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Distinguishing between yield advances and yield
plateaus in historical crop production trends
Patricio Grassini1, Kent M. Eskridge2 & Kenneth G. Cassman1

Food security and land required for food production largely depend on rate of yield gain

of major cereal crops. Previous projections of food security are often more optimistic than

what historical yield trends would support. Many econometric projections of future food

production assume compound rates of yield gain, which are not consistent with historical

yield trends. Here we provide a framework to characterize past yield trends and show that

linear trajectories adequately describe past yield trends, which means the relative rate of gain

decreases over time. Furthermore, there is evidence of yield plateaus or abrupt decreases in

rate of yield gain, including rice in eastern Asia and wheat in northwest Europe, which

account for 31% of total global rice, wheat and maize production. Estimating future food

production capacity would benefit from an analysis of past crop yield trends based on a

robust statistical analysis framework that evaluates historical yield trajectories and plateaus.
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T
he first decade of the new millennium saw an abrupt
reversal of long-term trends in declining grain prices since
the onset of the green revolution in the mid-1960s, and an

increase in expansion of land area used for crop production.
Whether this recent expansion in crop area is transitory or
permanent will depend in large part on trajectories in grain and
oilseed prices, which in turn depend on trends in crop yields.
Estimating these trends with a high degree of confidence is
therefore essential to inform development of appropriate
agricultural policies and priorities for agricultural research to
ensure future food security and minimize conversion of carbon-
rich and biodiverse natural ecosystems to cropland, which
contributes substantially to anthropogenic greenhouse gas emis-
sions and climate forcing1–3. In fact, agricultural production,
including indirect emissions associated with land-use change,
accounts for 15–25% of the total anthropogenic greenhouse gas
emissions4,5. Hence, a critical question is whether current yield
trajectories are adequate to achieve the needed production
increases on existing farmland because econometric projections
of grain prices and land use change are highly sensitive to
underpinning assumptions about future crop yield increases.

Here, by applying a robust, statistical framework to evaluate
historical yield trends of major crop-producing countries since
1965, we find that all trends can be described by linear functions
with or without an abrupt decrease in rate of gain or an upper
yield plateau. We conclude that estimates of future crop
production and land use must consider both historical yield
trends and biophysical yield ceilings to improve forecasting
capability.

Results
Recent trends in land use for crop production. At a global level,
changes in land use for crop production have been driven in large
part by increases in land area devoted to the three major cereals
(rice, wheat and maize). During the first 16 years of the green
revolution, for example, expansion of area for the major cereals
represented 470% of land use increase for all crops, followed by
two decades in which both total crop area and area in major
cereals remained relatively constant (Fig. 1 and Supplementary
Table 1). This period of stability came to an abrupt end in 2002.
Since then, crop production area has increased at nearly ten
million hectares per year and 60% of this expansion is due to

increased production of the major cereals. An additional 25% is
attributable to expansion of soybean area. Nearly all of the
increased crop area since 2002 has occurred in South America,
Asia and Africa (Supplementary Table S1).

Previous analyses of historical crop yield trends. Global rates of
yield increase have been decidedly linear for most major cereal
crop species since the start of the green revolution in the 1960s6,7.
Some projections of global food security assume that these linear
rates of increase will continue unchanged during the next 40
years8–11. Other projections, including several based on
computational partial equilibrium models that evaluate both
food demand and supply, assume compound annual rates of yield
increase without recognizing biophysical limits to crop yields12–18

(Fig. 2 and Supplementary Table S2). In a compound rate model,
annual yield gain represents a constant proportion of the current
yield and thus the magnitude of absolute gain increases each year.
Although exponential increase in crop yields can occur over short
time periods of one or two decades, such growth rates are not
feasible over the long term because average farm yields eventually
approach a yield potential ceiling determined by biophysical
limits on crop growth rates and yield19–23. For irrigated crops,
yield potential is defined as the yield of a crop cultivar when
growth is only limited by solar radiation, temperature and carbon
dioxide supply from the atmosphere, and also by the amount and
distribution of precipitation in rainfed cropping systems23,24.

To account for the expected deceleration in crop yields as they
approach their yield potential ceiling, several recent projections of
food security have considered a declining compound rate over
time, which aims to mimic the shape of an asymptotic trend25–27.
Another recent study suggests that yields have stagnated in a large
portion of the world’s crop production area, and that current
yield trends are not sufficient to meet the demand on existing
farmland28. However, this study is based on yield trend estimates
and their pattern over time using gridded, historical crop yield
data derived from average yields reported at coarser levels of
spatial resolution. In addition, many of the highlighted yield
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Figure 1 | Trends in total harvested area of staple crops and three

major cereal crops. Staple crops include cereal, oil, sugar, pulses, fibre, tuber

plus root crops. The three major cereal crops are rice, wheat and maize.

Slopes of the fitted trilinear models are shown when significant (Student’s

t-test; Po0.01, n¼47 years of yield data).
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Figure 2 | Historical trend in average US maize yield and reported

projected trajectories based on compound rates of yield gain. Historical

trend (1965–2011, n¼47 years of yield data) is indicated with the solid line

and yellow data points, and associated linear-regression equation,

coefficient of determination (r2) and Student’s t-test P-value are shown.

