; Figure 2.6; P < 0.001). Biomass values within a 

burned patch ranged from 0 g m-2 to 764 g m-2 during the first 14 days since fire, indicating a 

high degree of spatial complexity in the pattern of fire spread and its severity. Many sampling 

locations within the burned patch had not burned at all (biomass was 764 g m-2 for multiple 

samples, similar to unburned patches), and this was more common than plots where combustion 

was complete (biomass < 5 g m-2). Incomplete combustion of herbaceous biomass occurred in 

plots with intermediate biomass values. In contrast, fire completely consumed biomass in all 

plots before the drought.  Biomass was less than 5 g m-2 the first 14 days since fire in 1997, 

indicating more uniform fire behavior and severity within the burned patch. 

 

DISCUSSION 
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Drought imposed an external perturbation in this long-term experiment of fire-grazing-

production patterns and provided an opportunity to test the interplay of spatial and temporal 

relationships predicted by metacommunity theory. Based on metacommunity theory, increased 

temporal (gamma) variability in ANPP should be associated with increased spatial variability 

within (alpha), and decreased spatial variability among (beta), local communities (Wang and 

Loreau 2014). Indeed, decreases in the temporal (gamma) stability of plant production during 

drought corresponded to increasing variability within patches (alpha) and decreasing variability 

among patches (beta).  

 An overarching hypothesis in global change research is that climate change will cause 

ecosystem structure and function to converge at broad scales (Huxman et al. 2004; Tjoelker et al. 

2008; Choat et al. 2012). During periods of extreme drought, deserts, grasslands, and forests 

converge in terms of the rate of biomass production per unit rainfall, despite differences in 

sensitivities of ANPP to precipitation, physiognomy, climatic history, hydrology, and 

phylogenetic origin of characteristic flora (Huxman et al. 2004). Respiratory carbon fluxes in 

jack pine (P. banksiana Lamb.) will likely converge across North America with increasing 

atmospheric temperatures, despite genetic differences in respiration rates across temperate and 

boreal climates (Tjoelker et al. 2008). Widespread forest decline will likely result from more 

frequent and severe drought events associated with climate change (Choat et al. 2012). Our study 

adds to the mounting evidence for climate change-induced convergence. I observed landscape-

level convergence in terms of plant biomass and forage quality, as discrete patches were no 

longer driven by the fire-grazer interaction during drought. In grasslands, structural variability 

among-patches (beta variability) provides crucial habitat for many small mammals (Fuhlendorf 

et al. 2010; Ricketts and Sandercock 2016), invertebrates (Engle et al. 2008; Doxon et al. 2011), 
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herpetofauna (Wilgers and Horne 2006), and grassland birds (Fuhlendorf et al. 2006; Coppedge 

et al. 2008; Hovick et al. 2012, 2014). Within a metacommunity framework, the rescue effect 

states that increased spatial synchrony among patches (reduced beta variability) increases the 

chance of local-populations going extinct because patches are more likely to respond similarly to 

externalities and vice versa (Brown and Kodric-Brown 1977; Heino et al. 1997; Liebhold et al. 

2004). Accordingly, convergence among patches in landscapes with pyric herbivory will likely 

affect grassland biodiversity that depends on structural variability at a landscape-scale. It is 

important to note that although drought reduced among-patch (beta) variability, it also increased 

within-patch (alpha) variability. However, to our knowledge, the implications of increased 

variability at fine scales compared to reduced variability at broad scales to grassland biodiversity 

have received little attention and are currently unknown. 

Pyric herbivory and corresponding patterns of grassland biomass are best described as 

simultaneously occurring negative and positive feedback loops that manifest at different spatial 

scales (Figure 2.7). Negative feedbacks dampen change and stabilize process-pattern 

relationships, which thus reinforces uniform productivity patterns within patches following focal 

fire and grazing in this long-term study. Positive feedbacks amplify change and asynchrony, 

resulting in heterogeneity at landscape scales. (Fuhlendorf and Engle 2004; Fuhlendorf et al. 

2009). Our findings strongly suggest that extreme drought triggered a switch in the scale at 

which negative and positive feedback loops occur in this system (Figure 2.7). The flip from 

negative to positive feedbacks within local communities and a corresponding switch from 

positive to negative feedbacks among local communities flipped the scales at which spatial 

variability in plant biomass manifests in this system.  
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The scaling switch I observed here is owed to well-understood mechanisms from case 

studies carried out at a single spatial scale, but which were not designed to explore the potential 

for a scaling switch to occur in dynamic landscape experiments. Drought slows plant maturation 

and plant biomass accumulation by reducing net photosynthesis in dominant tallgrass prairie 

species (Heisler-White et al. 2009). This leads to reductions in litter. Time lags in litter 

accumulation and availability of soil nutrients on plant production further increases variability in 

the quality and quantity of grassland biomass (Briggs and Knapp 1995; Haddad et al. 2002). 

Increasing variation in biomass production at local scales increases variation in fire behavior and 

severity (Thaxton and Platt 2006; Twidwell et al. 2009). In this study, I observed a high degree 

of variability in fire severity, which is usually assumed to be constant in grasslands (i.e. nearly 

everything always burns). Some plants completely burned, others only partially, and some did 

not burn at all. Incomplete combustion and unburned portions of the burned patch resulted in 

localized areas within the patch having higher forage quality (where combustion was complete) 

next to areas with low forage quality (where incomplete combustion or no combustion occurred). 

Because organisms make decisions at multiple scales (Senft et al. 1987; Orians and Wittenberger 

1991), redistribution of forage resources is likely to have changed how grazers made decisions in 

this landscape during drought – i.e. changing from within patch selection of high forage quality 

in recently burned areas and avoidance of low forage quality in adjacent patches to selection of 

individual plants with high forage quality across multiple patches (as has been shown elsewhere; 

Coppedge and Shaw 1998; Knapp et al. 1999). Our results suggest grazers are still selecting the 

highest quality forage, but this high quality forage is no longer at the scale of the burned patch. 

Rather, the highest quality forage is at localized scales and distributed across multiple patches.  
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Complexity in the scales at which feedbacks operate during extreme events further 

reinforces the importance of scale in the study of metacommunity dynamics. Empirical 

assessment of metacommunity dynamics revealed important shifts that would not have been 

captured without an analysis that explicitly considered pattern-process relationships at multiple 

spatial scales. For example, if I only focused on measuring among-patch (beta) variability in 

aboveground plant biomass and forage quality, I would incorrectly conclude that spatial 

variability was lost in patch-burn grazing landscapes during extreme drought. Rather, our results 

show that spatial variability still persists; heterogeneity simply manifested at a different (alpha) 

scale. The fact that there is no single scale to correctly measure ecological phenomena (sensu 

Levin 1992) continues to be an important consideration going forward and serves as an important 

reminder to studies exploring pyric herbivory as a driver of heterogeneity. Such studies usually 

describe variation among patches only because that is where heterogeneity has typically been 

observed in the past (Fuhlendorf et al. 2004; Allred et al. 2011). 

Understanding how extreme drought events alter metacommunity dynamics and temporal 

stability in aboveground plant biomass production will become increasingly important by the end 

of the century when climate models forecast such drought events to occur more often (IPCC 

2013; Walsh et al. 2014). Under typical weather conditions, pyric herbivory creates critical 

ranges of variability necessary to maintain high levels of grassland biodiversity (Tanner et al. 

2016). Among-patch (beta) variability created via the fire-grazer interaction has also shown to 

stabilize livestock productivity compared to traditionally managed rangelands (Allred et al. 

2014). Our results suggest that landscapes with pyric herbivory are capable of maintaining both 

positive and negative feedback loops by scale-switching during periods of extreme drought and 

that such feedback scale-switches play a major role in determining metacommunity stability. An 
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unexplored next step would be to identify whether the persistence of both negative and positive 

feedback loops in this landscape enhances temporal stability over landscapes where spatial 

synchrony and uniformity is promoted across all scales (which is typical of most grasslands; 

Fuhlendorf et al. 2012). Given projections for extreme drought to occur more frequently in the 

future, such information would enhance the potential for modern-day managers to adapt during 

periods of extreme drought. 

A number of assumptions and experimental contexts need to be considered that could 

change the results observed in this study and provide important foundations for future research 

inquiry. The sampling protocol changed from before the drought (2009 data) to during the 

drought (2012-2013 data). Before drought, aboveground plant biomass was harvested biweekly 

from four randomly placed 0.1-m x 0.1-m plots in each patch. During drought, I harvested 

aboveground plant biomass biweekly from 12 randomly placed 0.5-m x 0.5-m plots in each 

patch. Typically, the amount of heterogeneity observed increases with the scale of observation in 

ecological studies (Levin 1992). Accordingly, one may be concerned that the amount of 

variability among plots might increase during drought (larger plots). However, I observed 

significantly less variability among plots during drought, further strengthening my results that 

within-patch (alpha) variability increased during drought. Another potential limitation of this 

study was the influence of grazing pressure on vegetation dynamics and fire behavior. If stocking 

rate was not reduced by 30% in 2012 to maintain similar landscape-level biomass production, we 

may have observed completely different results. Stocking rate determines the spatial patterning 

of fuels which may influence fire behavior, vegetation structure, and herbivore patch selection 

(McGranahan et al. 2013). The timing and application of fire also likely played a large role in 

determining the spatial patterning of fuels and the observed combustion efficiency. Prescribed 
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fires like the treatments applied in this study, are typically applied under a narrow set of 

environmental and fuel conditions that promote safety and increased control over fire behavior 

(Twidwell et al. 2016). In this study, if fire treatments were applied under dryer fuel conditions 

(e.g. dormant season) rather than during the growing season when fuels typically have higher 

fuel moisture contents, combustion efficiency would have likely been higher and I may have 

observed more typical uniform fire severity across a patch. 
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FIGURES 

Figure 2.1 Proportion of the year plants experienced extreme moisture stress at our research site, 

as indicated by a fraction of available water capacity value (FAW) < 20% (Allen et al. 1998; 

Sridhar et al. 2008).  
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Figure 2.2 Metacommunity dynamics before and during an extreme drought event in landscapes 

with pyric herbivory. Asterisks (*) indicate a significant difference from pre drought values (P < 

0.001).
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Figure 2.3 Spatiotemporal patterns of productivity within a metacommunity framework in a 

long-term pyric herbivory experiment. (A) Grassland biomass exhibits distinct scales of variation 

within (alpha) and among (beta) patches. (B) Drought triggered convergence in the variability of 

plant biomass within (alpha) and among (beta) patches. Lightly shaded regions represent 95% 

confidence intervals.  
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Figure 2.4 Temporal (gamma) autocorrelation of aboveground plant biomass before and during 

drought with time since fire treatment. One temporal lag represents a biweekly sampling period. 

