Findings of the Indiana Highway Cost Allocation Study

KUMARES C. SINHA Professor of Civil Engineering

TIEN FANG FWA Graduate Instructor in Research

HAROLD L. MICHAEL Head School of Civil Engineering

INTRODUCTION

The 1983-84 Indiana Highway Cost Allocation Study was mandated by the House Enrolled Act 1006 of the 103rd Indiana General Assembly. The legislative requirements consisted of two parts:

- 1. Documentation of the full cost of building and maintaining the state's highway system, county roads and city streets.
- 2. Development of an equitable methodology for allocating the full costs to all users.

Although determination of the revenue contributed by each vehicle class was not within the initial scope of study, the study would not have been complete without such information. The results of a cost allocation study would be meaningful only if they were compared to the corresponding user revenue contribution. It was therefore decided to include an analysis of revenue contribution of individual highway user classes as a task of the study.

Cost allocation and revenue attribution analyses were carried out for a base period and a study period. The based period covered a span of four years, 1980 to 1983 inclusive. The study period referred to the biennial budget period of 1985-86.

DOCUMENTATION OF COSTS

For the purpose of cost allocation analysis, it was necessary to classify all costs into expenditure areas and expenditure items. The cost categories adopted is shown in Table 1. This detailed information for the state highway system was generated by analyzing Indiana Department of Highways (IDOH) data files. These included road life records, construction reports, itemized cost estimates, monthly expenditure files, and routine maintenance files.

For the local highway system, the corresponding data were collected directly from a number of counties and cities. The IDOH local road

Highway Construction	Structure Construction and Replacement	Highway Rehabilitation	Structure Rehabilitation	Routine Maintenance	Other Costs
Right-of-Way Grading and	Excavation and Backfill	Grading and Earthwork	Concrete Steel Rein-	Drainage and Erosion Control	Enforcement (policing)
Earthwork	Concrete	Drainage and Erosion Control	forcements	Pavement and Shoulder	Weight Inspection
Drainage and	Steel Rein-		Structural		
Erosion Control	forcements	Pavement and Shoulder	Steel	Bridge	Special Railroad
Pavement	Structural Steel	Miscellaneous	Miscellaneous Items	Miscellaneous Items	Crossings
Shoulder	Piers and Piling	Items			
Miscellaneous	0				
Items	Culverts and Sign Structures				
	Miscellaneous Items				

Table 1. Expenditure Items by Expenditure Area

inventory files, local assistance project records and HPMS records were also used.

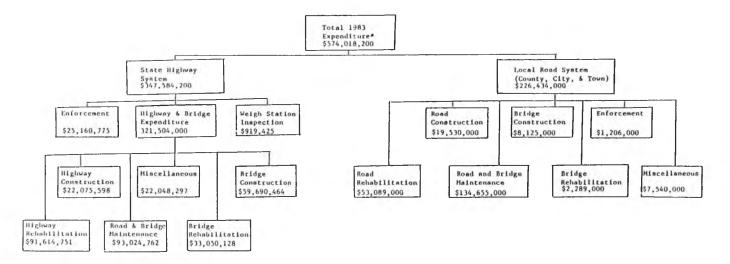
The base period cost responsibility and revenue contribution figures were computed for the fiscal year of 1983. A breakdown of the total expenditure in major cost categories for 1983 is shown in Figure 1. The corresponding expenditure data for the 1985-86 period are presented in Figure 2. The 1985-86 data were estimated from the adopted program levels.

USER REVENUE CONTRIBUTION

Revenues considered in the study were defined as those revenues contributed by Indiana highway users which were used to support highway activities. The following sources of revenue supported these activities in Indiana:

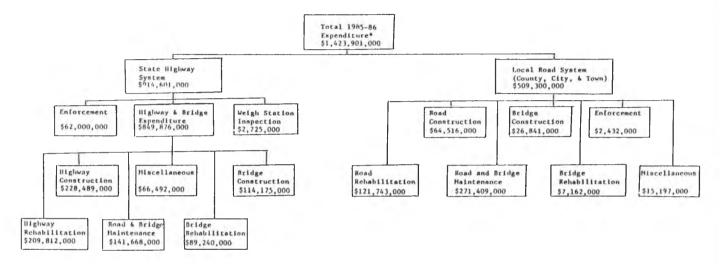
- 1. State gasoline and special fuel taxes
- 2. State motor carrier fuel use tax
- 3. State vehicle license fees including specific periodic permit fees
- 4. State motor carrier fees including vehicle identification stamp fees
- 5. Reciprocity identification stamp fees
- 6. Oversize and overweight permit fees
- 7. Federal gasoline and special fuel taxes
- 8. Federal taxes on tires, tread rubber, inner tubes, lubricating oil, and truck parts
- 9. Federal tax on truck sales
- 10. Federal heavy vehicle use fee
- 11. Local option user taxes

Table 2 shows the revenue sources and the amounts of the FY 1983 and the biennial period of FY 1985-86 included in the user revenue contribution analysis. It should be noted that all changes in federal taxes resulting from STAA of 1982 and subsequent revisions were considered according to the effective dates of these changes.


DATA BASE FOR COST ALLOCATION ANALYSIS

Beside the cost and revenue data described earlier, the data required for cost allocation analysis also included the following:

- 1. Pavement inventory data
- 2. Traffic data
- 3. Pavement performance data
- 4. Subgrade soil data


Pavement Inventory Data

Pavement inventory data included the following subcategories: pavement characteristic data, roadway geometry data and highway functional classification. Pavement characteristics considered were pavement type,

*includes only the expenditure supported by user revenues

Figure 1. Expenditure Distribution for Fiscal Year 1983.

*includes only the expenditure supported by user revenues

Figure 2. Expenditure Distribution for Budget Period 1985/86.

TABLE 2.

HIGHWAY USER REVENUES

Amount in Millions

				1985-86
Revenue Source	FY 1983	FY 1985	FY 1986	Total
State Motor Fuel Taxes	305.18	308.00	306.00	614.00
State Vehicle Registration Fees	109.70	113.80	112.00	225.80
Other State and Local Fees	3.56	5.35	5.50	10.85
Subtotal (State and Local)	418.44	427.15	423.50	850.65
Federal Motor Fuel Taxes	111.03	196.44	214.93	411.37
Other Federal Taxes	44.53	76.39	85.50	161.89
Subtotal (Federal)	155.56	272.83	299.43	572.26
Total	574.00	699.98	722.93	1,423.91

age and thickness information. Roadway geometry data provided information such as roadway width, shoulder width and number of lanes.

