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Directed catalytic asymmetric hydroborations of 1,1-disubstituted

alkenes afford c-dioxaborato amides and esters in high enantiomeric
purity (90–95% ee).

Chiral organoboronates are useful synthetic intermediates for

a growing number of stereospecific transformations.1 As such,

there is renewed interest in enantioselective methods for their

preparation.2–9 We reported advances in the carbonyl-directed

catalytic asymmetric hydroboration (CAHB) of (E)- and (Z)-

disubstituted and trisubstituted alkenes contained within a

b,g-unsaturated amide framework.10,11 Their rhodium-catalysed

reactions employ simple chiral monophosphite ligands to produce

b-borylated products regio- and enantioselectively. For example,

directed-CAHB of 1 by pinacolborane (pinBH) or 4,4,6-tri-

methyl-1,3,2-dioxaborinane (tmdBH, 5)12 using Rh(nbd)2BF4

in conjunction with TADDOL-derived phosphite (R,R)-6 gives

b-dioxaborato amide (S)-2 in high enantiomeric purity (tmdBH:

79% (96% ee); pinBH: 77% (95% ee), Fig. 1). Only trace amounts

of the regioisomeric g-substituted product are formed (o3%).

As highlighted in several recent reports,13 1,1-disubstituted

alkenes (i.e., methylidene substrates) are particularly challenging

substrates for asymmetric hydroboration.14 Directed-CAHB

of the methylidene substrate, b,g-unsaturated amide 3, affords

predominantly (R)-4 (tmdBH: 72% (95% ee); pinBH: 68%

(60% ee); Fig. 1). In contrast to unsaturated amide 1, the

isomeric substrate 3 affords the g-borylated, rather than

b-borylated, product predominantly. Equally unexpected,

using the same chiral ligand and catalyst, tmdBH adds to

opposite faces of the alkene in the isomeric substrates.

The results obtained for a series of methylidene substrates

are summarized in Table 1. Amides 7a–e bearing a primary or

secondary alkyl substituent and the phenyl-substituted amide

7f give their respective g-borylated product predominantly

(i.e., 8a–f, 90–94% ee). Our previous reports of carbonyl-

directed CAHB used amide directing groups exclusively (i.e.,

–C(O)N(H)Ph and –C(O)N(Me)OMe). Here, we find that the

b,g-unsaturated tert-butyl esters serve equally well; 7g–i afford

g-borylated esters 8g–i (91–94% ee). Competing alkene

reduction and formation of the b-borylated regioisomer 9

Fig. 1 Regio- and enantioselective carbonyl-directed CAHB of 1,2-

and 1,1-disubstituted alkenes (ee determined after oxidation).

Table 1 Enantioselective CAHB of 1,1-disubstituted alkenes 7a–7ia

7 X R g-Isomer % Yield (% ee)a % Yield 9b

a NHPh Me (S)-8a 53 (94) 11
b NHPh Et (R)-8b 60 (92) 10
c
c NHPh (CH2)2Ph (R)-8c 73 (94) 3
d
c NHPh (CH2)3Ph (R)-8d 70 (92) 3
ec NHPh c-C6H11 (S)-8e 72 (90) 2
fc NHPh C6H5 (S)-8f 71 (93) 4
g O-tBu Me (S)-8g 62 (94) 6
h O-tBu Et (R)-8h 65 (91) 5
i O-tBu i-Bu (R)-8i 78 (91) 4

a Isolated yield and (% ee) of 8; enantiomeric purity determined

by chiral HPLC analysis after oxidation and for 7g–i subsequent

amidation. b Isolated yield of b-isomer 9. c Reaction run at 40 1C.
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account for the remainder of products formed; regiocontrol is

most problematic for amide substrates bearing relatively small

substituents (i.e., 7a–b, R = Me or Et).

Trifluoroborate salts are excellent reagents for Suzuki–

Miyaura cross-coupling reactions.15 UsingMolander’s conditions,8

the g-borylated amide (S)-8a is cleanly converted to g-trifluoro-
borato amide (S)-10a (65%). The latter readily undergoes

palladium-catalyzed cross-coupling with several representative

aryl halides (70–81%, Table 2 entries 1–3) complementing the

cross-couplings of b-borylated carbonyl derivatives.16 The tert-

butyl ester derivatives (S)-10g and (R)-10i react similarly

(80–94%, entries 4–9). Heteroaromatic cross-couplings are

also promising (entries 10–12). For example, trifluoroborate

(R)-10h couples to 3-chlorothiophene (80%, entry 13) giving the

precursor to a chiral antispasmodic compound previously

reported only as the racemate.17

Directed CAHB can also be used to set the stage for intra-

molecular cross-couplings. CAHB of tert-butyl ester 12 produces

(R)-13 (74%, 90% ee, Scheme 1). Subsequent conversion to the

corresponding trifluoroborate (76%) followed by palladium-

catalyzed intramolecular cross-coupling affords (S)-14 in

excellent yield (91%). Alternatively, hydroboration followed

by mild oxidation with NaBO3 produces g-hydroxyester (R)-15
(73%, 90% ee). The latter undergoes palladium-catalyzed C–O

cross-coupling18 to afford the novel seven-membered ring ether

(R)-16 (75%).