Autocorrelation coefficients above the dotted line are significant (P < 0.05), indicating 

differences in the amount of time focal fire and grazing significantly predicts plant biomass pre-

drought versus during-drought.
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Figure 2.5 Multivariate ordination of aboveground plant biomass and crude protein production 

with respect to time since focal fire and grazing. The distance between points represents the 

degree of among-patch (beta) variability within experimental landscapes.  
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Figure 2.6 Within-patch (alpha) variability in aboveground plant biomass in experimental 

landscapes as a function of time since fire (TSF) before and during drought. Spatial (alpha) 

variability was measured as the standard deviation in aboveground plant biomass produced 

among plots within each patch type. Asterisks (*) indicate a significant difference from pre 

drought values (P < 0.001).  
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Figure. 2.7 Conceptual illustration of the hypothesized feedback loops and scale switching that 

occurs during periods of extreme drought in landscapes with pyric herbivory. The gray bar 

represents the point in time in which feedback loops switch scales. Dotted lines indicate what 

scale the feedback loop switches to during drought. Black arrows indicate either positive (+) or 

negative (-) feedbacks between productivity dynamics, fire behavior, forage quality, and grazing 

selection. For over a decade, low within-patch (alpha) variability and high among-patch (beta) 

variability were maintained via negative feedback loops operating within patches, and positive 

feedback loops operating at a landscape scale. During extreme drought, I observed positive 

feedback loops promoting within-patch (alpha) variability and negative feedback loops reducing 

among-patch (beta) variability. Within a patch, drought initiates a positive feedback loop by 
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altering typical spatiotemporal productivity patterns across the entire landscape. Greater pre-fire 

within-patch (alpha) variability in fuel increases small-scale variability in fire intensity and 

severity in the recently burned patch. Greater small-scale variability in fire intensity and severity 

in the recently burned patch results in greater post-fire spatial (alpha) variability in both plant 

quantity and quality than typically observed. Increased variability in forage quality and quantity 

across the burned patch (alpha variability), likely changed the scale of grazer selection, as 

grazers are attracted to high forage quality and are capable of changing grazing patterns to meet 

nutritional requirements. Consequently, I observed the negative feedback loop that typical 

reduces within-patch (alpha) variability switch to operating at a landscape scale and reducing 

among-patch (beta) variability. 
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SUPPORTING INFORMATION 

 

Figure 2.S1. Deviation from historical (1981-2010) average temperature and precipitation.  
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Figure 2.S2. Experimental design used to determine the influence of drought on metacommunity 

(gamma) stability in long-term experimental pyric herbivory landscapes during drought. Our 

experimental site was located in the North American Great Plains Tallgrass Prairie (A). Three 

experimental grassland landscapes were used as replicates, each consisting of six patches (64 ha 

each) at various stages of recovery from burn treatments (B). Shades of green represent growing 

season fire treatments and shades of orange represent dormant season fire treatments. Yearling 

cattle were moderately stocked (3.0 AUM/ha) from 1 December to 1 September. No internal 

fences were present so that livestock could graze freely across an entire landscape. Within each 

landscape, fire was applied to each patch once every three years either in the growing season 

only or dormant season only since the establishment of the site in 1999 (C). 
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Figure 2.S3. Recovery of aboveground plant biomass across a landscape to focal fire and 

grazing before and during drought.  
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Figure 2.S4. Recovery of crude protein across a landscape to focal fire and grazing before 

and during drought. 
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CHAPTER III 

MOVING BEYOND CENTRAL TENDENCY IN APPLIED FIRE MODELING 

 

INTRODUCTION 

 Favoring central tendency has been identified as a major issue limiting advances in 

science and practice for over a century. First described by Hollingworth (1910) as the 

indifference point, or an over-reliance to default to the mean when describing complex 

data or patterns, favoring central tendency is the propensity for people to overestimate 

smaller values and underestimate larger values, resulting in a tendency for values to fall 

close the mean (Crawford et al. 2000; Olkkonen et al. 2014). This tendency is a well-

established phenomenon documented in various contexts such as human estimates of bird 

population size (Estrada et al. 2005; Pérez 2011), object size (Hollingworth 1910; Weiss 

1954), line length (Duffy et al. 2010; Ashourian and Loewenstein 2011), color hue 

(Olkkonen and Allred 2014), in school writing examinations (Engelhard 1994), and in 

raters scoring of national curriculum writing exams (Myford and Wolfe 2009; Lecki and 

Baird 2011). Further, there is a relationship between the amount of variability in the 

stimuli presented to the estimator and the magnitude of tendency, where more variation in 

stimuli increases the magnitude of central tendency and vice versa (Stocker and 

Simoncelli 2006; Girshick et al. 2011; Olkkonen et al. 2014). 

 Complex systems thinking provides a framework for disciplines to quantitatively 

address the impacts of favoring central tendency and start describing the inherent 

complexity in natural systems. In dealing with complexity in nature, the promise of 

complex systems modeling for society is to maximize real-world applications of science 
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while minimizing the amount of information lost when describing reality (Goldenfield 

and Kadanoff 1999; Wu and David 2002; Grimm et al. 2005). With increasing demands 

for practical applications and adoptions of science in applied disciplines, numerous fields 

have benefited from complex systems modeling. The application of complex systems 

modeling has improved the practice of modern social networks (Goldenberg et al. 2001; 

Eagle and Pentland 2006), economics (Rosser 1999; Colander et al. 2004), cancer 

research (Schwab and Pienta 1997; Deisboeck et al. 2001), natural disaster planning and 

management (Gunderson 2010; Bristow et al. 2012), health care systems (Pisek and 

Greenhalgh 2001; Anderson et al. 2003), and organizational management (Anderson 

1999; Scheider and Somers 2006). However, many applied disciplines have yet to benefit 

from complex systems thinking and continue to model systems as static entities. 

Information theoretic model comparison (ITMC) is commonly used in tandem 

with complex systems thinking to develop quantitative models that account for dynamic, 

non-linear behavior (Anderson and Burnham 2002; Burnham and Anderson 2002). As an 

alternative to null hypothesis testing, an ITMC uses Kullerback-Leibler (K-L) 

information to quantify the strength of evidence for a given set of hypotheses (Anderson 

et al. 2000; Stephens et al. 2005; Burnham and Anderson 2004). ITMC has been applied 

in many fields of ecology, evolution, and marketing to develop practical solutions to 

complex problems (Johnson and Omland 2004; Rushton et al. 2004; Snipes and Taylor 

2014). However, applied models in many of these disciplines continue to favor central 

tendency when describing ecological phenomena and have yet to benefit from ITMC and 

complex system thinking. In fire management, for example, despite disciplinary 

recognition that spatial and temporal variability are inherent in wildland fuels and are 
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fundamental to understanding fire dynamics (Turner and Romme 1994; Twidwell 2009), 

the mean expected value of a give fuel parameter is currently used as the default input in 

many applied models of wildfire risk and fire behavior (Andrews 2006; Scott and Burgan 

2005). For example, regardless of the spatial variability that might occur across a 

grassland landscape, if a user selects a GR2 fuel model to use in a fire behavior modeling 

program such as BehavePlus, fuel bed depth is assumed to be 1ft across the entire 

landscape (Scott and Burgan 2005). Given that the economic and social impacts of 

wildfire have skyrocketed over the last three decades (Westerling et al. 2006; Gill et al. 

2013; NIFC, 2013), now is an important time to determine the impact of using a mean 

value to describe fuel properties in applied fire modeling systems (e.g. BehavePlus, 

NFDRS) and assess alternative approaches that embrace variability and complexity. 

The objective of this paper was to quantify the amount of information lost as a 

result of current fuels classification approaches. I focus my efforts on grassland 

landscapes, which are highly dynamic ecosystems but most of which are described in fire 

models in terms of their mean behavior. I initiated a field study to systematically measure 

14 fuel properties commonly used to predict wildlife risk and fire behavior. These fuel 

properties were sampled biweekly for two years, and provide the first data capable of 

capturing complex responses of grassland fuel properties to drought, fire and grazing. I 

adopt an ITMC approach to determine how much information is lost when a mean value 

is used to describe temporal variability in all 14 fuel properties. I then determine whether 

fuel properties vary significantly in space as a result of disturbance history. Further, 

following guidelines used to describe the relative amount of empirical support for model 

selection (Burnham and Anderson 2004), I discuss the impact of favoring central 



 36 

tendency in fire management and how an ITMC approach has the potential to identify the 

impact of favoring central tendency in other ecology applications. 

 

METHODS 

Study Site 

The need to understand dynamic changes in wildland fuel is driven by dynamic 

and sudden changes in fuels that result from complex interactions among ecological 

drivers. In rangelands, it is well established that interactions among fire, grazing, climate 

and soils drive variability in vegetation structure and composition (Axelrod 1985; 

Oesterheld et al. 1999). I therefore selected a study site where these drivers have 

interacted for almost two decades. 

Three experimental grassland landscapes were established in 1999 at the 

Oklahoma State University Research Range (located near Stillwater, Oklahoma, USA; lat 

36°06’N; long 97°23’W) to implement patch-level fire treatments in grazed landscapes. 

