
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Agronomy & Horticulture -- Faculty Publications Agronomy and Horticulture Department 

2013 

Agricultural innovation to protect the environment Agricultural innovation to protect the environment 

Jeffrey Sayer 
James Cook University 

Kenneth Cassman 
University of Nebraska-Lincoln, kcassman1@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub 

 Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences 

Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, and the Plant 

Biology Commons 

Sayer, Jeffrey and Cassman, Kenneth, "Agricultural innovation to protect the environment" (2013). 
Agronomy & Horticulture -- Faculty Publications. 979. 
https://digitalcommons.unl.edu/agronomyfacpub/979 

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- 
Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/agronomyfacpub
https://digitalcommons.unl.edu/ag_agron
https://digitalcommons.unl.edu/agronomyfacpub?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1063?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/105?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/109?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/agronomyfacpub/979?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages


SPECIAL FEATURE: INTRODUCTION

Agricultural innovation to protect
the environment
Jeffrey Sayera,1 and Kenneth G. Cassmanb,1

aCentre for Tropical Environmental and Sustainability Science and School of Earth, and
Environmental Sciences, James Cook University, Cairns, QLD 4870, Australia; and
bDepartment of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583

In a world of 9.5 billion people, global de-
mand for food, fiber, and biofuels has to be
met with minimal possible increases in land,
water, fossil fuels, and the minerals used to
produce fertilizers (1–4). The problem is de-
bated at three levels: first, that agriculture will
not be able to produce enough because it will
come up against both biophysical and envi-
ronmental limits that restrict yields (3, 5, 6);
second, that the need to expand and intensify
agriculture will destroy the broader envi-
ronmental values of forests, wetlands, marine
systems, and their associated biodiversity
(7–9); and third, that there are institutional
obstacles to the diffusion and adoption of the
innovations that could solve these problems.
Although there is debate on these issues,

there is also strong consensus that we are
witnessing unprecedented changes in our
major agricultural systems (6). Major shifts
are occurring in the way food and other ag-
ricultural commodities are produced, in the
scale at which this happens, in the geo-
graphical locations of agriculture, and per-
haps most notable, the agencies and actors
driving these processes (10–14). Growth in
demand for agricultural products will mainly
occur in markets of emerging economies,
particularly in the most populous countries
of Asia and Sub-Saharan Africa. Therefore,
the ways in which China, India, Indonesia,
Bangladesh, Nigeria, Ethiopia, and South
Africa respond to growing food demand will
be major determinants of environmental
change at a global scale (3, 6, 11).
The papers in this special feature of PNAS

highlight innovations in agriculture that
could contribute to producing more food
without increasing environmental pressures.
The papers are based on some of the more
exciting ideas that emerged from a forum in
Beijing in October 2011 that brought together
agricultural and environmental scientists
from China with their peers from the rest
of the world (12, 13).
The papers collectively consider how agri-

cultural science is responding to environ-

mental challenges. Agricultural land is now
required to deliver multiple environmental
and production services (9, 14, 15). The
issues are often beset by “wicked problems”
(16, 17) where different communities of sci-
entists and practitioners are unable to agree
on the framing of questions and therefore
advocate divergent solutions (18, 19). The
papers explore implications of different
combinations of technologies, institutional ar-
rangements, and policies on the agriculture–
environment nexus (20, 21) and attempt to
link the global resource management dis-
course with the realities faced by poor farm-
ers in developing countries (3). They endorse
four strategic objectives: ensuring produc-
tion of adequate food, alleviating poverty,
achieving better health and nutrition for a
growing population, and conserving the
natural resource base upon which all of this
depends (22–24).
Agricultural innovation is essential to ad-