The highway functional classification system adopted for the study grouped Indiana roads into six major categories. These were:

- 1. Interstate Urban
- 2. Interstate Rural
- 3. State Routes Primary
- 4. State Routes Secondary
- 5. County Roads
- 6. City Streets

Traffic Data

Traffic data encomposed traffic volume information, traffic-stream composition, truck weight data and vehicle axle configuration. One of the most critical data items necessary for the study was information on number of vehicle-miles traveled for each vehicle type on each of the highway classes.

The study team conducted a vehicle classification survey at about 60 randomly selected sites throughout Indiana during the summer of 1983. The collected data were converted to represent an average day of the year with factors developed from the FHWA report, *Vehicle Classification Case Study* [1].

To ensure accuracy of the final results of cost allocation analysis, vehicles were grouped into 14 classes as defined in Table 3. The data collected from IDOH Truck Weight Study were used to subdivide nine of the 14 classes in terms of gross operating weights. In Table 4 are listed the weight subgroups used for each of the nine vehicle classes.

TABLE 3.

ADOPTED VEHICLE CLASSIFICATION

Class	Description
1	small passenger cars
2	standard and compact passenger cars, panel and pickup
3	2-axle truck (2S and 2D)
4	bus
5	car with 1-axle trailer
6	3-axle single unit truck
7	2S1 tractor-trailer
8	car with 2-axle trailer
9	4-axle single unit truck
10	3S1 tractor-trailer
11	2S2 tractor-trailer
12	3S2 tractor-trailer
13	Other 5-axle
14	6 or more axle

TABLE 4

VEHICLE CLASS WEIGHT GROUP CLASSIFICATION

Veh Class	Sub- Group	Gross Operating Weight in Pounds	Veh Class	Sub- Group	Gross Operating Weight in Pounds
1	1	All weights	11	6	32,500 - 35,000
			11	7	35,000 - 37,500
2	1	All weights	11	8	37,500 - 40,000
			11	9	40,000 - 42,500
3	1	< 7,500	11	10	42,500 - 45,000
3	2	7,500 - 10,000	11	11	45,000 - 47,500
3	3	10,000 - 12,500	11	12	47,500 - 50,000
3	4	12,500 - 15,000	11	13	> 50,000
3	5	15,000 - 17,500			
3	6	17,500 - 20,000	12	1	< 22,500
3	7	20,000 - 22,500	12	2	22,500 - 25,000
3	8	22,500 - 25,000	12	3	25,000 - 27,500
3	9	> 25,000	12	4	27,500 - 30,000
			12	5	30,000 - 32,500
4	1	All weights	12	6	32,500 - 35,000
			12	7	35,000 - 37,500
5	1	All weights	12	8	37,500 - 40,000
		U	12	9	40,000 - 42,500
6	1	< 17,500	12	10	42,500 - 45,000

TABLE 4—(Continued)

VEHICLE CLASS WEIGHT GROUP CLASSIFICATION

Veh Class	Sub- Group	Gross Operating Weight in Pounds	Veh Class	Sub- Group	Gross Operating Weight in Pounds
6	2	17,500 - 20,000	12	11	45,000 - 47,500
6	3	20,000 - 22,500	12	12	47,500 - 50,000
6	4	22,500 - 25,000	12	13	50,000 - 52,500
6	5	25,000 - 27,500	12	14	52,500 - 55,000
6	6	27,500 - 30,000	12	15	55,000 - 57,500
6	7	30,000 - 32,500	12	16	57,500 - 60,000
6	8	32,500 - 35,000	12	17	60,000 - 62,500
6	9	> 35,000	12	18	62,500 - 65,000
			12	19	65,000 - 67,500
7	1	< 20,000	12	20	67,500 - 70,000
7	2	20,000 - 22,500	12	21	70,000 - 72,500
7	3	22,500 - 25,000	12	22	72,500 - 75,000
7	4	25,000 - 27,500	12	23	75,000 - 77,500
7	5	27,500 - 30,000	12	24	77,500 - 80,000
7	6	30,000 - 32,500	12	25	80,000 - 82,500
7	7	32,500 - 35,000	12	26	82,500 - 85,000
7	8	35,000 - 37,500			
7	9	37,500 - 40,000	13	1	< 42,500
			13	2	42,500 - 45,000
8	1	All weights	13	3	45,000 - 47,500
			13	4	47,500 - 50,000
9	1	< 22,500	13	5	50,000 - 52,500
9	2	> 22,500	13	6	52,500 - 55,000
			13	7	55,000 - 57,500
10	1	< 27,500	13	8	57,500 - 60,000
10	2	27,500 - 30,000	13	9	60,000 - 62,500
10	3	30,000 - 32,500	13	10	62,500 - 65,000
10	4	>32,500	13	11	65,000 - 67,500
			13	12	67,500 - 70,000
11	1	< 22,500	13	13	70,000 - 72,500
11	2	22,500 - 25,000			
11	3	25,000 - 27,500	14	1	< 40,000
11	4	27,500 - 30,000	14	2	40,000 - 60,000
11	5	30,000 - 32,500	14	3	> 60,000

Tables 5 through 10 show the 1983 percentage VMT for the 14 vehicle classes and all the weight groups used in the study. Similar traffic data were also estimated for the years 1985 and 1986 on the basis of the projected growth rates by vehicle class.

PERCENT VMT OF VEHICLE CLASSES ON RURAL INTERSTATE (1983)

W.h	eh	Vahiala	Mile 07	Veh		Wahiala	Mile 07
Veh	Sub-		Mile %		Sub-		-Mile %
	Group	Veh Class	-		-	veh Class	Sub-Group
1	1	15.640	15.640	11	6		0.230
0		40.040	40.040	11	7		0.195
2	1	48.840	48.840	11	8		0.180
_				11	9		0.213
3	1	2.400	0.054	11	10		0.195
3	2		0.182	11	11		0.195
3	3		0.218	11	12		0.180
3	4		0.618	11	13		0.148
3	5		0.473				
3	6		0.346	12	1	27.200	0.054
3	7		0.182	12	2		0.272
3	8		0.145	12	3		0.944
3	9		0.182	12	4		2.657
				12	5		2.149
4	1	0.310	0.310	12	6		1.333
				12	7		1.115
5	1	1.120	1.120	12	8		0.979
				12	9		0.898
6	1	0.420	0.051	12	10		0.827
6	2		0.025	12	11		0.800
6	3		0.038	12	12		0.770
6	4		0.076	12	13		0.680
6	5		0.064	12	14		0.800
6	6		0.038	12	15		0.870
6	7		0.038	12	16		1.104
6	8		0.025	12	17		0.979
6	9		0.064	12	18		0.925
-				12	19		1.034
7	1	0.360	0.012	12	20		1.496
7	2		0.024	12	21		2.258
7	3		0.048	12	22		2.394
7	4		0.072	12	23		1.170
7	5		0.036	12	24		0.552
, 7	6		0.012	12	25		0.044
7	7		0.108	12	23 26		0.101
7	8		0.108	14	20		0.101
7	o 9			12	1	0 760	0 000
/	Э		0.012	13	1	0.760	0.088
0		0.000	0.000	13	2		0.146
8	1	0.060	0.060	13	3		0.029