Within each landscape replicate, six patches (64 ha each) were established to implement 

fire treatments (Figure 3.S1). Consistent with historical fire intervals for the region, each 

patch was burned either in the growing season or dormant season once every three years. 

I focus on growing season fire treatments (9 total patches, 3 patches per landscape). In 

any given year, each experimental landscape consisted of three patch-types: burned this 

year, burned last year, and burned two years ago.  Landscapes were moderately stocked 

at 3.0 AUM/ha with mixed-breed yearling cattle from about 1 December to 1 September. 

No internal fences were used within the landscapes, allowing livestock to move freely 

among patches within their assigned landscape. 
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In grasslands, interactions between fire and grazing have been shown to create 

spatiotemporal productivity patterns at landscape scales (Fuhlendorf and Engle 2004; 

Fuhlendorf et al. 2009). The application of fire to discrete patches within a landscape and 

the preferential selection of herbivores to recently burned patches can create patch-level 

spatial heterogeneity (Fuhlendorf et al 2006). As fire moves across a landscape and burns 

discrete patches, grazers preferentially select for higher plant quality in recently burned 

patches allowing plant biomass in unburned patches to recover from fire (Allred et al. 

2011). Over time, a shifting landscape mosaic is created that is composed of spatially 

distinct patches at various stages of recovery from fire and grazing at any single point in 

time (Fuhlendorf and Engle 2004; Fuhlendorf et al. 2006). 

I monitored grassland fuel properties during and immediately following one of the 

worst droughts on modern record for the southern Great Plains when fuel properties play 

the largest role in determining fire behavior and fire effects (Rothermel 1972). Growing 

season precipitation was 40% and 56% below the historical average and growing season 

temperatures were 4°C and 3°C warmer than the historical norms, in 2011 and 2012, 

respectively (Figure 1.S1). In 2012, the proportion of the year (days) undergoing extreme 

plant stress at our site was over 40% (Figure 1.1). Environmental data were collected 

from the Oklahoma Marena Mesonet station. Following Krueger et al. (2015), I 

calculated the degree of plant stress as: 

𝐹𝐴𝑊 =
𝑃𝐴𝑊

𝐴𝑊𝐶
 

where FAW is the fraction of plant available water (PAW) to available water 

content (AWC). PAW is the amount of moisture available in the soil for plant uptake. 

AWC is the maximum PAW that the soil can store. Plants begin to experience moisture 
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stress when FAW ≤0.5 (Allen et al. 1998). FAW values ≤0.2 or less indicate extreme 

drought (Sridhar et al. 2008). AWC is a function of soil texture and porosity and varies 

greatly across soils (Pellizzaro et al. 2007; Qi et al. 2012). FAW is a preferred method for 

calculating plant water stress from soil moisture (Allen et al. 1998; Kruger et al. 2015). 

Extreme plant water stress during 2011 and 2012 caused major die-off for multiple 

woody plant species (Twidwell et al. 2014).  

Grassland vegetation dominates the site and consists primarily of Schizachyrium 

scoparium (Michx.) Nash, Andropogon gerardii Vitman, Panicum virgatum L., 

Sorghastrum nutans (L.) Nash, and Sporobolus asper (Michx.) Knuth. Dominant forbs 

include Ambrosia psilostachya DC. and Gutierrezia dracunuloides (DC.) S.F. Blake. 

Riparian corridors separate grassland areas and primarily consist of Quercus stellata 

Wang., and Q. marilandica Münchh, and low levels of encroachment by Juniperus 

virginiana L. have resulted in scattered juniper trees within some grassland areas. Soils at 

this site consist of approximately 60% Grainola series (fine, mixed, thermic Vertic 

Haplustalf), and 35% Coyle series (fine-loamy, siliceous, thermic Udic Argiustoll). 

Across the region, precipitation is unimodal, with approximately two-thirds falling during 

the growing season from April to October. Mean annual temperature is 15°C with normal 

annual extremes ranging from -4.3°C in January to 34°C in August (Fuhlendorf and 

Engle 2004). Average annual precipitation is 960 mm and the average frost-free growing 

period is 204 d from May to October. 

 

Sampling 
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Herbaceous biomass was harvested biweekly from March 2012 to December 

2013, except during winter months when snowfall or high moisture conditions made 

harvesting infeasible. Herbaceous biomass was harvested from patches burned in the 

growing season only. A stratified random sampling technique was used to lay out parallel 

transects, one for each biweekly sampling period (31 total), in order to avoid repeated 

harvesting of biomass over the course of the study. Transects spanned the length of each 

burned patch. Twelve 0.5-m x 0.5-m plots were randomly located along each transect 

using computer-generated random numbers established a priori. Within each 0.5 x 0.5 m 

plot, herbaceous fuel components were categorized into three groups to provide a more 

detailed examination of grassland fuels. Herbaceous fuel components were classified as 

either fuel bed (mixture of live and dead fuels), 1-hr fuels (dead fuel only, 0.64 cm in 

diameter), or live fuels (live fuel only). Fuel bed depth was measured three times in each 

plot for each herbaceous component (Brown, 1974). A mixture of live and dead 

herbaceous material was clipped from each plot, collected, and dried in a 70°C drying 

oven for 48 h. Fuel parameters (14 total) commonly used in fuel models were then 

calculated (see Table 3.1 for fuel property abbreviations and descriptions). 

The percentage of live herbaceous material in each component was calculated 

using the constituent differential method (Gillen and Tate, 1993, McGranahan, 2013). 

This method uses known dry matter contents of all three herbaceous layers to estimate 

respective fractions of live fuel load (Gillen and Tate, 1993). To determine fine fuel load 

for the live and 1-hr herbaceous fuel layers, six plots were randomly selected along each 

transect to clip live only ( n = 6 ) and dead only ( n = 6 ) reference samples in accordance 

with Gillen and Tate (1993). Reference samples were dried in a 70°C drying oven for 48 
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h to determine herbaceous fuel load for the remaining two components. The following 

equation was used to determine the percentage of live herbaceous material (PL): 

𝑃𝐿 =   
𝐹𝐹𝐿 –  𝐹𝐹𝐿𝐷

𝐹𝐹𝐿𝐿 −  𝐹𝐹𝐿𝐷
 ×  

𝐹𝐹𝐿𝐿

𝐹𝐹𝐿
 ×  100 

and, 

𝑃𝐷 = 100 − 𝑃𝐿 

where FFL is the total fine fuel load of the fuelbed, FFLD is the fine fuel load of 1-hr 

fuels, and FFLL is the fine fuel load of live herbaceous material (Gillen and Tate, 1993). 

 Fine fuel load (FFL) was calculated for the fuel bed using the following equation: 

𝐹𝐹𝐿 (𝑔 𝑚−2) =  
𝑊𝑆𝑊

𝐷𝑆𝑊
 

where WSW is wet sample weight and DSW is dry sample weight. 

Fuel moisture content (FMC) was calculated for each herbaceous layer using the 

following equation: 

𝐹𝑀𝐶 =  
𝑊𝑆𝑊 − 𝐹𝐹𝐿

𝐹𝐹𝐿
 ×  100 

where WSW is wet sample weight and FFL is fine fuel load. 

Surface area to volume ratio (SAV) was then calculated for the fuel bed. Using a 

digital micrometer, the diameter (d) of individual leaves and stalks were measured from 

the collected samples (Brown, 1970). Volumes of grass and forb stalks were measured by 

assuming negligible influence of fuel volume and cylindrical shaped stalks. The 

following equation was used to determine SAV: 

𝑆𝐴𝑉 =  
4

𝑑
 

Volume for grass and forb leaves was measured by assuming a thin parallelepiped shape 

and measuring thickness (t) with the following equation: 
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𝑆𝐴𝑉 =  
2

𝑡
 

 Bulk density was then calculated for each herbaceous component. Oven-dry bulk 

density (Pb) was calculated using the following equation: 

𝑃𝑏 =
𝑊𝜊

𝛿
 

where Wo is the oven-dry fine fuel load (kg/ m2) and δ is fuel bed depth. 

 

Analysis 

To contrast central tendency, I used generalized additive models (GAMs; Hastie 

and Tibshirani 1990) to model the dynamic, non-linear nature of grassland fuel 

properties. GAMs are a technique used to describe complex data and are commonly 

applied in terrestrial systems modeling (Leathwick 1998; Yee and Mitchell 1991), marine 

systems modeling (Gregr and Trites 2001; Tittensor et al. 2010), and risk assessments 

(Brillinger et al. 2003; Preisler et al. 2004). GAMs are not limited by the assumptions of 

linear models and are typically thought of as data-driven models rather than model-driven 

models (Yee and Mitchell 1991). That is, the response curve is fitted from the data at-

hand rather than a parametric class. Smoothing term (s) in GAMs use spline functions to 

the jth smoothed component to estimate nonparametric functions (Llope et al. 2012; 

Defeo and Gomez 2005). Accordingly, the commonality and strength of GAMs in 

modeling ecological data arises from their ability to account for highly non-linear and 

complex data with a limited number of assumptions. For a thorough review on regression 

techniques and GAMs see Guisan et al. (2002).  

To compare how much information was lost using a mean to describe a fuel 

property over time compared to a GAM, I first developed a set of candidate models. To 
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account for temporal variability in a fuel property, a smoothing term was applied to 

sampling period and/or years. Our set of a priori candidate models included: 

y ~ 1 

y ~ s(Period) 

y ~ s(Period) + Year 

y ~ s(Period, by = Year) 

where y is a single fuel property, Period is biweekly sampling period (31 total) and Year 

is year of data collection (two total). I hereafter refer to y ~ 1 as the static model. 

Once I established a list of a priori candidate models, I used Akaike’s Information 

Criterion (AIC) to rank the models by relative amounts of information loss (Akaike 

1973). AIC is an ITMC approach commonly applied in many aspects of ecology such as 

behavioral ecology (Symmonds and Moussalli 2011; Thorup et al. 2006), species 

distribution modeling (Rushton et al. 2004; Araújo and Luoto 2007), invasive species 

(Noson et al. 2006; Ficetola et al. 2007), fire propagation modeling (Drever et al. 2009; 

Krawchuck et al. 2006), and remote sensing (Atkinson and Curran 1995; Edwards et al. 