dress environmental problems in a world that
must soon support more than 9 billion
humans. Poverty and food insecurity go
hand in hand (1). For the 2 billion malnour-
ished poor in developing countries, short-
term food security is inevitably a higher
priority than long-term environmental sus-
tainability. A large proportion of rural poor
in the tropics live in regions with marginal
land and climate for agriculture (25) or in
areas with more favorable climate that lie
at the interface between agriculture and re-
maining carbon-rich and biodiverse natural
ecosystems such as rainforests, wetlands,
grasslands, and savannas (26). Feeding 9 bil-
lion people and lifting rural poor out of
poverty is a prerequisite for maintaining the
planet’s environment. Many people are leav-
ing rural areas and seeking employment in
manufacturing and services in cities. How-
ever, this opportunity is not open to all. Large
numbers of poor farmers continue to prac-
tice extensive agriculture. Inevitably they will
continue to encroach on hitherto unculti-
vated lands unless they can adopt innovative

systems that allow for agricultural inten-
sification and development of agricultural
equipment industries, farm inputs, and food
processing capacities.
To this end, much agricultural research

continues to focus on how to increase pro-
ductivity on this existing farm land. Im-
proved efficiency in the use of land and
agricultural inputs is already contributing
to environmental goals. Quantifying food
production capacity of currently farmed land
has focused on estimating “yield gaps” (i.e.,
the difference between current farm yields
and the potential that can be achieved with
good crop and soil management). Yield gap
analysis allows the identification of regions
with the greatest potential for higher yields
(27–29). Need for more precise and geospa-
tially explicit yield gap estimates are the
target of the Global Yield Gap Atlas
(www.yieldgap.org). However, increasing
productivity is necessary but not sufficient
to ensure food security, reduce poverty, im-
prove nutrition, and maintain the natural
resource base for sustainable development
(6). Innovations across a broader spectrum
of policies and technologies are needed to
confront the complex array of challenges
at the agriculture–environment nexus (1, 21).
Many practicing agricultural scientists are

working to solve immediate problems of
poor farmers. A marked shift is occurring
in the way agricultural research is conducted.
In particular, there has been a move from
single-factor, mainly on-station research to-
ward active engagement with farmers and
farm communities to encourage experimen-
tation and innovation. A recurring theme
is the use of concepts such as Integrated
Agricultural Research for Development
(IAR4D) (30). This “systems science” ap-
proach (31) and a number of similar concepts
share much with the underlying principles
of Sustainability Science. IAR4D attempts to
harness science to address complex multi-
functional agricultural objectives and to en-
gage farmers and their communities in the
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process (30, 32). It seeks to influence multiple
drivers of change in agricultural landscapes
(17, 15). There is broad consensus among
agricultural researchers that such integrated
approaches are needed although the em-
pirical evidence for their impact is still weak
(13, 33).
There are methodological challenges to as-

sessing the impact of such complex, mul-
tidimensional research (34, 35). A range of
approaches to measuring impact, such as
Theories of Change and Impact Pathways,
are now available (30). IAR4D and other in-
tegrated approaches are seen as best practice
in achieving rural innovation rather than as
a magic bullet (12, 13, 30). This collection of
papers exemplifies the evolution of under-
standing of agricultural innovation practices
and provides empirical evidence on policies
and technologies that allow more crops to
be produced on less land, with more effi-
cient use of inputs and under conditions
of global change.
One major area of uncertainty has been

the impact of agricultural intensification on
land use (11, 36). Studies in different situa-
tions have come to contrasting conclusions
on the extent to which intensification can
lead to “land-sparing” (37, 38). Several stud-
ies have shown that it is difficult to make
simple generalizable statements about the
land-sparing role of agricultural intensifi-
cation and that effects are highly context
specific (39, 40). Analysis of the land-saving
claims made for the Asian green revolution
shows that some land was spared—although
not as much as earlier authors had claimed
because higher food prices would have oc-
curred without the green revolution and price
increases would have resulted in reduced
global food demand (38). It is clear that neg-
ative impacts of higher food prices on pov-
erty and hunger under this scenario would
likely have dwarfed the welfare effects of
agricultural expansion. This ex-post analysis
of the impacts of green revolution crops
reveals the complex web of interacting
drivers of change that combined to trans-
form Asian landscapes (36, 38). More food
was produced and some natural habitats were
spared. However, it also emerges that parallel
changes in policies, infrastructure, markets,
and other dimensions of the agricultural
landscape made significant contributions
to these changes. This work highlights the
need for improved understanding and
models that fully capture the interacting
economic, political, social, and biophysical
contexts of agricultural innovation within
the IAR4D framework (31, 32).
Governance and institutions mediate all