Directed CAHB of amides 3 and 7c using (R,R)-6 followed

by oxidative work-up with basic H2O2 gives the respective

g-hydroxyamides (R)-17 and (R)-18 (71% yield for each, 95

and 94% ee, respectively) (Fig. 2). Similarly, CAHB of tert-

butyl ester 7i followed by mild oxidation with NaBO3 affords

the labile g-hydroxyester (R)-19 (77%, 91% ee). However,

under basic H2O2 work-up conditions, the intermediate

g-hydroxyester spontaneously lactonizes to afford a chiral

b-substituted g-lactone. For example, CAHB of tert-butyl ester

7i using ligand (S,S)-6 affords lactone (S)-20 (78%, 91% ee); the

latter has been used as a precursor to the anticonvulsant drug

pregabalin.19 Similarly, tert-butyl ester 21a gives (R)-22a (80%,

95% ee) and 21b gives (R)-22b (79%, 95% ee) using the catalyst

with (R,R)-6. With the enantiomeric ligand (i.e., (S,S)-6), CAHB-

oxidation of 21c affords (S)-22c (75%, 92% ee). b-Substituted
butyrolactones undergo diastereoselective alkylation and have

been used in syntheses of the lignan natural products (�)-entero-
lactone and (+)-arctigenin.20

The relative energies of a series of octahedral intermediates

formed upon two-point binding of amide substrates followed

by oxidative addition of borane were evaluated by DFT

(Fig. 3, 23A/C and 24B/D).21 The modelled structures employ the

symmetric borane pinBH and the caged phosphite P(OCH2)3CH to

simplify the calculations. In line with experiment, the overall lowest

energy structure for the model methylidene substrate is consistent

Table 2 Efficient cross-coupling of g-borylated esters and amides

Entry Trifluoroboratea Aryl halide % Yield

1 (S)-10a Chlorobenzene 81
2b (S)-10a 3-Bromoanisole 71
3 (S)-10a Methyl-4-bromobenzoate 70
4 (S)-10g Chlorobenzene 82
5 (S)-10g 3-Bromoanisole 82
6 (S)-10g Methyl-4-bromobenzoate 88
7 (R)-10i Chlorobenzene 80
8 (R)-10i 3-Bromoanisole 92
9 (R)-10i Methyl-4-bromobenzoate 94
10 (R)-10i 3-Chlorothiophene 98
11 (R)-10i 5-Chloro-2-furaldehyde 84
12 (R)-10i 5-Chloro-2-fluoropyridine 51
13 (R)-10h 3-Chlorothiophene 80

a Enantiomeric purity of 8 is given in Table 1. b Reaction was run with

SPhos in place of RuPhos.

Scheme 1 (a) 2% Rh(nbd)2BF4, 4.1% (R,R)-6, 2 equiv. tmdBH,

THF, 40 1C (74%, 90% ee). (b) KHF2, MeCN/H2O (76%). (c) 5%

Pd(OAc)2, 10% RuPhos, K2CO3, PhMe/H2O, 85 1C, 24 h (91%).

(d) NaBO3, THF/H2O (98%). (e) 5% Pd(OAc)2, 10% RuPhos,

K3PO4, PhMe, 85 1C, 24 h (75%).

Fig. 2 Preparation of chiral g-hydroxy amides and esters and b-substituted
g-lactones via CAHB-oxidation.
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with favored formation of the g-borylated product upon alkene

insertion into the Rh–H bond (i.e., A); the lowest energy structure

leading to b-borylation (i.e., B) is calculated to be about 1.9 kcal

higher in energy and arises from complexation to the opposite

face of the p-system. Structures C and D model a simple

1,2-disubstituted alkene with the (E)-geometry (i.e., a model

for amide 1). Consistent with the experimental observations,

the b-leading isomer D is favored for this substitution pattern.

In contrast to tri- and other disubstitution patterns, CAHBs

of b,g-unsaturated methylidene amides and esters afford the

g-borylated product and proceed in the opposite sense of asym-

metric induction. Chiral g-borylated derivatives are intermediates

for inter- and intramolecular cross-couplings, the formation of

chiral g-hydroxy carbonyl derivatives, and b-substituted-g-lactones.
Preliminary computational studies suggest that the preferred

conformation of the chelated substrate relative to the Rh–H

bond may explain the observed regio- and p-facial selectivity.
Further studies are in progress.
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