2013). Candidate models are based on sound ecological understanding and information 

loss is based on Kullback-Leibler (K-L) information, where K-L information is the 

“distance” of each model from full reality (Kullback and Leibler 1951; Anderson and 

Burnham 2002; Burnham and Anderson 2004). In addition to quantifying information 

loss, AIC uses Fisher’s likelihood theory to account for bias associated with increasing 

the number of parameters in a given model (Akaike 1973; Burnham and Anderson 2004). 

The model with the lowest AIC score represents the model with the smallest Kullback-

Leibler (KL) information loss (Burnham and Anderson 2002; Anderson, 2008). Models 
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are ranked by delta AIC (∆AIC) values that represent the amount of information loss 

associated with each model compared to the “top” model. Models with ∆AIC values ≤ 2 

have substantial support for describing “full reality” and ∆AIC values ranging from 4–7 

have less support, but should rarely be dismissed (Burnham et al. 2011). Models with 

∆AIC values ranging from 9-11 generally provide little support for describing “full 

reality”, and models with ∆AIC values ≥20 essentially have no empirical support 

(Burnham et al. 2011). 

I then developed a list of candidate GAM models to determine the importance of 

adding a parameter to account for spatial variability among patch-types (recently burned 

and grazed, burned one year ago, burned two years ago). GAMs including a parameter 

for patch were compared to GAMs without including patch as a parameter. Our set of a 

priori candidate models for detecting spatial dependencies included: 

y ~ s(Period) 

y ~ s(Period, by = Patch) 

where y is a single fuel parameter, Period is biweekly sampling period (31 total) and 

Patch is the fire-grazing treatment. AIC was then used to rank the models by relative 

amounts of information loss (Akaike 1973). 

 

RESULTS 

 In terms of explaining temporal variability in fuel properties, the relative amount 

of information lost (as indicated by ΔAIC) using the mean as the default value versus a 

GAM ranged from 13.41 to 1,496.07 for the 14 grassland fuel properties measured in this 

study (Figures 3.1-3.14; Tables 3.2-3.4). When disturbance history (patch type) was not 
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accounted for, ΔAIC values ranged from 26.68 to 3,781.69 (data not shown). The relative 

amount of information lost using the mean as a default value was lowest for bulk density 

of 1-hr fuel, SAV, the fuel moisture content of 1-hr fuel, and bulk density of live fuel. 

ΔAIC values were >20 for 12/14 fuel properties, indicating essentially no empirical 

support for the static model. ΔAIC for 1-hr bulk density in patch C and 1-hr moisture 

content in patch B were 13.41 and 15.92, respectively, indicating minimal empirical 

support for the static model. When disturbance history was not accounted for in the 

GAMs, ΔAIC values were >20 for all 14 fuel properties. 

Disturbance history (patch type) did not play a significant role in explaining the 

spatial variability in fuel properties (Table 3.5). The relative amount of information lost 

(as indicated by ΔAIC) resulting from adding a parameter to account for patch type 

ranged from 8.4 to 1432.27. Over the two growing seasons, patch type played the 

smallest role in determining the moisture content of the fuel bed, 1-hr fuel bed depth, and 

live fine fuel load. Over the two growing seasons, patch type played the greatest 

(although marginal) role in determining SAV, 1-hr bulk density, and 1-hr fuel moisture 

content. ΔAIC values were >20 for 11/14 fuel properties, indicating essentially no 

empirical support for the static model. ΔAIC was 8.4 for SAV, indicating minimal 

support for the static model and ΔAIC for 1-hr bulk density and moisture content were 

>16, indicating little to no empirical support for the static model. 

 The amount of empirical support for using the mean to describe fuel properties 

over time and for adding a spatial component to a GAM varied by fuel parameter. There 

was essentially no empirical support for using the mean to describe all but two fuel 

properties, as indicated by ΔAIC values ≥20. Bulk density of 1-hr fuels and 1-hr fuel 
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moisture content were the only two static models with any (although marginal) empirical 

evidence for describing fuel properties over time, as indicated by ΔAIC values of 13.41 

and 15.92, respectively. In terms of spatial variability, there was essentially no empirical 

support for adding a parameter to account for patch-type (disturbance history) in all but 

one fuel property, as indicated by ΔAIC values >16. For SAV, there was little to no 

evidence supporting a GAM with a patch-type parameter versus one with no spatial 

dependencies, as indicated by a ΔAIC value of 8.4. 

 

DISCUSSION 

The field of wildland fire science has used dynamic mathematical models to 

characterize wildland fire dynamics for decades (Rothermel 1972; Albini 1981; Anderson 

1982), but favoring central tendency has emerged in application due to the complexity 

and computational rigor of theoretical models. The majority of fuel parameters are input 

into applied fire models as constants (e.g. BehavePlus, NFDRS), and scientists and 

professionals in wildland fire research have been calling for more dynamic models (Scott 

and Burgan 2005). Dynamic models are more sensitive to small changes in fuel 

properties that may elicit large changes in fire behavior. For example, a 10% reduction in 

live fuel moisture content in a GR9 fuel model has been shown to increase flame lengths 

to increase from 4.8 to 16.2 ft. (Jolly 2007). By developing more dynamic models that 

can account for small changes in fuel properties, we may improve our ability to predict 

large wildfires during periods of rapid transition (e.g. fuels drying out quickly, small-

scale changes in fuel load over space). Our study establishes that nearly all fuel properties 

in grasslands are better described, and modeled, as dynamic and should not be considered 
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constant or static. Surface area to volume ratio and 1-hr bulk density were the primary 

fuel parameters with sufficient empirical support to remain a constant in applied fire 

models.  

Models of complex ecological phenomena are challenged with balancing the 

amount of error associated with oversimplification (large aggregations, few parameters) 

with uncertainty arising from overly complex (disaggregated, many parameters) models 

(Metcalf et al. 2008). In dealing with complex data, aggregation error commonly occurs 

when scaling-up nonlinear, fine-scale patterns or processes (Rastetter et al. 1992). 

Further, the degree of aggregation determines the applicability and amount of error 

associated with a model. Aggregation error associated with scaling-up complex fine-scale 

phenomena is evident in analyses of food chains (O’Neill and Rust 1979, Metcalf et al. 

2008), primary producers (Cale and Odell 1979, 1980), and genetics (O’Neill 1979), to 

name a few. In moving toward more realistic and appropriate modeling of complex 

systems, the fine-scale behavior of a pattern or process as well as how fine-scale patterns 

and processes scale up must first be understood before it can be incorporated properly in 

coarse-scale equations (Levin 1992; Costanza et al. 1993). This study provides the first 

step for wildland fire science to quantitatively assess the amount of information loss 

resulting from favoring central tendency through exploring the full range of fine-scale 

temporal and spatial variability in grassland fuel properties. 

Information theoretic model comparison provides a quantitative method for 

advancing science through constant testing and refining of a priori hypotheses (Burnham 

and Anderson 2004). Guidelines provided by Burnham et al. (2011) regarding ΔAIC values 

can indicate when a statistical model is implausible and should be discarded from a set of 
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hypotheses. Our study took the first step in refining our set of a priori hypotheses by testing 

the assumption that the mean correctly characterizes grassland fuel properties. In our study, 

static models provided essentially no empirical support for describing temporal variability 

in all but two fuel properties compared to GAMs, as indicated by ΔAIC values ≥20 

(Burnham et al. 2011). Static models describing bulk density of 1-hr fuels in one out of 

three patches and 1-hr fuel moisture content in one patch were the only two temporal 

models with any (although marginal) empirical support compared to GAMs, as indicated 

by ∆AIC values of 13.41 and 15.92, respectively (Burnham et al. 2011). I also found that 

adding a parameter to account for spatial variation in fuel properties with respect to time 

since fire and grazing was inconsequential and unnecessary for almost every fuel property, 

based on ΔAIC values ≥20. For every fuel parameter, except SAV, ∆AIC values were >16. 

For SAV, ∆AIC was 8.4, indicating that patch-type may play a significant (while likely 

minimal) role in describing SAV over time in our experimental landscapes. This study 

demonstrates that information theory can be a useful method for quantifying the impacts 

of favoring central tendency bias in practical applications.  This is an important step toward 

bridging the gap between science and management in ecology and other disciplines. 

Favoring central tendency may be having a major role in other ecological 

applications, since it has not been an explicit focus of truly applied research. Ecology 

long ago aimed to move away from viewing systems as static entities and moved towards 

a more dynamic-equilibrial view of ecological systems (DeAngelis and Waterhouse 

1987; Wu and Loucks 1995). Under an equilibrium view, ecosystems are assumed to be 

predictable, self-regulating entities where disturbance history, stochastic factors, and 

environmental perturbations play a minimal role in determining ecosystem dynamics (Wu 
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and Loucks 1995). Because of a lack of evidence supporting equilibrium systems and the 

inability of such a view to account for the transient behavior and patchiness of many 

systems, many ecologists have moved towards a more dynamic-equilibrial view of 

ecological systems where equilibrium is viewed as a transient property of system rather 

than a fundamental characteristic (Botkin and Sobel 1975; Pickett et al. 1992). Today, it 

is well accepted that disturbances, environmental perturbations, and climate play an 

important role in determining complex system dynamics. Yet, some disciplines continue 

to favor central tendency and assume that a mean value may describe such complex 

ecological phenomena. For example, in an attempt to ensure fire safety and containment, 

strict policies directed towards prescribed burning are implemented across much of the 

United States that limit the magnitude and variability in fire behavior (Twidwell et al. 

2016). Further research should work towards developing more dynamic applied models 

and determining under what circumstances more dynamic models are more appropriate in 

describing ecological patterns or processes than static models. 

