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Metal Resistance and Lithoautotrophy in the Extreme
Thermoacidophile Metallosphaera sedula

Yukari Maezato, Tyler Johnson, Samuel McCarthy, Karl Dana, and Paul Blum

Beadle Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA

Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environ-
ments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study,
a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during bio-
transformation of the primary copper ore, chalcopyrite (CuFeS2). In this study, a genetic system was developed for M. sedula to
investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demon-
strated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene
encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated
chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chal-
copyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic
changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate
mineral witherite (BaCO3) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both
mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon
between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching
by enhancing the mechanistic understanding of thermophilic lithoautotrophy.

Nearly 80% of current global copper reserves are comprised of
low-quality metal ores (10, 25, 44). Consequently, the need

for cost-efficient extraction methods has promoted interest in the
use of microbe-based processing. Bioleaching is an established
approach for the extraction of base and precious metals from sul-
fidic ores (30, 34, 35, 43). Bioleaching using thermophilic mi-
crobes is of particular importance for certain metals. In the case of
copper, elevated temperatures produced naturally in heaps over-
come recalcitrant extraction due to surface passivation while
chemical reaction rates are accelerated (29, 30). A critical disad-
vantage of bioleaching is the amount of time required for metal
solubilization, often spanning years (22, 38). Therefore, improved
metal recovery must include factors that accelerate this process,
particularly those inspired by biotechnologic approaches (48).

Thermoacidophilic archaea include taxa that are lithoau-
totrophic and unusually metal resistant (3, 19). These organisms
are native to pyritic or sulfur-rich geothermal habitats and are
used to recover base and precious metals from low-quality sulfidic
minerals through bioleaching processes (31). In the bioleaching
process, both direct and indirect leaching mechanisms have been
proposed that convert metals to soluble forms (33, 40). Metal
release may occur via metabolic oxidation of the sulfur and iron
component of these minerals, thereby releasing other complexed
metals, or by direct metal oxidation (41). Recovery rates of copper
bioleached from chalcopyrite ranged from 10 to 25% (16), and the
recently discovered Metallosphaera cuprina was shown to mobilize
10.6% of total copper when grown on chalcopyrite (23). Elucida-
tion of the genome sequence of several biomining organisms (5,
24, 45) along with transcriptomic analyses (4, 20) supports inves-
tigations into strategies that underlie lithoautotrophic metabo-
lism.

Among archaea, the distribution of putative copper resistance
genes is broad. Many archaeal genomes contain copA (P-type
ATPase) copper efflux transporters, with the most well-character-

ized example being found in the hyperthermophilic sulfate re-
ducer Archaeoglobus fulgidis (1, 13). Multiple mechanisms of cop-
per resistance also have been identified in Sulfolobus solfataricus,
including a copper efflux system consisting of copA and copB (P-
type ATPase), copR (regulator), and copT (metallochaperone) (9,
11, 46, 47). An inorganic polyphosphate symport system identi-
fied in the related Sulfolobus metallicus has also been predicted to
play a critical role in copper resistance (36). Additional predic-
tions concerning the identity of archaeal metallochaperones have
been made based on the occurrence of a CxCxC motif and ex-
tended variants combined with proximity to metal efflux trans-
porters (12).

Metallosphaera sedula is a lithoautotrophic archaeon originally
isolated from a solfataric field in Italy that grows optimally at 70 to
75°C over a pH range of 1 to 4.5 (18). M. sedula differs greatly from
its relatives, S. solfataricus and S. acidocaldarius, because the latter
organisms are strict chemoheterotrophs with compatible genetic
systems (7, 26). In contrast, genetic-based investigations have not
yet been used to study lithoautotrophy. Autotrophy in M. sedula
uses a recently discovered pathway for carbon fixation (6). Sta-
ble carbon isotope fractionation has shown that bicarbonate
HCO3

� is used as an inorganic carbon source through the
3-hydroxypropionate/4-hydroxypropionate pathway (6, 32).
M. sedula is also considerably more resistant to metals than
chemoheterotrophic Sulfolobus species. For example, cupric
ion [Cu(II)] resistance is 20 times greater (18, 46). To gain a
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better understanding of the interplay between metal resistance,
autotrophy, and lithotrophic metabolism, a genetic system was
developed for M. sedula and used to evaluate parameters gov-
erning the efficiency of copper bioleaching.