TABLE 5—(Continued)

PERCENT VMT OF VEHICLE CLASSES ON RURAL INTERSTATE (1983)

Veh Class	Sub- Group	Vehicle-Mile % Veh Class Sub-Group		Veh Class	Sub- Group V	Vehicle-Mile % Veh Class Sub-Group
				13	4	0.059
9	1	0.170	0.085	13	5	0.029
9	2		0.085	13	6	0.029
				13	7	0.059
10	1	0.070	0.014	13	8	0.029
10	2		0.014	13	9	0.029
10	3		0.028	13	10	0.059
10	4		0.014	13	11	0.029
				13	12	0.087
11	1	2.500	0.050	13	13	0.087
11	2		0.097			
11	3		0.360	14	1	0.160 0.053
11	4		0.163	14	2	0.053
11	5		0.295	14	3	0.053

TABLE 6

PERCENT VMT OF VEHICLE CLASSES ON URBAN INTERSTATE (1983)

Veh	Sub	Vehicle-Mile %		Veh	Sub-	Vehicle-Mile %
Class	Group	Veh Class	Sub-Group	Class	Group	Veh Class Sub-Group
1	1	20.700	20.700	11	6	0.074
				11	7	0.062
2	1	63.300	63.300	11	8	0.058
				11	9	0.068
3	1	2.160	0.049	11	10	0.062
3	2		0.164	11	11	0.062
3	3		0.196	11	12	0.058
3	4		0.556	11	13	0.047
3	5		0.426			
3	6		0.311	12	1	10.400 0.021
3	7		0.164	12	2	0.104
3	8		0.131	12	3	0.361
3	9		0.164	12	4	1.016
				12	5	0.822
4	1	0.290	0.290	12	6	0.510

TABLE 6—(Continued)

PERCENT VMT OF VEHICLE CLASSES ON URBAN INTERSTATE (1983)

Veh	Sub	Vehicle-N		Veh	Sub-	Vehicle-	
Class	Group	Veh Class S	ub-Group	Class	Group V	eh Class S	Sub-Group
				12	7		0.426
5	1	0.860	0.860	12	8		0.374
				12	9		0.343
6	1	0.370	0.045	12	10		0.316
6	2		0.022	12	11		0.306
6	3		0.034	12	12		0.294
6	4		0.067	12	13		0.260
6	5		0.056	12	14		0.306
6	6		0.034	12	15		0.333
6	7		0.034	12	16		0.422
6	8		0.022	12	17		0.374
6	9		0.056	12	18		0.354
				12	19		0.395
7	1	0.260	0.009	12	20		0.572
7	2		0.017	12	21		0.863
7	3		0.035	12	22		0.915
7	4		0.052	12	23		0.447
7	5		0.026	12	24		0.211
7	6		0.009	12	25		0.017
7	7		0.078	12	26		0.038
7	8		0.026				
7	9		0.009	13	1	0.400	0.046
				13	2		0.077
8	1	0.300	0.300	13	3		0.015
				13	4		0.031
9	1	0.070	0.035	13	5		0.015
9	2		0.035	13	6		0.015
				13	7		0.031
10	1	0.030	0.006	13	8		0.015
10	2		0.006	13	9		0.015
10	3		0.012	13	10		0.031
10	4		0.006	13	11		0.015
				13	12		0.046
11	1	0.800	0.016	13	13		0.046
11	2		0.031				
11	3		0.115	14	1	0.060	0.015
11	4		0.052	14	2		0.022
11	5		0.094	14	3		0.022

PERCENT VMT OF VEHICLE CLASSES ON STATE PRIMARY (1983)

Veh			Mile %	Veh	Sub-		-Mile %
	Group	Veh Class	-			en Class	Sub-Group
1	1	20.200	20.200	11	6		0.059
0		60.600	60.600	11	7		0.007
2	1	68.600	68.600	11	8		0.008
0		0.400	0.120	11	9		0.007
3	1	2.400	0.138	11	10		0.008
3	2		0.369	11	11		0.005
3	3		0.369	11	12		0.005
3	4		0.509	11	13		0.005
3	5		0.415	10		5 770	0.017
3	6		0.230	12	1	5.770	0.017
3	7		0.139	12	2		0.121
3	8		0.139	12	3		0.563
3	9		0.091	12	4		0.733
				12	5		0.444
4	1	0.090	0.090	12	6		0.271
				12	7		0.171
5	1	0.530	0.530	12	8		0.185
				12	9		0.138
6	1	0.940	0.329	12	10		0.153
6	2		0.141	12	11		0.190
6	3		0.188	12	12		0.138
6	4		0.141	12	13		0.138
6	5		0.023	12	14		0.205
6	6		0.023	12	15		0.138
6	7		0.031	12	16		0.375
6	8		0.031	12	17		0.254
6	9		0.032	12	18		0.271
				12	19		0.188
7	1	0.330	0.066	12	20		0.171
7	2		0.022	12	21		0.375
7	3		0.022	12	22		0.306
7	4		0.022	12	23		0.171
7	5		0.040	12	24		0.017
7	6		0.040	12	25		0.017
7	7		0.040	12	26		0.017
7	8		0.040				
7	9		0.040	13	1	0.150	0.045
				13	2		0.030
8	1	0.210	0.210	13	3		0.022

TABLE 7—(Continued)

PERCENT VMT OF VEHICLE CLASSES ON STATE PRIMARY (1983)