Our results suggests a need for further investigations regarding the robustness of 

the dynamic models provided in this study under varying weather, topographic, and 

environmental conditions. For example, during extreme drought, I saw no difference in 

the amount of fine fuel across patches. Such results contradict what is typically observed 

at this study site under non-drought conditions. Typically, fine fuel load accumulates with 

time since fire and grazing, creating three distinct patch types with varying amounts of 

fine fuel (Fuhlendorf and Engle 2004; Fuhlendorf et al. 2006; Allred et al. 2011). 

Because only two out of the three patches were burned during the duration of our study, I 

expected to observe a significant spatial effect of patch type on fine fuel load. To test the 
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validity of our statistical techniques and reasoning, I ran a post hoc comparison of fine 

fuel load across patches from samples collected at the same site and experimental 

landscapes under non-drought conditions in 2009 (see Allred et al. 2011). As predicted, 

adding a parameter in the GAM to account for spatial dependencies (patch type) in fine 

fuel load resulted in a lower AIC score and a ∆AIC of 37.68 (data not shown). This 

suggest and confirms with previous studies that patch type plays a significant role in 

determining fine fuel load under typical weather conditions. Our results therefore indicate 

that extreme drought likely altered the spatiotemporal patterns of grassland fuel 

properties in landscape with fire and grazing. 

 There are many opportunities to learn from a growing body of work that applies 

complex systems thinking to meet the demand for practical applications and adoptions of 

science (Allen and Saunders 2006; Parrott 2010; Burg et al. 2010). The problem with 

adhering to the central tendency in describing ecological systems is that it assumes the 

mean is the best way to characterize system behavior and guide natural resource 

management. Yet, variation is critical to understanding biological organization and 

functioning (Christensen 1997; Wiens 1997). Ecosystems are inherently dynamic across 

many spatiotemporal scales (Levin 1992; Patten & Ellis 1995; Ludwig & Tongway 1995) 

and failing to account for variation has weakened the potential for management 

frameworks to meet biodiversity and production targets (Fuhlendorf and Engle 2001; 

Twidwell et al. 2016). In an attempt to characterize wildland fuels, favoring central 

tendency results in an underestimation of the spatiotemporal variability in fuel properties, 

which are tightly coupled to fire behavior and effects (Rothermel 1972; Jolly 2007). The 

results of this study suggest that nearly all fuel properties in grasslands are better 
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described and modeled as dynamic and that a constant or mean value should not be used 

to mathematically describe such fuel properties over time. Technological and analytical 

theory is continuing to make it easier to deal with complex data, so more opportunities 

are becoming available to quantitatively assess the impact of favoring central tendency 

and incorporate dynamic modeling approaches into ecological applications. 
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TABLES 

Table 3.1 A description of the 14 fuel properties measured in this study, abbreviations, 

and their definitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Term Abbreviation Definition Units 

F
u

el
 b

ed
 m

ea
su

re
m

en
ts

 

Fuel bed depth FBD The vertical distance from the bottom of the 

litter layer to the highest fuel particle 

cm 

    

Surface area to 

volume ratio 

SAV The area covered by the outside of fuel per 

unit volume 

cm-1 

    

Fuel moisture 

content 

FMC The proportion of the fuel bed that is water, 

calculated on a dry weight basis 

% 

    

Fine fuel load FFL The total mass of fuel (≤0.64 cm in diameter) 

per unit area of the fuel bed 

g m-2 

    

Bulk density BD The total amount of oven-dry fuel per unit 

volume of the fuel bed (fuel load/fuel bed 

depth) 

kg m-

3 

 

    

D
ea

d
 f

u
el

 (
1

-h
r)

 m
ea

su
re

m
en

ts
 1-hr fuel bed 

depth 

FBDD The vertical distance from the bottom of the 

litter  layer to the highest dead fuel particle 

cm 

    

1-hr fuel 

moisture content 

FMCD The proportion of dead fuel that is water, 

calculated on a dry weight basis 

% 

    

1-hr fine fuel 

load 

FFLD The mass of dead fuel (≤0.64 cm in diameter) 

per unit area of the fuel bed 

g m-2 

    

1-hr bulk 

density 

BDD The amount of oven-dry dead fuel per unit 

volume of the fuel bed (fuel load/fuel bed 

depth) 

kg m-

3 

    

Percent 1-hr 

fuels 

PD The percentage of dead fuels in the fuel bed % 

 

    

L
iv

e 
fu

el
 m

ea
su

re
m

en
ts

 Live fuel bed 

depth 

FBDL The vertical distance from the bottom of the 

litter layer to the highest live fuel particle 

cm 

    

Live fine fuel 

load 

FFLL The mass of live fuel (≤0.64 cm in diameter) 

per unit area of the fuel bed 

g m-2 

    

Live bulk 

density 

BDL The amount of oven-dry live fuel per unit 

volume of the fuel bed (fuel load/fuel bed 

depth) 

kg m-

3 

    

Percent live 

fuels 

PL The percentage of live fuels in the fuel bed % 

 

Definitions are from the BehavePlus fire modeling system. For more information see Heinsch 

and Andrews (2010). 
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Table 3.2 (Patch A) AIC comparison of dynamic generalized additive models (GAM) to a static model (y = µ) for describing the 

temporal variability of 14 grassland fuel parameters. The model with the lowest AICi score is the “top” model for describing the given 

parameter (Akaike 1973). The number of parameters used in each model is indicated by ki. The relative amount of information loss 

compared to the top model is indicated by ∆i. The relative strength of each model is interpreted as wi . 

  

Model AICi ki ∆i wi Model AICi ki ∆i wi 

FFL ~ s(Period) + Year 13,948.11 12 0.00 0.50 FBD ~ s(Period, by = Year) 8,570.51 12 0.00 0.50 

FFL ~ s(Period, by = Year) 13,948.11 12 0.00 0.50 FBD ~ s(Period) + Year 8,570.51 12 0.00 0.50 

FFL ~ s(Period) 13,960.92 11 12.81 0.00 FBD ~ s(Period) 8,591.25 11 20.74 0.00 

FFL ~ 1 14,571.63 2 623.52 0.00 FBD ~ 1 9,329.92 2 759.42 0.00 
          
FFLL ~ s(Period) + Year 11,586.80 12 0.00 0.86 FBDL ~ s(Period) + Year 8,568.67 12 0.00 0.66 

FFLL ~ s(Period) 11,591.84 11 5.04 0.07 FBDL ~ s(Period) 8,571.41 11 2.74 0.17 

FFLL ~ s(Period, by = Year) 11,591.84 12 5.05 0.07 FBDL ~ s(Period, by = Year) 8,571.42 12 2.75 0.17 

FFLL ~ 1 12,230.46 2 643.66 0.00 FBDL ~ 1 9,768.24 2 1,199.57 0.00 
          
FFLD ~ s(Period) + Year 12,438.88 12 0.00 1.00 FBDD ~ s(Period) + Year 7,423.78 12 0.00 0.47 

FFLD ~ s(Period, by = Year) 12,453.81 12 14.93 0.00 FBDD ~ s(Period, by = Year) 7,423.78 12 0.00 0.47 

FFLD ~ s(Period) 12,458.36 11 19.48 0.00 FBDD ~ s(Period) 7,427.85 11 4.07 0.06 

FFLD ~ 1 12,834.14 2 395.26 0.00 FBDD ~ 1 7,732.53 2 308.75 0.00 
          
FMC ~ s(Period, by = Year) 10,128.86 12 0.00 0.35 BD ~ s(Period) 7,110.45 11 0.00 0.44 

FMC ~ s(Period) 10,128.86 11 0.01 0.35 BD ~ s(Period, by = Year) 7,111.32 12 0.87 0.28 

FMC ~ s(Period) + Year 10,129.14 12 0.29 0.30 BD ~ s(Period) + Year 7,111.32 12 0.87 0.28 

FMC ~ 1 11,606.56 2 1,477.71 0.00 BD ~ 1 7,550.06 2 439.61 0.00 



 

  

5
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FMCD ~ s(Period, by = Year) 304.85 12 0.00 0.33 BDL ~ s(Period) + Year 5,651.78 12 0.00 0.50 

FMCD ~ s(Period) + Year 304.85 12 0.00 0.33 BDL ~ s(Period) 5,651.78 11 0.00 0.50 

FMCD ~ s(Period) 304.85 11 0.00 0.33 BDL ~ s(Period, by = Year) 5,667.85 12 16.07 0.00 

FMCD ~ 1 323.24 2 18.39 0.00 BDL ~ 1 5,841.13 2 189.35 0.00 
          
PL ~ s(Period) + Year 8,133.01 12 0.00 1.00 BDD ~ s(Period, by = Year) 10,611.24 12 0.00 0.42 

PL ~ s(Period) 8,159.80 11 26.78 0.00 BDD ~ s(Period) 10,611.25 11 0.00 0.42 

PL ~ s(Period, by = Year) 8,159.82 12 26.81 0.00 BDD ~ s(Period) + Year 10,613.23 12 1.99 0.16 

PL ~ 1 9,260.53 2 1,127.51 0.00 BDD ~ 1 10,670.97 2 59.73 0.00 
          
PD ~ s(Period) + Year 8,133.01 12 0.00 1.00 SAV ~ s(Period) 4,816.63 11 0.00 1.00 

PD ~ s(Period) 8,159.80 11 26.78 0.00 SAV ~ 1 4,844.05 2 27.42 0.00 

PD ~ s(Period, by = Year) 8,159.95 12 26.94 0.00      
PD ~ 1 9,260.53 2 1,127.51 0.00      
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Table 3.3 (Patch B) AIC comparison of dynamic generalized additive models (GAM) to a static model (y = µ) for describing the 

temporal variability of 14 grassland fuel parameters. The model with the lowest AICi score is the “top” model for describing the given 

parameter (Akaike 1973). The number of parameters used in each model is indicated by ki. The relative amount of information loss 

compared to the top model is indicated by ∆i. The relative strength of each model is interpreted as wi . 