MATERIALS AND METHODS
Archaeal strains, cultivation, and microscopy. Cell lines used in this
study are presented along with their genotypes, origins, and construction
details (Table 1). Metallosphaera sedula (DSM 5348T) was grown in a
basal salts medium (2), adjusted to pH 2.0 at 75°C, in screw-cap flasks with
aeration in orbital baths or in glass screw-cap test tubes placed in 150-tube
rotary drum agitators mounted in forced-air incubators with external DC
motors. Chemoheterotrophic growth used tryptone at 0.05% (wt/vol). A
solid complex medium was prepared using basal salts medium mixed with
0.6% (wt/vol) gelrite (Kelco) and supplemented with 0.05% (wt/vol)
tryptone. Lithoautotrophic growth used the naturally occurring minerals
pyrite (Sargent-Welch) and chalcopyrite (VWR or Alfa Aesar), which had
been ground and baked at 200°C for 2 days until sterile. Barium carbonate
(witherite) was obtained from Sigma and autoclaved at 120°C for 30 min
to sterilize. Planktonic growth was monitored by light adsorption at a
wavelength of 540 nm. Epifluorescence microscopy and scanning electron
microscopy (SEM) were performed as described previously (5, 37).

Strain construction. Mutations in uracil biosynthesis result in uracil
auxotrophy and allowed the use of uracil biosynthetic genes as selectable
markers for genetic manipulations. To recover such mutants, pyrimidine
analogs, including 5-fluoroorotic acid (5-FOA), were tested on a solid
medium and found to severely reduce cell-plating efficiencies. Resistance
to 5-FOA in yeast and in the related archaea Sulfolobus acidocaldarius (17)
and Sulfolobus solfataricus (28) has been shown to occur in pyrimidine
biosynthetic genes, notably orotidine pyrophosphorylase (pyrE) and oro-
tidine decarboxylase (pyrF). Spontaneous mutation frequencies for M.
sedula to 5-FOA resistance were evaluated on solid media containing the

analog with and without addition of uracil, and 5-FOA resistance was
measured at a frequency of 1/106 cells plated. The pyEF genes of one
purified 5-FOA-resistant isolate that had been confirmed as a uracil auxo-
troph were sequenced, and the pyrE gene was mutated. M. sedula trans-
formation was performed as described for S. solfataricus (26, 42). Genetic
selections for chromosomal recombination were developed using the pyrE

TABLE 2 Primers

Primer name Sequence

Mse490F-SphI 5= AGCTGCATGCAAGGGAAAGATGTACTACTT
CTGC 3=

Mse490R-SphI 5= AGCTGCATGCATGAATTCTTTGAGATACAC
GTCG 3=

MpyrEF-NgoMIV 5= AGCTGCCGGCCAAGGCTTGGCCTAAACCCGC 3=
MpyrER-NgoMIV 5= AGCTGCCGGCACAAGTTCCTTAACTTTCTCC 3=
Mse490RTF 5= CCAGTCAGTGAAGGCCACAAAGGC 3=
Mse490NSTR 5= TATCGGTATCCTCACGGCCTCTGC 3=

FIG 1 M. sedula copRTA analysis by heterologous complementation. (A) copRTA
locus. (B) pJlacS carrying M. sedula copRTA. (C) Copper resistance of pJlacS M.
sedula copRTA in the S. solfataricus copR mutant. Strains were the S. solfataricus
copR mutant strain (PBL2115; closed circles) and the S. solfataricus copR mutant
complemented with pJlacS M. sedula copRTA (PBL2116; open circles). Cultures
were treated (arrow) with 0.75 mM Cu(II) (final concentration).