Veh	Sub-	Vehicle-	Mile %	Veh	Sub-	Vehicle-	Mile %
Class	Group	Veh Class S	Sub-Group	Class	Group V	Veh Class S	Sub-Group
				13	4		0.015
9	1	0.190	0.027	13	5		0.008
9	2		0.163	13	6		0.008
				13	7		0.008
10	1	0.040	0.010	13	8		0.003
10	2		0.010	13	9		0.003
10	3		0.010	13	10		0.003
10	4		0.010	13	11		0.003
				13	12		0.002
11	1	0.470	0.030	13	13		0.002
11	2		0.073				
11	3		0.117	14	1	0.110	0.037
11	4		0.088	14	2		0.037
11	5		0.059	14	3		0.037

TABLE 8

PERCENT VMT OF VEHICLE CLASSES ON STATE SECONDARY (1983)

Veh	Sub-	Vehicle-M	lile %	Veh	Sub-	Vehicle-l	Mile %
Class	Group	Veh Class Su	ıb-Group C	lass	Group V	eh Class S	ub-Group
1	1	20.200	20.200	11	6		0.084
				11	7		0.021
2	1	71.750	71.750	11	7		0.021
				11	9		0.011
3	1	3.300	0.906	11	10		0.011
3	2		0.323	11	11		0.011
3	3		0.906	11	12		0.011
3	4		0.518	11	13		0.021
3	5		0.129				
3	6		0.323	12	1	2.500	0.018
3	7		0.129	12	2		0.035
3	8		0.033	12	3		0.104
3	9		0.033	12	4		0.470
				12	5		0.104

TABLE 8—(Continued)

PERCENT VMT OF VEHICLE CLASSES ON STATE SECONDARY (1983)

Veh	Sub- Group	Vehicle-N Veh Class S		Veh	Sub-	Vehicle-l /eh Class S	
	•		-		-	en Class 5	
4	1	0.060	0.060	12	6		0.190
_		0.400	0.400	12	7		0.018
5	1	0.490	0.490	12	8		0.070
C		0.500	0.100	12	9		0.156
6	1	0.520	0.182	12	10		0.140
6	2		0.130	12	11		0.035
6	3		0.052	12	12		0.052
6	4		0.052	12	13		0.070
6	5		0.013	12	14		0.052
6	6		0.013	12	15		0.052
6	7		0.013	12	16		0.035
6	8		0.013	12	17		0.052
6	9		0.052	12	18		0.190
_		0.050	0.004	12	19		0.087
7	1	0.270	0.034	12	20		0.155
7	2		0.034	12	21		0.190
7	3		0.034	12	22		0.104
7	4		0.034	12	23		0.104
7	5		0.027	12	24		0.013
7	6		0.027	12	25		0.002
7	7		0.027	12	26		0.002
7	8		0.027	1.0		0.000	0.007
7	9		0.027	13	1	0.090	0.027
0		0.010	0.010	13	2		0.027
8	1	0.210	0.210	13	3		0.018
0	1	0.020	0.004	13	4		0.009
9 9	1 2	0.030	0.004	13 13	5		0.009
9	Z		0.026		6 7		0. 0.
10		0.000	0.015	13		0	0.
10	1	0.060	0.015	13	8	0.	0
10	2		0.015	13	9		0.
10	3		0.015	13	10		0.
10	4		0.015	13	11		0.
		0.466	0.000	13	12		0.
11	1	0.460	0.063	13	13		0.
11	2		0.063			0.000	0.000
11	3		0.084	14	1	0.060	0.020
11	4		0.042	14	2		0.020
11	5		0.021	14	3		0.020

PERCENT VMT OF VEHICLE CLASSES ON COUNTY ROADS (1983)

Veh			Mile %	Veh	Sub-		-Mile %
Class	Group	Veh Class		Class	Group V	Veh Class	Sub-Group
1	1	17.950	17.950	11	6		0.049
				11	7		0.012
2	1	75.340	75.340	11	8		0.012
				11	9		0.006
3	1	3.900	1.071	11	10		0.006
3	2		0.382	11	11		0.006
3	3		1.071	11	12		0.006
3	4		0.612	11	13		0.012
3	5		0.152				
3	6		0.382	12	1	0.630	0.004
3	7		0.152	12	2		0.009
3	8		0.039	12	3		0.026
3	9		0.039	12	4		0.118
				12	5		0.026
4	1	0.050	0.050	12	6		0.048
				12	7		0.004
5	1	0.630	0.630	12	8		0.018
				12	9		0.039
6	1	0.860	0.301	12	10		0.035
6	2		0.215	12	11		0.009
6	3		0.086	12	12		0.013
6	4		0.086	12	13		0.018
6	5		0.021	12	14		0.013
6	6		0.021	12	15		0.013
6	7		0.021	12	16		0.009
6	8		0.021	12	17		0.013
6	9		0.086	12	18		0.048
				12	19		0.022
7	1	0.050	0.006	12	20		0.039
7	2		0.006	12	21		0.048
7	3		0.006	12	22		0.026
7	4		0.006	12	23		0.026
7	5		0.005	12	24		0.003
7	6		0.005	12	25		0.001
7	7		0.005	12	26		0.001
7	8		0.005				
7	9		0.005	13	1	0.180	0.054
				13	2		0.054
8	1	0.	0.	13	3		0.036

TABLE 9—(Continued)

PERCENT VMT OF VEHICLE CLASSES ON COUNTY ROADS (1983)

Veh Class	Sub- Group	Vehicle-N Veh Class S		Veh Class	Sub- Group V	Vehicle-Mile % Veh Class Sub-Group
				13	4	0.018
9	1	0.050	0.007	13	5	0.018
9	2		0.043	13	6	0.
				13	7	0.
10	1	0.	0.	13	8	0.
10	2		0.	13	9	0.
10	3		0.	13	10	0.
10	4		0.	13	11	0.
				13	12	0.
11	1	0.270	0.037	13	13	0.
11	2		0.037			
11	3		0.049	14	1	0.090 0.030
11	4		0.025	14	2	0.030
11	5		0.012	14	3	0.030

TABLE 10

PERCENT VMT OF VEHICLE CLASSES ON CITY STREETS (1983)

Veh	Sub-		Mile %	Veh	Sub-	Vehicle-	•
Class	Group	Veh Class	Sub-Group	Class	Group V	eh Class	Sub-Group
1	1	19.340	19.340	11	6		0.078
				11	7		0.019
2	1	74.000	74.000	11	8		0.019
				11	9		0.010
3	1	2.160	0.593	11	10		0.010
3	2		0.212	11	11		0.010
3	3		0.593	11	12		0.010
3	4		0.339	11	13		0.020
3	5		0.084				
3	6		0.212	12	1	2.360	0.017
3	7		0.084	12	2		0.033
3	8		0.022	12	3		0.098
3	9		0.022	12	4		0.444
				12	5		0.098