Model AICi ki ∆i wi Model AICi ki ∆i wi 

FFL ~ s(Period) 14,103.80 11 0.00 0.57 FBD ~ s(Period, by = Year) 8,345.12 12 0.00 0.33 

FFL ~ s(Period, by = Year) 14,105.73 12 1.93 0.22 FBD ~ s(Period) + Year 8,345.12 12 0.00 0.33 

FFL ~ s(Period) + Year 14,105.73 12 1.93 0.22 FBD ~ s(Period) 8,345.13 11 0.01 0.33 

FFL ~ 1 14,844.87 2 741.07 0.00 FBD ~ 1 9,090.94 2 745.82 0.00 
          
FFLL ~ s(Period) + Year 11,036.28 12 0.00 0.33 FBDL ~ s(Period) + Year 8,779.63 12 0.00 0.98 

FFLL ~ s(Period) 11,036.29 11 0.01 0.33 FBDL ~ s(Period) 8,788.43 11 8.80 0.01 

FFLL ~ s(Period, by = Year) 11,036.30 12 0.01 0.33 FBDL ~ s(Period, by = Year) 8,788.43 12 8.81 0.01 

FFLL ~ 1 11,494.72 2 458.43 0.00 FBDL ~ 1 9,608.91 2 829.29 0.00 
          
FFLD ~ s(Period) 11,662.47 11 0.00 0.33 FBDD ~ s(Period) 6,450.05 11 0.00 0.42 

FFLD ~ s(Period) + Year 11,662.47 12 0.00 0.33 FBDD ~ s(Period) + Year 6,450.78 12 0.73 0.29 

FFLD ~ s(Period, by = Year) 11,662.47 12 0.01 0.33 FBDD ~ s(Period, by = Year) 6,450.78 12 0.73 0.29 

FFLD ~ 1 12,260.48 2 598.01 0.00 FBDD ~ 1 6,728.09 2 278.04 0.00 
          
FMC ~ s(Period) + Year 10,533.01 12 0.00 0.65 BD ~ s(Period) 7,694.41 11 0.00 0.55 

FMC ~ s(Period, by = Year) 10,535.59 12 2.58 0.18 BD ~ s(Period, by = Year) 7,696.23 12 1.81 0.22 

FMC ~ s(Period) 10,535.59 11 2.58 0.18 BD ~ s(Period) + Year 7,696.23 12 1.81 0.22 

FMC ~ 1 11,884.08 2 1,351.07 0.00 BD ~ 1 8,340.22 2 645.81 0.00 
          
FMCD ~ s(Period) + Year 497.38 12 0.00 0.33 BDL ~ s(Period, by = Year) 7,200.20 12 0.00 0.33 

FMCD ~ s(Period) 497.38 11 0.00 0.33 BDL ~ s(Period) 7,200.21 11 0.00 0.33 
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FMCD ~ s(Period, by = Year) 497.39 12 0.00 0.33 BDL ~ s(Period) + Year 7,200.21 12 0.00 0.33 

FMCD ~ 1 513.31 2 15.92 0.00 BDL ~ 1 7,270.71 2 70.51 0.00 
          
PL ~ s(Period) 7,488.76 11 0.00 0.33 BDD ~ s(Period) + Year 9,042.05 12 0.00 0.88 

PL ~ s(Period) + Year 7,488.76 12 0.00 0.33 BDD ~ s(Period, by = Year) 9,046.02 12 3.97 0.12 

PL ~ s(Period, by = Year) 7,488.78 12 0.02 0.33 BDD ~ s(Period) 9,072.98 11 30.93 0.00 

PL ~ 1 8,984.35 2 1,495.59 0.00 BDD ~ 1 9,161.58 2 119.53 0.00 
          
PD ~ s(Period) + Year 7,488.75 12 0.00 0.33 SAV ~ s(Period) 4,845.22 11 0.00 1.00 

PD ~ s(Period) 7,488.76 11 0.00 0.33 SAV ~ 1 4,873.73 2 28.52 0.00 

PD ~ s(Period, by = Year) 7,488.77 12 0.01 0.33      
PD ~ 1 8,984.35 2 1,495.60 0.00      
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Table 3.4 (Patch C) AIC comparison of dynamic generalized additive models (GAM) to a static model (y = µ) for describing the 

temporal variability of 14 grassland fuel parameters. The model with the lowest AICi score is the “top” model for describing the given 

parameter (Akaike 1973). The number of parameters used in each model is indicated by ki. The relative amount of information loss 

compared to the top model is indicated by ∆i. The relative strength of each model is interpreted as wi . 

 

Model AICi ki ∆i wi Model AICi ki ∆i wi 

FFL ~ s(Period) 14,312.35 11 0.00 0.57 FBD ~ s(Period, by = Year) 8,727.96 12 0.00 0.37 

FFL ~ s(Period, by = Year) 14,314.30 12 1.95 0.21 FBD ~ s(Period) 8,727.97 11 0.01 0.37 

FFL ~ s(Period) + Year 14,314.30 12 1.95 0.21 FBD ~ s(Period) + Year 8,728.71 12 0.75 0.26 

FFL ~ 1 14,832.06 2 519.71 0.00 FBD ~ 1 9,293.64 2 565.68 0.00 

          
FFLL ~ s(Period) + Year 12,387.96 12 0.00 0.91 FBDL ~ s(Period) + Year 8,565.79 12 0.00 0.93 

FFLL ~ s(Period) 12,393.86 11 5.90 0.05 FBDL ~ s(Period) 8,572.35 11 6.56 0.03 

FFLL ~ s(Period, by = Year) 12,393.87 12 5.91 0.05 FBDL ~ s(Period, by = Year) 8,572.36 12 6.58 0.03 

FFLL ~ 1 13,017.57 2 629.61 0.00 FBDL ~ 1 9,614.98 2 1,049.19 0.00 

          
FFLD ~ s(Period) + Year 13,005.15 12 0.00 0.57 FBDD ~ s(Period) 7,907.63 11 0.00 0.46 

FFLD ~ s(Period) 13,007.10 11 1.95 0.22 FBDD ~ s(Period, by = Year) 7,908.69 12 1.06 0.27 

FFLD ~ s(Period, by = Year) 13,007.12 12 1.97 0.21 FBDD ~ s(Period) + Year 7,908.69 12 1.06 0.27 

FFLD ~ 1 13,362.56 2 357.41 0.00 FBDD ~ 1 8,114.08 2 206.45 0.00 
          
FMC ~ s(Period, by = Year) 9,926.63 12 0.00 0.39 BD ~ s(Period) 7,379.04 11 0.00 0.35 

FMC ~ s(Period) 9,926.64 11 0.01 0.39 BD ~ s(Period) + Year 7,379.16 12 0.12 0.33 

FMC ~ s(Period) + Year 9,927.84 12 1.21 0.21 BD ~ s(Period, by = Year) 7,379.16 12 0.12 0.33 

FMC ~ 1 11,422.70 2 1,496.07 0.00 BD ~ 1 7,583.46 2 204.42 0.00 
          
FMCD ~ s(Period, by = Year) 475.34 12 0.00 0.33 BDL ~ s(Period) + Year 5,701.62 12 0.00 1.00 
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FMCD ~ s(Period) + Year 475.34 12 0.00 0.33 BDL ~ s(Period) 5,712.37 11 10.76 0.00 

FMCD ~ s(Period) 475.34 11 0.00 0.33 BDL ~ s(Period, by = Year) 5,731.40 12 29.79 0.00 

FMCD ~ 1 508.14 2 32.80 0.00 BDL ~ 1 5,893.58 2 191.96 0.00 
          
PL ~ s(Period) + Year 8,320.07 12 0.00 1.00 BDD ~ s(Period, by = Year) 10,438.29 12 0.00 0.47 

PL ~ s(Period) 8,346.82 11 26.75 0.00 BDD ~ s(Period) + Year 10,438.29 12 0.00 0.47 

PL ~ s(Period, by = Year) 8,346.84 12 26.77 0.00 BDD ~ s(Period) 10,442.70 11 4.41 0.05 

PL ~ 1 9,515.71 2 1,195.64 0.00 BDD ~ 1 10,451.69 2 13.41 0.00 

          
PD ~ s(Period) + Year 8,320.07 12 0.00 1.00 SAV ~ s(Period) 4,864.37 11 0.00 1.00 

PD ~ s(Period) 8,346.82 11 26.75 0.00 SAV ~ 1 4,901.38 2 37.01 0.00 

PD ~ s(Period, by = Year) 8,346.98 12 26.91 0.00      
PD ~ 1 9,515.71 2 1,195.64 0.00      
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Table 3.5 AIC comparison of dynamic generalized additive models (GAM) that describe 

the spatial variability of 14 grassland fuel parameters. The model with the lowest AICi 

score is the “top” model for describing the given parameter (Akaike 1973). The number 

of parameters used in each model is indicated by ki. The relative amount of information 

loss compared to the top model is indicated by ∆i. The relative strength of each model is 

interpreted as wi . 