TABLE 1 Plasmids, archaeal strains, and primers

Plasmid or strain Genotype or characteristics Source or reference

pBN1078 pJ This study
pBN1090 pJ::lacSS. solfataricus This study
pBN1126 pJ::copRTAM. sedula This study
pBN1260 pUC19::copAM. sedula::pyrE This study
PBL2025 S. solfataricus strain 98/2 derivative 39
PBL2090 S. solfataricus copR::lacS in PBL2069 46
PBL2091 S. solfataricus �pyrEF derivative of PBL2025 This study
PBL2115 S. solfataricus copR::lacS in PBL2091 This study
PBL2116 S. solfataricus pBN1126 in PBL2115 This study
PBL2117 S. solfataricus pBN1126 in PBL2091 This study
PBL4000 Wild-type Metallosphaera sedula This study
PBL4001 M. sedula spontaneous pyrE1 derivative of PBL4000 This study
PBL4002 M. sedula CuR1 spontaneous copper-resistant derivative of PBL4001 This study
PBL4003 M. sedula copA::pyrE derivative of PBL4001 This study
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gene. PCR amplicons of pyrE and the negative-control pyrF were trans-
formed by electroporation into the pyrE1 M. sedula mutant (Table 2).
Transformed cells were grown in dilute tryptone medium lacking uracil,
thereby allowing selection for prototrophs. Only pyrE mutant cells, trans-
formed with the pyrE gene, grew normally in the absence of uracil supple-
mentation. Individual transformed cells were isolated and genotyped by
colony PCR combined with MsII restriction analysis of the pyrE PCR
amplicon. The copA knockout strain was constructed by successive single
crossovers using a plasmid-encoded disruption construct (pBN1260).
First, the copA open reading frame (ORF) was amplified using primers
Mse490F-SphI and Mse490R-SphI and then was cloned into pUC19 at the
SphI site. M. sedula pyrE then was cloned into pUC19::copA (PB1260) at
an NgoMIV site, resulting in plasmid pBN1260, which was then trans-
formed into strain PBL4001 with selection for uracil prototrophy. For
complementation studies in S. solfataricus, the M. sedula copRTA operon
was cloned into plasmid pBN1078 at the SacII site to make plasmid
pBN1126. The copR::lacS mutation in S. solfataricus strain PBL2090 (46)
was transferred into strain PBL2091 (termed the �pyrEF strain) by the
allele transfer method (26), and the new strain was used as the parental
strain for the transformation of the M. sedula copRTA operon located on
plasmid pBN1126. A spontaneous copper-resistant strain (CuR1) was iso-
lated by repeated passage of M. sedula in media supplemented with in-
creasing concentrations of CuSO4. Passage involved one cycle with 100
mM CuSO4 supplementation and then three cycles with 200 mM CuSO4

supplementation. Cells were transferred in mid-exponential growth

phase. The CuR1 isolate was purified by single-colony isolation followed
by retesting metal resistance relative to the wild-type (WT) strain.

qRT-PCR. Quantitative reverse transcription-PCR (qRT-PCR) using
SYBR-I green and a real-time PCR instrument (Eppendorf Mastercycler)
as described previously (27). RNA was extracted as described previously
(8) and treated to remove DNA by addition of 1 U of DNase I (Fermentas)
per �g of total RNA at room temperature for 15 min and then neutralized
with 2 �l of 25 mM EDTA and incubated at 70°C for 10 min. cDNA
synthesis used 20 pmol of PCR antisense primer, 20 mM deoxynucleoside
triphosphate (dNTP) mix (Invitrogen), and 200 U of Moloney-murine
leukemia virus RT (Fermentas) for 60 min at 37°C. Synthesized cDNA was
subjected to standard PCR and analyzed using 2% (wt/vol) Tris-borate-
EDTA agarose gels. Primers used for qRT-PCR were Mse490RTF and
Mse490NSTR.

Proteomics. Cell suspensions were prepared using intermittent soni-
cation and then analyzed by two-dimensional (2D) SDS-PAGE, and pro-
tein identities were determined by tandem mass spectrometry (MS/MS)
electrospray analysis using material excised from SDS-polyacrylamide
gels (15, 49). Gel slices were infused with trypsin to digest the protein, and
the resulting peptides were recovered, separated by capillary electropho-
resis prior to MS/MS analysis, and then identified by local BLAST against
the M. sedula proteome. Fold changes in spot intensity were determined
using Phoretix 2D Evolution (Nonlinear Dynamics).

ICP-MS. To determine the extracellular concentrations of copper,
culture samples were clarified by centrifugation. Samples of the resulting

FIG 2 Homologous recombination in M. sedula. (A) pyrE1 mutant sequence compared to the wild-type and NCBI-deposited pyrE sequences. (B) Schematic of
restriction fragments of the pyrE1 amplicon. (C) Restriction analysis of the pyrE1 mutant. Lane 1, wild-type pyrE PCR amplicon digested with MslI. Lane 2,
wild-type pyrE amplicon not digested with MslI. Lane 3, pyrE1 amplicon digested with MslI. Lane 4, undigested pyrE1 amplicon. (D) Restriction analysis of pyrE1
recombinants. Lane 1, pyrE1 (PBL4001) amplicon digested with MslI. Lane 2, pyrE1 undigested amplicon. Lane 3, homologous recombinant pyrE amplicon
digested with MslI. Lane 4, homologous recombinant undigested pyrE amplicon. MM, molecular marker.
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supernatants were analyzed by inductively coupled plasma-MS (ICP-MS)
using an Agilent ICP-MS 7500cx. A certified copper reference standard
was used for sample normalization. All values are averages from triplicate
samples.