TABLE 10—(Continued)

PERCENT VMT OF VEHICLE CLASSES ON CITY STREETS (1983)

Veh	Sub-	Vehicle-Mi	ile %	Veh	Sub-	Vehicle-N	Aile %
Class	Group	Veh Class Sul	b-Group	Class	Group	Veh Class S	ub-Group
4	1	0.230	0.230	12	6		0.179
				12	7		0.017
5	1	0.480	0.480	12	8		0.066
				12	9		0.148
6	1	0.720	0.252	12	10		0.132
6	2		0.180	12	11		0.033
6	3		0.072	12	12		0.050
6	4		0.072	12	13		0.066
6	5		0.018	12	14		0.050
6	6		0.018	12	15		0.050
6	7		0.018	12	16		0.033
6	8		0.018	12	17		0.050
6	9		0.072	12	18		0.179
				12	19		0.082
7	1	0.060	0.008	12	20		0.146
7	2		0.008	12	21		0.179
7	3		0.008	12	22		0.098
7	4		0.008	12	23		0.098
7	5		0.006	12	24		0.012
7	6		0.006	12	25		0.002
7	7		0.006	12	26		0.002
7	8		0.006				
7	9		0.006	13	1	0.097	0.029
				13	2		0.029
8	1	0.	0.	13	3		0.019
				13	4		0.010
9	1	0.050	0.007	13	5		0.010
9	2		0.043	13	6		0.
				13	7		0.
10	1	0.045	0.011	13	8		0.
10	2		0.011	13	9		0.
10	3		0.011	13	10		0.
10	4		0.011	13	11		0.
				13	12		0.
11	1	0.430	0.058	13	13		0.
11	2		0.058				
11	3		0.078	14	1	0.032	0.011
11	4		0.039	14	2		0.011
11	5		0.020	14	3		0.011

Pavement Performance Data

The IDOH began to record systematically yearly roadmeter roughness measurements on all Interstate and state highways in mid-1970s. These measurements could be converted into Present Serviceability Index Values by means of the following statistical relationships [2]:

Asphalt	PSI = 3.94 - 0.00072 C	$(R^2 = 0.79)$
Overlay	PSI = 4.37 - 0.00174 C	$(R^2 = 0.77)$
JRC	PSI = 4.69 - 0.00141 C	$(R^2 = 0.88)$
CRC	PSI = 4.40 - 0.00070 C	$(R^2 = 0.59)$

where,

PSI = present serviceability index

C = roadmeter counts per kilometer

 R^2 = coefficient of determination

Subgrade Soil Data

Soil support values and modulus of subgrade reaction were needed for allocation analysis of pavement costs. These values were derived from an engineering soil distribution map prepared by the Joint Highway Research Project at Purdue [3].

COST ALLOCATION METHODOLOGY

The various cost allocation procedures developed in the study for individual expenditure items may be grouped into two major areas, namely the roadway-related area and the structure-related area [4]. In the first area, the main concern was to develop a rational unified allocation procedure for highway construction, routine maintenance and rehabilitation costs. In the second area, the main emphasis was to allocate equitably structure-related costs.

A new incremental approach was developed for the allocation of pavement construction costs to highway users [5]. It considered increments of pavement thickness rather than increments or decrements of traffic volume commonly employed in previous cost allocation studies. This thickness incremental approach eliminated the need for an iterative process to compute vehicle ESAL; it also eliminated the economy-of-scale problem present in the classical incremental cost allocation method [6].

In allocating pavement rehabilitation and maintenance costs, a performance-based methodology was used for determining the costresponsibilities of load-related and non-load-related factors. The procedure did not require an extensive amount of data collection effort. It relied entirely on recorded pavement performance data available in IDOH records, and hence eliminated the undesired element of subjective judgment commonly involved in most cost allocation studies [7].

Police enforcement expenditures and other common costs such as traffic signal installation costs, pavement striping costs and roadside mowing costs were distributed to all vehicle classes on the basis of VMT. The costs of those facilities that served trucks only, such as truck weigh stations, were distributed as truck-only common costs.

Structure-related costs included expenditure for bridge construction, bridge rehabilitation, bridge replacement, culvert construction and sign structure construction. In general, the classical incremental cost allocation concept was followed in allocating these costs. The procedure consisted of three steps: (1) the correlation of vehicle classes to AASHTO design loads, (2) analysis considering the incremental addition of AASHTO design loads, and (3) allocation of individual cost items among various vehicle classes.

Table 11 presents a summary of cost allocation criteria adopted for each expenditure item. All expenditure items were classified as attributable or non-attributable. Attributable costs referred to: (a) costs which were entirely attributable to single vehicle class, (b) costs which were attributable to a group of vehicle classes, and (c) costs which were occasioned by the entire traffic as a whole.

FINDINGS OF THE STUDY

The results of the cost allocation analysis were expressed in terms of the cost-responsibilities of vehicle classes in percentages. Likewise, the results of the revenue attribution analysis provided the percentages of revenues contributed by individual vehicle classes. Table 12 and 13 present the overall statewide vehicle class cost-responsibilities for FY 1983 and biennial period 1985-86, respectively. Table 14 and 15 give the revenue contribution by vehicle classes for the two periods, respectively.

The results of cost-responsibility and revenue contribution of vehicle classes were combined to provide a revenue/cost comparison for each vehicle class. Such a comparison would indicate the equity in revenue contribution. The revenue/cost ratios for FY 1983 and the biennial period of 1985-86 are summarized for each vehicle classes in Table 16.