Model AICi ki ∆i wi 

FFL ~ s(Period) 43031.95 11.00 0.00 1.00 

FFL ~ s(Period, by = Patch) 43396.20 12.00 364.25 0.00 

     
FFLL ~ s(Period) 35517.46 11.00 0.00 1.00 

FFLL ~ s(Period, by = Patch) 35895.56 12.00 378.10 0.00 

     
FFLD ~ s(Period) 38120.08 11.00 0.00 1.00 

FFLD ~ s(Period, by = Patch) 38236.50 12.00 116.42 0.00 

     
FMC ~ s(Period) 31237.91 11.00 0.00 1.00 

FMC ~ s(Period, by = Patch) 32670.18 12.00 1432.27 0.00 

     
FMCD ~ s(Period) 1265.47 11.00 0.00 1.00 

FMCD ~ s(Period, by = Patch) 1285.37 12.00 19.90 0.00 

     
PL ~ s(Period) 25040.33 11.00 0.00 1.00 

PL ~ s(Period, by = Patch) 25158.04 12.00 117.71 0.00 

     
PD ~ s(Period) 26951.84 11.00 0.00 1.00 

PD ~ s(Period, by = Patch) 27482.32 12.00 530.49 0.00 

     
FBD ~ s(Period) 26286.52 11.00 0.00 1.00 

FBD ~ s(Period, by = Patch) 26878.92 12.00 592.40 0.00 

     
FBDL ~ s(Period) 18219.97 11.00 0.00 1.00 

FBDL ~ s(Period, by = Patch) 18403.35 12.00 183.38 0.00 

     
FBDD ~ s(Period) 22144.41 11.00 0.00 1.00 

FBDD ~ s(Period, by = Patch) 22345.88 12.00 201.47 0.00 

     
BD ~ s(Period) 32381.27 11.00 0.00 1.00 

BD ~ s(Period, by = Patch) 32480.88 12.00 99.61 0.00 

     
BDL ~ s(Period) 13911.88 11.00 0.00 1.00 

BDL ~ s(Period, by = Patch) 13961.61 12.00 49.73 0.00 
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BDD ~ s(Period) 20446.43 11.00 0.00 1.00 

BDD ~ s(Period, by = Patch) 20463.16 12.00 16.73 0.00 

     
SAV ~ s(Period) 14644.69 11.00 0.00 0.99 

SAV ~ s(Period, by = Patch) 14653.08 12.00 8.40 0.01 
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FIGURES 
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Figure 3.1 Moisture content of the fuelbed over two growing seasons (sampling periods 

<15 were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for 

the top GAM model that accounted for non-linear trends in a fuel property. 
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Figure 3.2 The percentage of 1-hr fuels in a fuelbed over two growing seasons (sampling 

periods <15 were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence 

intervals for the top GAM model that accounted for non-linear trends in a fuel property. 

 

 



65 

 

  

  



66 

 

  

Figure 3.3 The percentage of live fuels in a fuelbed over two growing seasons (sampling 

periods <15 were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence 

intervals for the top GAM model that accounted for non-linear trends in a fuel property. 
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Figure 3.4 The fuel bed depth of live fuels over two growing seasons (sampling periods 

<15 were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for 

the top GAM model that accounted for non-linear trends in a fuel property 
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Figure 3.5 Fuel bed depth over two growing seasons (sampling periods <15 were in 2012, 

≥15 were in 2013). Light blue lines are 95% confidence intervals for the top GAM model 

that accounted for non-linear trends in a fuel property. 
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Figure 3.6 Fine fuel load of live fuels over two growing seasons (sampling periods <15 

were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for the 

top GAM model that accounted for non-linear trends in a fuel property. 
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Figure 3.7 Fine fuel load of the fuel bed over two growing seasons (sampling periods <15 

were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for the 

top GAM model that accounted for non-linear trends in a fuel property. 
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Figure 3.8 Bulk density of the fuelbed over two growing seasons (sampling periods <15 

were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for the 

top GAM model that accounted for non-linear trends in a fuel property. 
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Figure 3.9 Fuel load of 1-hr fuels over two growing seasons (sampling periods <15 were 

in 2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for the top 

GAM model that accounted for non-linear trends in a fuel property. 
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Figure 3.10 Fuel bed depth of 1-hr fuels over two growing seasons (sampling periods <15 

were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for the 

top GAM model that accounted for non-linear trends in a fuel property. 
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Figure 3.11 Bulk density  of live fuels over two growing (sampling periods <15 were in 

2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for the top GAM 

model that accounted for non-linear trends in a fuel property. 
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Figure 3.12 Bulk density of 1-hr fuels over two growing seasons (sampling periods <15 

were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence intervals for the 

top GAM model that accounted for non-linear trends in a fuel property. 
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Figure 3.13 Surface area to volume ratio of the fuelbed over two growing seasons 

(sampling periods <15 were in 2012, ≥15 were in 2013). Light blue lines are 95% 

confidence intervals for the top GAM model that accounted for non-linear trends in a fuel 

property. 
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Figure 3.14 Fuel moisture content of 1-hr fuels over two growing seasons (sampling 

periods <15 were in 2012, ≥15 were in 2013). Light blue lines are 95% confidence 

intervals for the top GAM model that accounted for non-linear trends in a fuel property. 
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SUPPORTING INFORMATION 

Figure 3.S5. Experimental design used to quantify temporal and spatial variability in 14 

grassland fuel properties used in fire behavior fuel models. Our experimental site was 

located in the North American Great Plains Tallgrass Prairie (A). Three experimental 

grassland landscapes were used as replicates, each consisting of six patches (64 ha each) 

at various stages of recovery from burn treatments (B). Shades of green represent 

growing season fire treatments and shades of orange represent dormant season fire 

treatments. Yearling cattle were moderately stocked (3.0 AUM/ha) from 1 December to 1 

September. No internal fences were present so that livestock could graze freely across an 

entire landscape. Within each landscape, fire was applied to each patch once every three 
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years either in the growing season only or dormant season only since the establishment of 

the site in 1999 (C).  
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CHAPTER IV 

EXPERIMENTAL FLAMMABILITY THRESHOLDS OF EASTERN REDCEDAR AS 

A POTENTIAL INDICATOR FOR HEIGHTENED WILDFIRE DANGER 

 

INTRODUCTION 

 Identifying ecological thresholds can guide managers to anticipate how a system 

responds to disturbance, prioritize management, prevent undesirable state changes, and 

promote desirable ecosystem services (Suding et al. 2004; Bestlemeyer 2006; Briggs et 

al. 2009; Twidwell et al. 2013). An ecological threshold is defined as the point at which a 

relatively small change in an environmental condition or driver leads to abrupt changes in 

ecosystem composition or function (Groffman et al. 2006; Suding and Hobbs 2009). 

Sudden changes in ecosystem composition or function are characterized as state shifts, in 

which a state describes a set of values or attributes typically observed in the system of 

interest (Suding and Hobbs 2009). The use of threshold models in ecosystem 

management has become increasingly popular with mounting evidence that ecosystems 

are highly dynamic over space and time and may respond abruptly, and oftentimes 

undesirably, to relatively small changes in environmental conditions (Scheffer et al. 

2001). 

 The challenge in applying the threshold concept has been quantifying thresholds 

that are useful in informing management decisions, but few quantitative thresholds have 

been directly relevant to management actions or environmental monitoring protocols 

(Briske et al. 2006; Bestlemeyer 2006; Suding and Hobbs 2009). Such threshold models 

may result in inconsistent restoration outcomes, undesirable state shifts, or loss of desired 



92 

 

  

ecosystem services. In contrast, a small number of studies have rigorously quantified 

ecological thresholds associated with disturbance in terrestrial systems. Petraitis et al. 

(2009) quantified a threshold in the amount of ice scour associated with a state change 

from a rockweed stand to a mussel bed marine ecosystem. Carpenter et al. (2011) 

quantified a threshold in the amount of top predators in a freshwater lake associated with 

a state change from a food web dominated by planktivorous fishes to one dominated by 

piscivorous fishes. Twidwell et al. (2013) coupled models from applied fire physics and 

fire ecology to experimental data and quantified a threshold in the fire intensity 

associated with Ashe juniper (J. ashei) mortality. However, beyond these three 

empirically tested threshold models, most threshold models used to guide management 

decisions remain largely qualitative (Standish et al. 2014). 

 Quantitative threshold models relating wildfire risk to horticultural plants remain 

an unexplored area of research that connects the discipline of applied ecology with 

society. Multiple horticultural tree species relate closely with wildfire occurrence and 

structure loss in urban communities, especially during periods of drought (Franklin 1996; 

Lambert et al. 2010; Syphard et al. 2014). Eastern redcedar (Juniperus virginiana L.) is a 

hardy evergreen tree commonly planted throughout the United States for its drought 

tolerance, rapid growth rates, and its wide native range (Engle et al. 1996; Ganguli et al. 

2008). Eastern redcedar foliage becomes increasingly flammable as drought conditions 

worsen, meaning that it has not presented a major fire hazard in regions where wildfires 

have been rare in recent decades (Engle and Stritzke 1995; Weir and Scasta 2015). In the 

southern Great Plains, however, increases in the occurrence and severity of drought have 

increased awareness on the potential for Eastern redcedar to combust and heighten 
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wildfire risks. Our current understanding of thresholds in the flammability of Eastern 

redcedar and its associated wildfire risk, however, remains unknown. 

 The objective of this study was to quantify thresholds in the flammability of 

Eastern redcedar and its associated wildfire risk across a gradient of fuel moisture 

content. Foliar fuel moisture content plays a large role in determining whether a tree will 

ignite, and if so, how efficient its combustion will be after ignition (Dimitrakopoulos and 

Papaioannou 2001). Foliage on live Eastern redcedar trees has been observed to fall 

below 60% moisture content during extreme drought periods, and dead foliage can 

approach 0% (Twidwell 2012). Foliage moisture content therefore serves as property that 

can be readily measured for rapid risk assessment during periods when wildfire 

occurrence is becoming more likely. To quantify flammability thresholds as drought 

worsens, I manipulated the foliage moisture content of randomly selected live cedar trees 

to establish a foliage moisture gradient of 0% to 180% and measured three common 

characteristics of flammability; ignitibility (time to ignition), sustainability (time 

sustained ignition), and combustibility (the intensity of combustion) (Anderson 1970; 

Dimitrakopoulous and Papaioannou 2001; White and Zipperer 2010). 

 

MATERIALS AND METHODS 

 Foliage samples were collected at the Twin Lakes Wildlife Management Area 

(WMA) in Seward, County, NE (lat 40°82N; long -96°94W). Foliage samples were 

harvested from a randomly selected lush, female Eastern redcedar tree approximately 3m 

in height. Following standard techniques used in flammability trails in conifers, samples 

(6 cm in length) were harvested from the lower third of the crown and from the tips of 
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branches only (Jolly et al. 2012; Pausas et al. 2012). This is done to limit the amount of 

variation in the initial moisture content of foliage samples. Immediately following 

harvest, all foliage samples (100 total) were placed into plastic bags to prevent moisture 

loss during transport to the laboratory. All samples were immediately weighed in the 

laboratory to obtain a field (wet) weight.  