RESULTS
Functional identity of M. sedula copRTA. Metallosphaera sedula
is unusually resistant to several metals, including copper (18).
Genomic features responsible for this trait include two putative
copper-translocating ATP-dependent exporters (copA and copB).
A similar situation occurs in the related species Sulfolobus solfa-
taricus, though here only copA has been shown to be copper in-
ducible (11, 46) and the copR transcription factor is transcribed in
the opposite direction relative to the situation in M. sedula
(Fig. 1A). It has been shown previously that the S. solfataricus copR
mutant can be complemented using the S. solfataricus copR gene
(46). To verify the functional role and expression of the M. sedula
copRTA locus, the region was expressed in an S. solfataricus mu-
tant lacking copper resistance due to a gene disruption of the copR
transcription factor gene (46). M. sedula copRTA was cloned into
S. solfataricus plasmid pJ (pBN1078), a derivative of pJLacS (7)
lacking thsAp::lacS. The resulting plasmid (pBN1126) (Fig. 1B)
was then transferred into the S. solfataricus copR mutant by trans-
formation followed by selection for uracil prototrophy and the
isolation of a clonal population on a solid medium. The copper
resistance of the S. solfataricus plasmid transformant (strain
PBL2116) was compared to that of the parental strain (PBL2115)
in liquid culture under chemoheterotrophic conditions (Fig. 1C).
In response to a 0.75 mM cupric ion [Cu(II)] challenge, a concen-
tration shown previously to induce S. solfataricus cop expression
(46), heterologous expression of the M. sedula copRTA locus in the
S. solfataricus copR mutant complemented copper sensitivity in an
inducible fashion. After induction, the complemented strain
gained the ability to growth at 10 mM Cu(II), a concentration
nearly twice the level observed for growth of wild-type S. solfatari-
cus (46). This finding verifies the functional identity of the M.
sedula copRTA locus and demonstrates that gene expression sig-
nals for transcription and translation are recognized between
these organisms.

Role of the copA gene in copper resistance of M. sedula.
While the M. sedula copRTA locus conferred copper resistance
when expressed in S. solfataricus, the level produced was more
than 8-fold less than the resistance level of wild-type M. sedula (76
mM). This suggested that there are additional factors controlling
metal resistance that are native to M. sedula, such as copB (9, 47)
and ppx (36). To better understand the importance of copA, it was
necessary to develop a genetic system in M. sedula, and this was
pursued in part because cross-species gene expression was suc-
cessful.

Mutations in pyrimidine biosynthesis result in uracil auxotro-
phy and allow the use of pyrimidine biosynthetic genes as select-
able markers for genetic manipulations. Spontaneous mutations
mapping to the M. sedula pyrE gene were recovered by following
the procedures established for other thermoacidophilic archaea
(14, 21). One isolate, termed PBL4001, had a �1 deletion muta-
tion in pyrE at nucleotide (nt) 243 relative to the start codon that
was called pyrE1 (Fig. 2A). This mutation shifted the reading
frame and resulted in a premature stop codon (TAG) at nt 260,
producing a C-terminal truncation and shortening the normal
protein from 191 to 86 residues. This mutation also resulted in the

loss of one of two restriction sites in pyrE for MslI (Fig. 2B and C).
Complementation of the pyrE1 mutation used plasmid pJlacS
(pBN1090) that carried the S. solfataricus pyrEF genes (7). Recov-
ery of pBN1090 transformants of the M. sedula pyrE1 mutant
(PBL4001) resulted from selection for uracil prototrophy, while
the continued presence of the plasmid was determined by the
expression of the S. solfataricus lacS gene, as indicated by hydro-
lysis of 5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside (X-
Gal) applied topically to colonies and subsequent formation of a
blue color. Having verified that pyrE1 was responsible for the ura-
cil auxotrophic phenotype, repair of this mutation by chromo-
somal homologous recombination was monitored by changes in
pyrE-linked restriction polymorphisms. Purified putative recom-
binants were characterized by PCR amplification of pyrE followed
by restriction analysis (Fig. 2D) to distinguish between mutant
and wild-type pyrE alleles. MslI restriction of the wild-type pyrE
amplicon produced three fragments of 420, 237, and 244 nt that
comigrate, while restriction of the pyrE1 mutant amplicon pro-
duced two fragments of 657 and 244 nt. Incompletely digested
amplicons are also evident in some lanes as faint large bands.
Colony PCR combined with MslI restriction was used as a screen
to identify pyrE recombinants. pyrE recombinants exhibited a