The major findings of the study are listed below:

- 1. Passenger cars as a group overpaid their cost-responsibility in 1983. There was, however, a significant imbalance between costs and revenues within the group. In particular, small cars underpaid their cost responsibility, while large cars considerably overpaid.
- 2. Single-unit trucks as a group also overpaid their costresponsibility in 1983. While two-axle and four-axle single-unit

COST ALLOCATION CRITERIA FOR EXPENDITURE ITEM

Expenditure Item		Attributal		Non-Attributable Costs		
A	Highway Construction Pavement	Proportion	Allocation Procedure	Proportion	Allocation Procedure	
1.	(minimum width)	100%	Thickness Incremental method based on ESAL			
	(Additional width)	100%	Thickness Incremental method based on PCE- ESAL			
2.	Shoulder					
	(minimum width)	100%				
	(Additional width)	100%	same as item A.1			
3.	Right-of-Way					
	(minimum width)	100%	Proportional VMT			
	(Additional width)	100%	Proportional PCE- VMT			
4.	Grading & Earthwork					
	(minimum width)	100 %	Proportional VMT			
	(Additional width)	100%	Proportional PCE- VMT			
5.	Drainage & Erosion Control					
	(minimum width)	100%	Proportional VMT			
	(Additional width)	100%	Proportional PCE- VMT			

6.	Miscellaneous (Traffic Service) (Administration) (Truck-Related Facilities) (Others)	100%
B. H 1. 2. 3. 4.	Right-of-Way Grading & Earthwork	Varies 66-98% 100% 100% 100%
5.	Miscellaneous (Traffic Service) (Administration) (Truck-Related Facilities) (Others)	100%
C. 1 1. 2. 3. 4. 5.	Highway Maintenance Pavement & Shoulder Right-of-way Drainage Roadside Maintenance Miscellaneous (Traffic Service)	Varies 66-98%

77

Proportional truck	100% 100%	Proportional VMT Proportional VMT
VMT	100%	Proportional VMT
Thickness Incremental method based on ESAL same as item A.3 same as item A.4 same as item A.5	Varies 2-34%	Proportional VMT
Proportional truck VMT	100 % 100 %	Proportional VMT Proportional VMT Proportional VMT
Proportional Σ ESAL	Varies 2-34 % 100 % 100 %	Proportional Σ ESAL Proportional VMT Proportional VMT Proportional VMT
	100%	Proportional VMT

TABLE 11—(Continued)

COST ALLOCATION CRITERIA FOR EXPENDITURE ITEM

Expenditure Item	Attribu	table Costs	Non-Attributable Costs		
-	Proportion	Allocation Procedure	Proportion	Allocation Procedure	
(Administration)			100%	Proportional VMT	
(Winter Emergency)			100 %	Proportional VMT	
(Truck-Related Main- tenance)	100%	Proportional Truck VMT			
(Others)			100%	Proportional VMT	
D. Bridge Maintenance					
1. Roadway Mainten-	Varies	Proportional Σ ESAL	Varies	Proportional VMT	
ance	66-98%		2-34%		
2. Structural Members			100%	Proportional VMT	
3. Miscellaneous			100%	Proportional VMT	
E. Bridge Construction, Re-					
placement and Rehabilitation					
1. Superstructures	100%	Incremental Analysis			
2. Substructures	25-35	Incremental Analysis	65-75	Proportional VMT	
3. Drainage			100 %	Proportional VMT	
4. Excavation			100 %	Proportional VMT	
5. Miscellaneous			100 %	Proportional VMT	

OVERALL STATEWIDE COST-RESPONSIBILITY FOR YEAR 1983

Veh Class	Sub- Group		onsibility Sub-Group	Veh Class	Sub- Group		onsibility Sub-Group
1	1	10.869	10.869	11	6		0.410
				11	7		0.142
2	1	41.510	41.510	11	8		0.183
				11	9		0.133
3	1	6.766	0.440	11	10		0.161
3	2		0.403	11	11		0.197
3	3		0.866	11	12		0.213
3	4		0.873	11	13		0.463
3	5		0.450				
3	6		1.587	12	1	30.253	0.020
3	7		1.179	12	2		0.072
3	8		0.388	12	3		0.263
3	9		0.580	12	4		0.994
				12	5		0.455
4	1	0.448	0.448	12	6		0.526
				12	7		0.187
5	1	0.387	0.387	12	8		0.308
				12	9		0.581
6	1	2.605	0.362	12	10		0.612
6	2		0.266	12	11		0.286
6	3		0.174	12	12		0.388
6	4		0.234	12	13		0.551
6	5		0.092	12	14		0.544
6	6		0.117	12	15		0.629
6	7		0.144	12	16		0.675
6	8		0.220	12	17		0.955
6	9		0.995	12	18		3.051
_				12	19		1.817
7	1	0.974	0.029	12	20		3.499
7	2		0.035	12	21		5.320
7	3		0.049	12	22		3.808
7	4		0.072	12	23		3.737
7	5		0.077	12	24		0.672
7	6		0.137	12	25		0.136
7	7		0.156	12	26		0.171
7	8		0.191	10		4.007	0.050
7	9		0.228	13	1	1.285	0.259
c		0.004	0.001	13	2		0.317
8	1	0.081	0.081	13	3		0.249

TABLE 12—(Continued)

OVERALL STATEWIDE COST-RESPONSIBILITY FOR YEAR 1983

Veh	Sub-	% Respo	nsibility	Veh	Sub-	% Responsibility
Class	Group	Veh Class S	Sub-Group	Class	Group V	Veh Class Sub-Group
				13	4	0.158
9	1	1.087	0.018	13	5	0.182
9	2		1.069	13	6	0.008
				13	7	0.017
10	1	0.107	0.021	13	8	0.009
10	2		0.025	13	9	0.009
10	3		0.027	13	10	0.016
10	4		0.033	13	11	0.009
				13	12	0.025
11	1	2.525	0.060	13	13	0.028
11	2		0.106			
11	3		0.224	14	1	1.110 0.095
11	4		0.128	14	2	0.249
11	5		0.105	14	3	0.765

TABLE 13

OVERALL STATEWIDE COST-RESPONSIBILITY FOR 1985/86

Veh Class	Sub- Group	% Respo Veh Class	onsibility Sub-Group	Veh Class	Sub- Group V	% Respo Veh Class S	
1	1	11.707	11.707	11	6		0.340
				11	7		0.122
2	1	43.610	43.610	11	8		0.153
				11	9		0.123
3	1	5.746	0.409	11	10		0.147
3	2		0.240	11	11		0.174
3	3		0.783	11	12		0.201
3	4		0.793	11	13		0.413
3	5		0.435				
3	6		1.302	12	1	29.281	0.021
3	7		0.960	12	2		0.084
3	8		0.342	12	3		0.323
3	9		0.484	12	4		1.042
				12	5		0.544

TABLE 13 -(Continued)