changes in rural landscapes. The importance

of institutions is illustrated in Western China
where improved environmental outcomes in
managing common-property pastureland re-
quired changes in six nested tiers of institu-
tional structures (41). Integrated biophysical
and policy research achieved positive out-
comes in this situation, but there are very
many situations around the world where such
an orchestrated cascade of change has been
difficult to achieve. The paper by Kemp et al.
(41) shows how an appropriate institu-
tional context can allow agricultural produc-
tion to be expanded while also achieving
more favorable environmental outcomes.
Reliance on use of nitrogen fertilizer to

support high yields is perhaps the Achilles
heel of modern crop production (42, 43).
Nitrogenous fertilizer is essential for modern
agriculture, and the lack of access to it is a
major obstacle to yield increases in Africa.
However, its misuse has negative impacts on
water quality and climate through emissions
of nitrous oxide, a greenhouse gas (GHG)
300 times more potent in global warming
impact than carbon dioxide (44). Industrial
production of reactive nitrogen, mostly used
to fertilize food crops, now exceeds the
global total produced from all natural sources
(45). Although atmospheric N2 is relatively
inert, reactive nitrogen, including ammonia,
nitrate, and organic forms including nucleic
and amino acids, and other amines and
amides are required as building blocks of
all living organisms. Chinese agriculture
is particularly egregious in this regard be-
cause it uses far more nitrogenous fertilizer
per unit of crop production than compa-
rable systems in Europe or North America.
Recent research has shown that emissions
of GHGs from the entire nitrogen fertilizer
life cycle in China could be reduced by up to
60% by 2030 (46). Of particular note is that
the potential improvements will be achieved
equally from increased efficiency of fertil-
izer production and from its more efficient
on-farm use (47). A comparison of eco-
logical efficiency of agriculture in Australia,
China, and Zimbabwe shows that Australian
farmers are approaching biophysical limits
to achieving further improvements in effi-
ciency but that major improvements remain
possible in China and Zimbabwe and by
extension in much of the developing trop-
ical world. However, the scope for improving
eco-efficiency is not the same for all cropping
systems (47).
The value of on-farm biodiversity is both

advocated and contested—often in the ab-
sence of empirical evidence (18, 19). Simple,
specialized systems with their economies
of scale and high yields are consistent with a
model of economic rationalization. Complex,

biodiverse systems appeal on grounds of eco-
logical efficiency and aesthetics and possibly
confer resilience to external shocks to ag-
ricultural systems (18, 19). An empirical
study of biological diversity and pollination
in coffee growing regions of southwest India
shows that, whereas on farm biodiversity
values may have been exaggerated, they are
nonetheless significant and complement
positive effects on productivity that can be
achieved with improvements in crop man-
agement (48).
Fish are vital sources of food for many of

the world’s people, both rich and poor. Con-
ventional wisdom holds that the move to
intensive aquaculture to meet burgeoning
demand is inevitable. Fish would therefore
join trees and commodity agricultural crops
in being produced in intensive industrial
systems, and harvesting from near natural
ecosystems would become less important.
However, evidence is presented (49) that,
for many, especially the poor in developing
countries, wild capture fisheries will continue
to be vital resources for decades to come—
and with proper management they have
the capacity to meet greatly increased de-
mand. Natural aquatic systems can yield
multiple products and values so perhaps
the juggernaut of intensification and simpli-
fication will not always overwhelm traditional
diverse production systems. Timber and en-
vironmental services from managed natural
forests (50), diverse products and services
from agroforests, and mosaics of production
and conservation uses (15) may represent
alternative scenarios for the agriculture–
environment nexus (18).
Land cover, especially in the tropics, will

continue to change—probably at increasing
rates. This change will have multiple implica-
tions for human societies. There will be sur-
prises, “black swans,” that will derail our best
laid plans (51, 52). One unintended conse-
quence is that the opening up of the forest
frontier by agricultural expansion is bringing
people into closer contact with the wild an-
imal hosts of diseases that can spread through
human populations (51). New zoonotic dis-
eases are emerging with greater frequency—a
major threat to humanity but one that defies
prediction. New plant diseases and invasive
animals and plants will also challenge future
food production. These are just examples of a
diversity of shocks that will inevitably intro-
duce volatility into the continuing dynamic
at the agriculture–environment nexus.
All of the challenges identified in these