FIG 3 Construction and growth of the M. sedula copA mutant and the supra-
normal copper-resistant isolate CuR1. (A) Schematic of the copA disruption
construct. (B) PCR genotyping of the copA mutant. Lane 1, recombinant copA
allele. Lane 2, wild-type copA allele. Lane 3, copA::pyrE plasmid. Lane 4, no
DNA. (C) Heterotrophic growth at 75 mM Cu(II). OD540, optical density at
540 nm. (D) Heterotrophic growth at 200 mM Cu(II). Shown are CuR1 (open
circles), the wild type (closed squares), and the copA mutant (inverted closed
triangles).
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wild-type pyrE restriction pattern, as indicated by restoration of
the second MslI restriction site. Confirmation of homologous re-
combination at pyrE provided the basis for targeted inactivation of
other M. sedula genes. The M. sedula copA gene (Msed_0490) was
then disrupted by insertion of the M. sedula wild-type pyrE gene
following transformation using a circular nonreplicating (suicide)
construct (Fig. 3A). The resulting purified isolate was then geno-
typed by restriction analysis and DNA sequencing of the copA
locus (Fig. 3B). The level of copper resistance (MIC) of the copA
mutant was tested under heterotrophic growth conditions relative
to the wild-type strain and was found to have been reduced from
76 to 40 mM Cu(II). While this demonstrated a larger role for
copA as a mediator of copper resistance in M. sedula than in S.
solfataricus, the residual metal resistance of the copA mutant re-
mained much greater than that of wild-type S. solfataricus, indi-
cating that there are additional factors controlling this trait in M.
sedula.

Supranormal copper resistance in M. sedula. To examine
how extreme metal resistance might influence copper leaching, a
cell line with greater-than-normal levels of copper resistance was
studied. An M. sedula strain with increased copper resistance,
CuR1, was recovered after repeated subculturing using gradual
increases in added Cu(II). After 150 h, inducible resistance to 76
mM Cu(II) challenge was evident for the wild type but not the
copA mutant (Fig. 3C). Induction of copper resistance was further
supported by the observation that adapted cells subcultured into
fresh copper-containing medium exhibited no lag. In contrast, the
CuR1 strain was constitutively resistant to this amount of copper

and exhibited no lag. When the copper challenge was increased to
200 mM Cu(II), the CuR1 mutant exhibited inducible copper
resistance while both the wild type and copA mutant failed to grow
(Fig. 3D). Unexpectedly, CuR1 also exhibited elevated resistance
to Cd(II) with a MIC of 10 mM, which was 6 times higher than
that of the wild-type strain. DNA sequencing of the primary loci
implicated in copper resistance, including copA, copB, and ppx,
indicated there were no sequence alterations in any of these ORFs
or within 150 nt of flanking DNA. In addition, qRT-PCR analysis
of copA and ppx mRNA normalized to that of a gene encoding the
TATA binding protein, tbp (Msed_0951), indicated there was less
than a 2-fold difference between CuR1 and the wild-type strain;
however, copB mRNA levels were increased by 4-fold (Table 3).
The S. solfataricus CopB catalytic domain has been characterized
in vitro (9), and although its expression in vivo is only modestly
responsive to copper (46), it does contribute to copper resistance
(48), therefore increased expression of M. sedula copB in CuR1
may increase copper resistance. To examine the CuR1 strain in
additional detail, proteomic analysis by 2D SDS-PAGE was con-
ducted using the CuR1, wild-type, and copA mutant strains (Fig.
4). Changes in the abundance of several proteins were evident, and
their identities were determined by MS/MS (Table 4). Among the
affected proteins were two containing AAA ATPase domains, in-
cluding Msed_2179 and Msed_2237, which are notable because
they could be involved in metal import or efflux. In addition,
CopA was identified by proteomic analysis and was absent from
the copA mutant, thereby verifying the genotype of this strain (Fig.
4). Alterations in metal importer abundance could contribute to
the cross-resistance of CuR1 to copper and cadmium.