OVERALL STATEWIDE COST-RESPONSIBILITY FOR 1985/86

Veh Class	Sub- Group	% Response Veh Class Su		Veh Class	Sub- Group V	% Respon eh Class S	
4	1	0.344	0.344	12	6		0.536
				12	7		0.241
5	1	0.427	12	8			0.337
				12	9		0.539
6	1	2.224	0.325	12	10		0.571
6	2		0.238	12	11		0.324
6	3		0.164	12	12		0.401
6	4		0.206	12	13		0.519
6	5		0.083	12	14		0.569
6	6		0.101	12	15		0.620
6	7		0.124	12	16		0.799
6	8		0.186	12	17		0.999
6	9		0.799	12	18		2.670
				12	19		1.718
7	1	0.804	0.031	12	20		3.155
7	2		0.032	12	21		4.910
7	3		0.044	12	22		3.851
7	4		0.062	12	23		3.453
7	5		0.066	12	24		0.736
7	6		0.109	12	25		0.130
7	7		0.132	12	26		0.190
7	8		0.152				
7	9		0.176	13	1	1.218	0.222
				13	2		0.274
8	1	0.090	0.090	13	3		0.226
				13	4		0.148
9	1	1.146	0.020	13	5		0.161
9	2		1.126	13	6		0.016
				13	7		0.027
10	1	0.093	0.018	13	8		0.012
10	2		0.021	13	9		0.013
10	3		0.025	13	10		0.024
10	4		0.029	13	11		0.015
				13	12		0.037
11	1	2.287	0.059	13	13		0.044
11	2		0.104				
11	3		0.218	14	1	1.030	0.089
11	4		0.124	14	2		0.217
11	5		0.111	14	3		0.724

REVENUE CONTRIBUTION BY VEHICLE CLASS (1983)

Veh Class	Sub- Group	% Cont Veh Class	ribution Sub-Group	Veh Class	Sub- Group V		tribution Sub-Group
1	1	8.080	8.080	11	6		0.150
-		0.000	0.000	11	7		0.070
2	1	56.670	56.670	11	8		0.073
-	1	30.070	50.070	11	9		0.073
3	1	8.020	3.240	11	10		0.063
3	2	0.020	0.450	11	11		0.062
3	3		0.900	11	12		0.058
3	4		0.940	11	13		0.066
3	5		0.710		15		0.000
3	6		0.580	12	1	18.900	0.043
3	7		0.330	12	2	10.500	0.166
3	8		0.400	12	3		0.536
3	9		0.460	12	4		1.370
5	5		0.100	12	5		0.847
4	1	0.372	0.372	12	6		0.631
1	1	0.072	0.572	12	7		0.400
5	1	0.453	0.453	12	8		0.419
5	1	0.155	0.155	12	9		0.457
6	1	2.210	0.390	12	10		0.416
6	2	2.210	0.240	12	11		1.120
6	3		0.160	12	12		0.329
6	4		0.250	12	13		0.397
6	5		0.160	12	14		0.468
6	6		0.210	12	15		0.487
6	7		0.210	12	16		0.718
6	8		0.160	12	17		0.606
6	9		0.450	12	18		0.730
				12	19		0.614
7	1	0.540	0.037	12	20		0.782
7	2		0.046	12	21		1.442
7	3		0.036	12	22		1.799
7	4		0.090	12	23		0.952
7	5		0.038	12	24		0.454
7	6		0.031	12	25		1.337
7	7		0.180	12	26		1.355
7	8		0.040				
7	9		0.039	13	1	1.260	0.461
				13	2		0.128
8	1	0.078	0.078	13	3		0.080
0	•		-,		5		

TABLE 14—(Continued)

REVENUE CONTRIBUTION BY VEHICLE CLASS (1983)

Veh	Sub-	% Contr	ibution	Veh	Sub-	% Contr	ibution
Class	Group	Veh Class S	ub-Group	Class	Group V	eh Class S	ub-Group
				13	4		0.073
9	1	1.620	0.630	13	5		0.056
9	2		0.990	13	6		0.032
				13	7		0.046
10	1	0.069	0.017	13	8		0.037
10	2		0.016	13	9		0.037
10	3		0.020	13	10		0.049
10	4		0.016	13	11		0.038
				13	12		0.057
11	1	1.211	0.074	13	13		0.163
11	2		0.110				
11	3		0.200	14	1	0.520	0.189
11	4		0.106	14	2		0.068
11	5		0.110	14	3		0.264

TABLE 15

REVENUE CONTRIBUTION BY VEHICLE CLASS (1985-86)

Veh Class	Sub- Group	% Contribution Veh Class Sub-Group		Veh Class	Sub- Group	% Contribution Veh Class Sub-Group	
1	1	8.946	8.946	11	6	0.131	
				11	7	0.062	
2	1	60.250	60.250	11	8	0.065	
				11	9	0.064	
3	1	8.306	3.563	11	10	0.055	
3	2		0.450	11	11	0.055	
3	3		0.833	11	12	0.051	
3	4		0.897	11	13	0.058	
3	5		0.977				
3	6		0.556	12	1	15.029 0.038	
3	7		0.306	12	2	0.148	
3	8		0.350	12	3	0.490	
3	9		0.375	12	4	1.195	
				12	5	0.733	

TABLE 15—(Continued)

REVENUE CONTRIBUTION BY VEHICLE CLASS (1985-86)

Veh Class	Sub- Group	% Cont Veh Class	ribution Sub-Group	Veh O Class	Sub- Group V		tribution Sub-Group
4	1	0.336	0.336	12	6		0.547
				12	7		0.344
5	1	0.459	0.459	12	8		0.362
				12	9		0.391
6	1	1.824	0.369	12	10		0.358
6	2		0.204	12	11		0.490
6	3		0.138	12	12		0.279
6	4		0.212	12	13		0.307
6	5		0.130	12	14		0.353
6	6		0.173	12	15		0.357
6	7		0.170	12	16		0.546
6	8		0.129	12	17		0.476
6	9		0.300	12	18		0.573
				12	19		0.467
7	1	0.420	0.034	12	20		0.612
7	2		0.064	12	21		1.159
7	3		0.032	12	22		1.427
7	4		0.058	12	23		0.814
7	5		0.035	12	24		0.383
7	6		0.028	12	25		1.083
7	7		0.097	12	26		1.099
7	8		0.036				
7	9		0.035	13	1	1.457	0.813
				13	2		0.108
8	1	0.079	0.079	13	3		0.067
				13	4		0.061
9	1	1.179	0.515	13	5		0.041
9	2		0.664	13	6		0.027
				13	7		0.036
10	1	0.062	0.016	13	8		0.029
10	2		0.015	13	9		0.029
10	3		0.018	13	10		0.038
10	4		0.014	13	11		0.030
				13	12		0.045
11	1	1.087	0.066	13	13		0.134
11	2		0,113				
11	3		0.175	14	1	0.566	0.304
11	4		0.094	14	2		0.051
11	5		0.098	14	3		0.212