To simulate the affect of drought on foliage moisture content, I dried samples for 

different periods of time to establish 10 foliage moisture classes. Equidistant foliage 

moisture classes were established at 20% intervals and ranged from 180% (field 

conditions, no drying) to 0% (dead and completely dried foliage). Samples were dried in 

a 60°C convection oven until the desired foliage moisture content was obtained for each 

foliage moisture class. Each foliage moisture class consisted of 10 replicate samples. 

Foliage moisture content (FMC) for each class was established on a dry weight basis 

using the equation below: 

𝐹𝑀𝐶 = (
𝑊𝑊 − 𝐷𝑊

𝐷𝑊
) × 100 

And where WW is the fresh (wet) weight of the sample immediately following harvest 

and DW is the oven dry weight of the sample after all the moisture had been removed 

(Norum and Miller 1984; Jolly and Hadlow 2011). 

 Once I established how long to keep foliage samples in the convection oven to 

obtain a desired fuel moisture content, I established 10 fuel moisture content classes 

ranging from live (wet) to 0% fuel moisture content and dried foliage samples 

accordingly. The fuel moisture content of fresh (wet) foliage samples was first calculated 

to establish the upper bound of fuel moisture content classes. Fuel moisture content 

classes were then established ranging from 180% (live foliage) to 0% (oven dry) in 20% 
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increments. Each fuel moisture content class consisted of 10 foliage samples that were 

individually subjected to flammability measurements. 

I conducted this flammability experiment in a laboratory vent hood with no forced 

airflow (Pausas et al. 2012). A wide mouth Bunsen burner provided the pilot flame for 

ignition (Scarff and Westoby 2006). The pilot flame was placed approximately 3.3 cm 

below the foliage sample (Dimitrakopoulous and Papaioannou 2001; Weir and Scasta 

2014). Flame height and temperatures were measured using a LumaSense MC320LHT 

thermal imaging camera. Flame height was held constant among samples at 

approximately 1.5 cm. Flame temperatures were 718 ± 3°C. Samples were securely 

positioned on top of a wire mesh until either (1) combustion was complete, or (2) ignition 

had not occurred within 120 seconds. To maintain consistency between samples and to 

avoid extraneous heat transfer between the wire mesh and Eastern redcedar foliage, the 

wire mesh was cooled and allowed to equilibrate to room temperature between ignitions. 

I measured three common flammability characteristics for each sample. 

Ignitability is the amount of time it takes for ignition to occur once a fuel is exposed to a 

heat source and was measured with a stopwatch to record the amount of time it took for 

each sample to ignite once placed above the pilot flame (Anderson 1970; 

Dimitrakopoulos and Papaioannou 2001). Combustibility is the rapidity of combustion 

after ignition and was measured as the maximum length of the visual flame to the nearest 

mm (Anderson 1970; White and Zipperer 2010). Sustainability is the ability for a fuel to 

sustain combustion once ignited and was calculated as the amount of time that each 

sample maintained flaming combustion once placed above the pilot flame (Anderson 

1970; White and Zipperer 2010). Measurements for combustibility and sustainability 
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were derived post hoc using LumaSpec RT software. The thermal imaging camera 

records infrared radiation very half second for a 320 x 220 cell array. Individual cell sizes 

are based on the distance of the camera to the sample (406 mm in this study), resulting in 

0.49 mm x 0.49 mm individual cell sizes. By replaying each video in LumaSpec RT 

software, I was able to derive the height of each flame to the nearest 0.49 mm 

(combustibility), as well as measure the duration of flaming combustion for each sample 

to the nearest half second (sustainability). 

  

RESULTS 

 A threshold in Eastern redcedar ignitability was detected when foliage moisture 

content dropped below 80% (Figure 4.1), whereas thresholds in combustibility and 

sustainability did not occur until foliage moisture content reached 0% (Figures 4.2, 4.3). 

The average time to ignition between fuel moisture content classes ranged from 1.1 s (0% 

fuel moisture content) to 10.5 s (180% fuel moisture content). When the fuel moisture 

content of J. virginiana foliage was between 180% and 80%, the average difference 

between classes in time to ignition was 0.4 s. When the fuel moisture content of J. 

virginiana foliage was between 60% and 0%, however, the average difference between 

classes in time to ignition was 2.32 s. The average time flaming combustion was 

sustained between fuel moisture content classes ranged from 6.1 s (0% fuel moisture 

content) to 10.1 s (180% fuel moisture content). When the fuel moisture content of J. 

virginiana foliage was between 180% and 20%, the average difference between classes in 

the amount of time flaming combustion was sustained was 1.03 s. When the fuel moisture 

content of J. virginiana foliage was below 20%, however, the amount of time flaming 
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combustion was sustained was reduced by 1.67 s. The average maximum flame height 

between fuel moisture content classes ranged from 2.2 cm (80% fuel moisture content) to 

3.2 (0% fuel moisture content). When the fuel moisture content of J. virginiana foliage 

was between 180% and 20%, the average difference between classes in maximum flame 

height was 0.1 cm. When the fuel moisture content of J. virginiana foliage was below 

20%, however, the maximum flame height increased by 0.7 cm. 

 

DISCUSSION 

 Eastern redcedar (J. virginiana), a commonly planted horticultural tree, is not 

typically viewed as a wildfire risk because the conditions in which it becomes highly 

flammable seldom occur. Our study shows that there is a threshold in the flammability of 

Eastern redcedar once its fuel moisture content drops below 80%. Low fuel moisture 

content is commonly observed during extreme drought periods (Rothermel 1972, 

Dimitrakopoulos and Papaionnou 2001). Lower precipitation also has been shown to 

increase fire intensity of Eastern redcedar (Engle and Stritzke 1995). In regions where 

Eastern redcedar is highly abundant (e.g. the southern Great Plains), large, and oftentimes 

devastating wildfires occur during extreme drought years (Reid et al. 2010; Krueger et al. 

2015). Further, trees planted as a part of horticultural and conservation practices might 

not have posed a threat to wildfire under historic climate analogues, but with increased 

frequency and severity of drought events projected to occur by the end of the century 

(Walsh et al. 2014), the traits of some species will cause them to contribute to heightened 

wildfire danger in coming decades. 
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Our results are consistent with and expand upon previous studies investigating 

components of Eastern redcedar flammability under varying fuel moisture contents. Weir 

and Scasta (2014) conducted a similar study to investigate the effects of fuel moisture 

content and fire temperature on the flammability of Eastern redcedar. In this study, they 

found that as foliar moisture content in decreased, the time it took for ignition to occur 

decreased and flame height increased quadratically, In contrast to our study, Weir and 

Scasta (2014) observed no relationship between fuel moisture content and the duration of 

sustained flaming combustion. I observed a threshold in the amount of time Eastern 

redcedar sustained flaming combustion once fuel moisture content was lower than 20%. 

Our study builds upon previous work by identifying thresholds in the flammability 

components measured rather than reporting only on directional trends. I also aim to 

improve the robustness of our results in practical applications by preserving the 

architecture of Eastern redcedar foliage during the flammability tests rather than burning 

a homogenous fuelbed of foliage (Schwilk 2003; Belcher 2016). 

 A quantitative understanding of thresholds in flammability of Eastern redcedar 

will become increasingly important in the upcoming decades as this commonly planted 

ornamental tree continues to expand into new environments in the Great Plains (Wilson 

and Scmidt 1990; Schmidt and Wardle 2002) and millions of new seedlings are 

distributed each year across Great Plains states (Ganguli et al. 2008). Recent changes in 

the frequency, intensity, and spatial extent of fires have been identified as one of the 

primary factors enabling the expansion of Eastern redcedar to open grasslands (Briggs 

and Gibson 1992; Twidwell et al. 2013b). Intensive grazing, landscape fragmentation, 

and continued planting are other primary factors enabling the expansion of Eastern 
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redcedar to open grasslands (Schmidt and Stubbendieck 1993; Knapp and Seastedt 1998; 

Ganguli et al. 2008). Vast regions of open grassland have been converted to closed-

canopy cedar woodland (Bragg and Hulbert 1976; Miller and Rose 1999). For example, 

in the matter of decades, the Grand River Grassland in Iowa observed the number of 

individual redcedar trees increase by over 800% (Harr et al. 2014). In the northern Flint 

Hills of Kansas, Eastern redcedar woodlands have increased by over 120% in just 15 

years (Brigs et al. 2002). In Oklahoma, the amount of rangeland infested with Eastern 

redcedar more than doubled from 600,000 ha in 1950 to over 1,400,000 ha in 1985 

(Snook 1985). 

Moving forward, the flammability thresholds identified in this study can be used 

to help improve wildfire management planning, fire hazard, and risk assessments of 

wildland fuels. Our results show that even though the ignitibility of Eastern redcedar 

rapidly increases when fuel moisture content drops below 80%, if ignited, the foliage will 

burn for as long and have similar flame lengths until fuel moisture content reaches 0%. 

For a wildland firefighter, this means that the likelihood of an Eastern redcedar tree 

igniting as a firefront passes rapidly increases when fuel moisture content is lower than 

80%. In real landscapes, both time to ignition and the amount of heat at the firefront 

determine the likelihood of ignition (Rothermel 1972). Accordingly, variance might be 

observed in real-world applications of our results. Moreover, by monitoring the fuel 

moisture content of Eastern redcedar, especially during drought conditions, firefighters 

and managers will have a better idea of when to expect rapid and sudden changes in the 

flammability and wildfire risk of Eastern redcedar. 
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FIGURES 

 

Figure 4.1. The ignitibility of Eastern redcedar (defined as the amount of time required 

for a given amount of heat to cause flaming combustion) across a gradient of fuel 

moisture contents (FMC).  
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 Figure 4.2. The sustainability of Eastern redcedar (defined as the amount of time flaming 

combustion was sustained) across a gradient of fuel moisture contents (FMC). 
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 Figure 4.3. The combustibility of Eastern redcedar (measured by maximum flame height 

observed during combustion) across a gradient of fuel moisture contents (FMC). 
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