Role of copper resistance during lithoautotrophy. The im-
portance of copper resistance during lithoautotrophy was exam-
ined using chalcopyrite as the energy source and the wild-type,
copA, and CuR1 strains. Growth and retention of viability was
examined after incubation in a chalcopyrite suspension relative to
that in a tryptone medium for 14 days. No carbon source was
added to the suspension medium. All three strains exhibited
equivalent fitness in the tryptone medium, having cell densities
between 107 and 108 after the incubation period (Fig. 5). However,
while there was little apparent growth in the chalcopyrite suspen-
sion, the wild-type and CuR1 strains retained viability. In con-
trast, the copA mutant was unable to retain viability in the chalco-

TABLE 3 qRT-PCR analysis

Strain CT
a

Msed_0951
(tbp) CT �CT

b ��CT 2���CT

Fold
changec

WT copA 10.08 17.28 �7.20 0.92 0.53 1.88
CuR1 copA 10.18 18.30 �8.12 0 1
WT copB 16.32 18.22 �1.90 2.08 0.24 4.17
CuR1 copB 15.33 19.31 �3.98 0 1
WT ppx 13.46 17.28 �3.82 0.31 0.81 1.23
CuR1 ppx 14.17 18.30 �4.13 0 1
a CT, threshold cycle.
b Values were normalized to those of tbp.
c Fold change comparing the WT to CuR1.

FIG 4 Proteomic analysis of M. sedula strains. Two-dimensional SDS-PAGE analysis of M. sedula whole-cell extracts. Circles indicate proteins whose abundance
varied in the mutants relative to the wild type. Protein identities are shown in Table 4. MW, molecular weight (in thousands).
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pyrite suspension, indicating that a functioning copper pump was
essential under these conditions.

One reason for the lack of growth of the wild type and CuR1
strain in the chalcopyrite suspension could be the lack of a carbon
source. Therefore, addition of the carbonate mineral witherite
(barium carbonate) was tested as a possible and more convenient
carbon source than those previously described. Unlike magne-
sium or calcium carbonate, barium carbonate, with a dissociation
constant (Kd) of 2.58 � 10�9, is insoluble in hot acid. M. sedula
cultured in the presence of witherite colonized the mineral sur-
face, as indicated by epifluorescence microscopy of 4=,6-di-
amidino-2-phenylindole (DAPI)-stained samples (Fig. 6A). Sur-
face colonization and the formation of adherent cells was also
evident by SEM when cells were cultured with the addition of both
chalcopyrite and witherite (Fig. 6B). The role of metal resistance
and carbon supplementation on copper leaching was examined
next using the three strains cultivated with chalcopyrite as the
energy source and either with or without witherite addition.
Lithotrophic-dependent release of copper was monitored by
ICP-MS of clarified culture supernatants (Fig. 7). After a 30-day
incubation period, it was apparent that both the allelic state of
copA and carbon supplementation strongly influenced the litho-
trophic metabolism of chalcopyrite. Without carbonate addition,
the CuR1 strain released 3.3 times more copper than either of the
other two strains. However, with carbonate addition, copper re-

lease was greatly stimulated in both the CuR1 and wild-type
strains, resulting in the mobilization of 41.5% of total copper from
chalcopyrite, reaching 0.4 g/liter (6.3 mM). In contrast, release of
copper by the copA mutant was negligible regardless of carbonate
addition and approximated the values observed with uninocu-
lated controls.

DISCUSSION

The results presented here demonstrate a direct relationship be-
tween the level of copper resistance and the rate of bioleaching of
chalcopyrite during lithoautotrophic cultivation of Metallospha-
era sedula. Bioleaching requires the oxidation of iron and/or sulfur
and therefore provides an indirect measure of lithotrophic metab-
olism. Thus, the level of copper resistance influences both litho-
trophy and bioleaching of copper. The use of modified cell lines
specifically altered in genes associated with copper resistance pro-
vided direct evidence that metal resistance influences these pro-
cesses. The interdependence of these traits is of particular rele-
vance to copper but may by relevant to the recovery of other