papers will need to be addressed in a context
of changing climates. Global circulation
models tell us much about the large-scale,
long-term changes that may occur, but they
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are very uncertain tools when applied at
local levels to address day-to-day realities
of smallholder farmers who will bear the
brunt of changes. Four case studies are
presented that illustrate the uncertainties
of global climate models and their limitations
in addressing the short-term needs of poor
farmers. Farmers have extensive capacity for
local short-term adaptation. Global models
have to be drawn upon carefully to enhance
longer-term transformational changes in the
ability of farmers to cope with the uncertain-
ties of climate change (17).
Food production and nature conserva-

tion will compete for the same land (15,
53). Evidence is presented of progress in
developing a set of 10 principles that can
be used with multiple stakeholders working
at landscape scales to reconcile conflicts
(15). Many tradeoffs are best addressed at
these meso-scales, and much progress is
being achieved through integration of mul-
tiple uses in mosaic landscape (14, 15, 53).
Achieving better outcomes at this scale
has been difficult for existing sectoral insti-
tutions, but the solution is not to replace
those institutions but rather to facilitate
the interactions among them and equip
them to negotiate between conflicting and
competing goals.
The papers in this special feature show

that progress is indeed being made. Agri-
cultural technologies are becoming more
resource use efficient. There are rapid im-
provements in achieving fertilizer use effi-
ciency (46, 47). Intensification has and will
continue to allow land to be saved, and land
use mosaics will allow multifunctionality to
be achieved (14, 38). Agricultural and fishery
systems that include biodiversity will con-
tinue to be important (15, 48, 49). Policies
and institutions that can operate across the
agriculture–environment nexus are emerg-
ing in countries where some of the greatest
challenges are being felt (41). Agricultural
scientists are observing the principles of sus-
tainability science and engaging with farm-
ers and communities to address the wicked
problems of achieving short-term produc-
tion goals while ensuring long-term sus-
tainability (30).
However, significant challenges remain.

Tradeoffs between intensification and ex-
tensification are poorly understood, and we
lack robust, spatially explicit models to guide
policies governments could use to properly
direct the form and location of future
agriculture that meets food demand while
conserving natural resources. There is only
weak evidence on the role of biodiversity
in supporting progress toward higher crop
yields and ensuring greater system resil-

ience. The future of irrigated agriculture is
critical. Although 34% of cropland is irri-
gated in Asia, only 5% is irrigated in Africa.
An expansion of irrigated agriculture in
African regions with adequate water resour-
ces to support it could help Africa become
food self-sufficient and perhaps an exporter
of some major food crops. Expansion of irri-
gated area could allow yield increases while
greatly reducing pressures on conversion of
forests and wildlands (54). If institutional
obstacles could be overcome, then payments
for carbon sequestration and storage in crops
and soils could transform smallholder agri-
culture in the tropics—but enormous techni-
cal obstacles lie in the way of achieving
payments to farmers for environmental ser-
vices. The significant gains in ecological ef-
ficiency achieved in industrial agriculture
in some developed and middle income coun-
tries, especially in fertilizer and water use
efficiency, need to be recognized and ap-
plied more broadly in the tropics using tech-
nologies adapted for smallholder farmers.

The conclusion that emerges is that a rad-
ical rethink is needed in the orientation of
agriculture. Research has to underpin inno-
vations that will allow more food, fiber, and
biofuel to be produced but in ways that alle-
viate rural poverty, improve diets and health,
and allow increases in stocks of the environ-
mental assets upon which all depends. Progress
towards these four goals requires new ways of
organizing research, new ways of setting prior-
ities, and more subtle ways of assessing out-
comes and impacts. The solutions will not
be narrow sectoral or technical innovations
but nested sets of innovations at the scale of
the plant, the agronomic system, the land-
scape, and the institutional environment.
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