Summary for Fiscal Year 1983						Summary for Biennial Period 1985/86			
Vehicle	Vehicle	Percent	Percent	Percent		Percent	Percent	Percent	
Туре	Class	VMT	Cost-Resp.	Revenue	Revenue/Cost	VMT	Cost-Resp.	Revenue	Revenue/Cost
Passenger	1	19.124	10.869	8.080	0.743	19.176	11.707	8.946	0.764
Car	2	68.921	41.510	56.670	1.365	68.001	43.610	60.250	1.382
	5	0.623	0.387	0.453	1.171	0.641	0.427	0.459	1.075
	8	0.107	0.081	0.078	0.963	0.127	0.090	0.079	0.878
		88.775	52.847	65.281	1.235	87.945	55.834	69.734	1.249
Bus	4	0.164	0.448	0.372	0.830	0.162	0.344	0.336	0.997
Single-Unit	3	2.666	6.766	8.020	1.185	2.604	5.746	8.306	1.446
Truck	6	0.692	2.605	2.210	0.848	0.646	2.224	1.824	0.820
	9	0.091	1.087	1.620	1.490	0.092	1.146	1.179	1.029
		3.449	10.458	11.850	1.133	3.342	9.116	11.309	1.241
Combination	7	0.196	0.974	0.540	0.554	0.219	0.804	0.420	0.522
Truck	10	0.040	0.107	0.069	0.645	0.043	0.093	0.062	0.667
	11	0.688	2.525	1.211	0.480	0.752	2.287	1.087	0.475
	12	6.385	30.253	18.900	0.625	7.211	29.281	15.029	0.513
	13	0.224	1.285	1.260	0.981	0.245	1.218	1.457	1.196
	14	0.078	1.110	0.520	0.468	0.081	1.030	0.566	0.550
		7.611	36.254	22.500	0.621	8.551	34.713	18.621	0.536

COST-ALLOCATION AND REVENUE ATTRIBUTION SUMMARY

trucks overpaid, three-axle single-unit trucks underpaid their cost-responsibility.

- 3. Combination trucks significantly underpaid their costresponsibility in 1983. The underpayment was consistent among all combination trucks. However, the extent of this underpayment varied within the group.
- 4. The same general pattern of overpayments and underpayments as in 1983 would be present in the biennial period of 1985-86. In fact, the underpayment by heavy combination trucks would be more pronounced in 1985-86 than in 1983. This implies that the subsidization of heavy vehicles by passenger cars and single-unit trucks would continue to exist if the tax structure were to remain unchanged.

A comparison of the findings of Indiana study to findings in other studies is presented in Table 17. In this table are shown the revenue/cost ratios for the generalized vehicle classes determined in Indiana study along with the corresponding figures from other cost allocation studies. The studies listed covered a wide range of procedures and geographic variations. Furthermore, the cost-responsibility and revenue contribu-

TABLE 17

COMPARISON OF FINDINGS OF THE INDIANA STUDY TO FINDINGS OF OTHER STUDIES

	User Revenue Contribution/ Cost-Responsibility					
	Passenger Car	r SU Truck	Combination			
Florida (1979)	1.04	0.91	0.51*			
Georgia (1979)	1.03	0.66	0.44*			
Oregon (1980)	1.00	1.25	0.92			
Colorado (1981)	1.22	1.24	0.56			
Kentucky (1982)	1.57		0.57**			
Maryland (1982)	1.17	0.83	0.56			
Connecticut (1982)	1.11	1.61	0.63			
Ohio (1982)	0.90	2.25	0.35			
Wisconsin (1982)	0.94	1.40	0.89			
Maine (1982)	1.02	1.16	0.97			
North Carolina (1983)	0.96	2.14	0.78			
Federal (1982)	1.10	1.50	0.60			
Indiana (Base period)	1.24	1.13	0.62			
(Budget period)	1.25	1.24	0.54			
* five of more axles						

** for all trucks

tion figures depended upon the specific expenditure patterns and revenue structures included in a study. Consequently, the results cannot be precisely compared. Nevertheless, the ratios presented in Table 17 give a broad indication of the reasonableness of the results of the Indiana study.

CONCLUSIONS

The findings of the 1983-84 Indiana Highway Cost Allocation Study indicated that there was a definite imbalance between cost-responsibility of and revenue contribution by different vehicle classes in 1983. The net result was that passenger cars and single-unit trucks subsidized the heavy combination trucks. The study also revealed that such inequity among vehicle classes would remain if the same tax structure were retained.

The cost allocation study has provided a means to evaluate different user tax options in terms of revenue-cost comparisons. The procedure developed can be used to design an equitable tax structure where the revenue-cost ratios for various vehicle groups are close to unity.

REFERENCES

- 1. MacTavish, Douglas and Neuman D.C., Vehicle Classification Case Study for the Highway Performance Monitoring System, Federal Highway Administration, August, 1982.
- Metwali, E.S.W., "Framework for a Pavement Evaluation System," Joint Highway Research Project, Interim Report, FHWA/IN/JHRP-81/7, 1981.
- 3. Joint Highway Research Project, "Engineering Soil Parent Material Areas of Indiana," Purdue University, West Lafayette, Bulletin 87, 1950.
- Sinha, K.C., T.F. Fwa, E.A. Sharaf, A.B. Tee and H.L. Michael, "Indiana Highway Cost Allocation Study", Draft Final Report, Joint Highway Research Project, Purdue University, Report No. FHWA/IN/JHRP-84/20, October, 1984.
- Sinha, K.C., T.F. Fwa, E.C. Ting, R.M. Shanteau, M. Saito and H.L. Michael, "Indiana Highway Cost Allocation Study: A Report on Methodology", Joint Highway Research Project, Purdue University, Report No. FHWA/IN/JHRP-84/4, March, 1984. Revised October, 1984.
- Fwa, T.F. and K.C. Sinha, "Thickness Incremental Method for Allocating Pavement Construction Costs in Highway Cost Allocation Study", presented at the TRB Annual Meeting, Washington, D.C., January, 1985.
- Fwa, T.F. and K.C. Sinha, "A Performance-Based Approach for Determining Cost-Responsibilities of Load-Related and Non-Load-Related Factors in Highway pavement Rehabilitation and Maintenance Cost Allocation", presented at the TRB Annual Meeting, Washington, D.C., January, 1985.