TABLE 4 Tandem MS identification

Spot ORFa (% coverage) Abundanceb

1 Msed_0297 carbon monoxide dehydrogenase
(acceptor) (39)

�1.7

2 Msed_2237 AAA family ATPase, CDC48
subfamily (44)

�2.4

3 Msed_2074 Glu/Leu/Phe/Val dehydrogenase, C
terminal (77)

�6.5

4 Msed_0534 phosphoribosylglycinamide
formyltransferase 2

�4.09

5 Msed_1927 ketol acid reductoisomerase (45) �3.3
6 Msed_2237 AAA family ATPase, CDC48

subfamily (46)
�2.2

7 Msed_0525 pyruvate flavodoxin/ferredoxin
oxidoreductase (34)

�2.6

8 Msed_2179 conserved secretion-like protein (24) �5.1
9 Msed_0455 lactate/malate dehydrogenase (53) �4.0
10 Msed_0455 lactate/malate dehydrogenase (18) �2.0
11 Msed_0490 CopA, copper-translocating P-type

ATPase
0.0

a MS/MS identification was based on multiple peptide matches for each protein, and
the values for total coverage are indicated by percentages in parentheses.
b Change in abundance comparing levels observed in M. sedula strain CuR1 to those in
wild-type M. sedula normalized to the CopA strain within each sample.

FIG 5 Viability of M. sedula strains. Strains were cultured in the presence of
0.2% (wt/vol) chalcopyrite for 14 days. Serial dilutions of culture samples (up
to 106-fold) were applied to complex medium plates and incubated for 7 days.

FIG 6 Growth of M. sedula on witherite and chalcopyrite. (A) Bright-field
microscopy (30� magnification) of M. sedula grown with BaCO3. (B) Epiflu-
orescence microscopy of DAPI-stained sample shown in panel A. (C) Scan-
ning electron microscopy of M. sedula on crystal surfaces. Witherite (BaCO3)
is on the left and chalcopyrite (CuFeS2) is on the right. White arrows indicate
cells. (D) Sterile witherite. (E) Sterile chalcopyrite.

Bioleaching Genetics of Metallosphaera

December 2012 Volume 194 Number 24 jb.asm.org 6861

http://jb.asm.org


metals where metal toxicity presents a challenge to lithotrophic
metabolism.

During lithotrophy, copper is released by iron and sulfur oxi-
dation, becoming available to interact with adherent M. sedula
cells. The importance of copper resistance most likely stems from
the ability of cells to exclude or expel excessive intracellular copper
ions. In this study, resistance was dependent on copper transloca-
tion as the copA mutant lost more than half of wild-type levels of
copper resistance along with the ability to retain viability during
cultivation on chalcopyrite. Additional support for the impor-
tance of this relationship was apparent from the behavior of a
high-level copper-resistant strain that conducted faster copper
leaching than the wild-type strain. This indicates that wild-type
levels of copper resistance can be supplemented to overcome ex-
cessive metal toxicity.

When assessed by heterologous expression in S. solfataricus,
the M. sedula copRTA genes conferred greater than wild-type lev-
els of metal resistance. This result could arise by several mecha-
nisms. Although the pJ plasmid is a low-copy-number vector (7),
it could provide higher-than-normal levels of CopA through in-
creased gene dosage, resulting in higher rates of metal export.
Alternatively, the M. sedula copR gene could complement the dis-
rupted S. solfataricus copR gene and mediate elevated copTA tran-
scription above normal levels of expression. While not mutually
exclusive, these two mechanisms could be resolved by heterolo-
gous expression of either gene alone. Continued resistance of the
M. sedula copA mutant that exceeded that of wild-type S. solfatari-
cus suggests the continued action of other mechanisms for copper
resistance. These could include copB, as its expression was elevated
in the CuR1 strain. However, other components involved in high-
level metal resistance of M. sedula may remain. One likely mech-
anism is reduced metal uptake. Simultaneous resistance to copper
and cadmium observed in the CuR1 strain could result from re-

duced rates of metal uptake in addition to elevated expression of
copB.

While metal resistance was shown to be an important charac-
teristic associated with lithotrophy, provision of additional car-
bon obscured this difference. The use of insoluble carbonates as an
autotrophic nutrient for extremely thermoacidophilic microbes
has not been described previously; however, the simultaneous de-
velopment of witherite and chalcopyrite biofilms suggests adher-
ent cells interact by exchanging leached nutrients. Circulation of
soluble bicarbonate (witherite) and iron (chalcopyrite) may pro-
vide the carbon and energy required for biofilm expansion. Fur-
ther developments in the M. sedula genetic system will help to
expand information on lithoautotrophy and other traits of impor-
tance in bioleaching for metal recovery.
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