Trajectories reported in publications that evaluated future food production

potential based on these projected yield trajectories are indicated with the

dashed lines. Numbers associated with each trajectory indicate the

reference in which this exponential rate was used. The trajectory based on

extrapolation of the 1965–2011 linear regression is also shown.
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trends came from regions with negligible crop production (e.g.,
maize in Moldova, soybean in Congo, rice in Greece). The
statistical analysis was limited to only three models, including the
cubic model to detect yield plateaus—which has no biophysical
justification—and model selection was not robust because
regression analysis assumptions were not tested. Only one
recent study followed a robust, statistically sound method to
describe yield trends, but that study was limited to one crop
(wheat) and only two statistical models were evaluated29.

Exaggerated yield gain rates, sometimes justified by unverifi-
able ‘record’ crop yields, have been used to support optimistic
projections of grain production12–18 (Fig. 2 and Supplementary
Table S2). For instance, a widely publicized goal for average US
maize yield of 20 Mg ha� 1 by 2030 would require an annual yield
gain of 506 kg ha� 1 per year (or 3.6% per year compounded)17.
This rate is four times greater than the rate of increase in US
maize yield from 1965 to 2011 (114 kg ha� 1 per year). Another
recent study predicted a 2.8% per year rate of gain in US maize
yield (equivalent to 460 kg ha� 1 per year as a linear rate) under
the assumption that farmers would respond to the incentive of
higher grain prices caused by increased global demand, partly as a
result of the US bioethanol mandates18.

Improved analytical framework for estimating historical yield
trends. Trajectories in national average yields are driven by
changes in crop management practices, crop genetic improve-
ment through conventional breeding and genetic engineering,
climate and interactions among these factors, under influence of
surrounding social, economic and political environments30.
Depending on country and time period, the mathematical form
of historical yield trend for a specific crop in a given country can
be linear, exponential, parabolic, linear plateau or flat. Statistical
trend analysis is the only objective method to determine the
mathematical model that best fits observed data. And although
food security projections and yield gain rates of major cereal
crops are extremely sensitive to mathematical form, rigorous
statistical trend analysis to identify the most appropriate
statistical model (hereafter called ‘best-fit model’) have not been
used to inform previous projections of global food security as
published in the papers cited herein.

Here we develop a framework for statistical trend analysis of
historical crop yields and use it to analyse yield trends of the
major cereals since the start of the green revolution in 36
countries and regions, which together account for 84, 56 and 71%
of global rice, wheat and maize production, respectively
(Supplementary Table S3). These three crops are the focus of
our analysis because rice, wheat and maize together account for
B85% of global cereal production and contribute a majority of
human calories eaten directly as staple foods or indirectly through
consumption of livestock fed with grain. Six statistical models,
widely used in the literature for describing time series trends in
crop yields, provided the basis for a comprehensive analysis of
historical crop yield trends (Fig. 3). Testing all six models based
on statistically sound criteria provided an objective approach for
identifying the most appropriate shape of historical yield trend
(Fig. 4). From this analysis, we estimate the proportion of global
grain production from countries and regions in which yields are
flat, rising, declining or plateauing, consider the most plausible
explanations for cases of accelerating or plateauing yields and
posit implications of these findings for studies of future food
production capacity and land area required to produce it.

Rate of increase in cereal crop yield is generally linear. Best-fit
trends for selected crop–country and –region cases are shown in
Fig. 5. Linear models, with or without a discontinuous

breakpoint, adequately described all of the yield trends (Table 1,
Fig. 5 and Supplementary Table S4). In 10 of 36 cases, a linear
rate of gain throughout the entire time series provided the best fit.
Dividing the rate of gain by the trendline yield provides the
relative rate of gain as a percentage of the estimated yield for a
given year (Supplementary Table S5). For example, average rice
yield in India was B1,500 kg ha� 1 in 1970, whereas the rate of
gain was 45 kg ha� 1 per year, which gives a relative rate of gain of
2.9%. By 2010, average rice yield had risen to B3,300 kg ha� 1,
which means the relative rate of gain had fallen to 1.3%. Thus, in
28% of the cases evaluated, rate of increase remains constant such
that relative rates of gain decline throughout the entire time series
(Supplementary Table S5).

Decreasing absolute rates of gain were observed for rice in
Indonesia and maize in China, where yield gain during recent
decades (31 and 42 kg ha� 1 per year, respectively) are much
slower than rates at the beginning of the time series (110 and
115 kg ha� 1 per year, respectively). In contrast, abrupt, transitory
increases in both absolute and relative rates of yield gain were
observed in 11 cases (Supplementary Table S5). These cases
corresponded to crops and countries where little yield increase
occurred at the beginning of the time series and average yield
remained low for a long time period, such as rice in Vietnam and
maize in Brazil (Fig. 5). For rice in Vietnam, socioeconomic
stabilization following the Vietnam War, introduction of modern
indica rice varieties and increased use of fertilizer supported an
abrupt upward yield trend beginning in 1979. In Brazil, the
development of improved management practices for acid,
infertile soils in the Cerrado and the introduction of hybrid seed
led to a rapid rise in maize yields after 1990. However, even in
these cases, subsequent yield gain after the abrupt upturn was
remarkably linear and therefore relative rates of gain decline
(Supplementary Table S5).
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Strong evidence of yield plateaus in some of the world’s most
intensive cropping systems. A major concern is the observation
that yields in some major cereal-producing regions have not
increased for long periods of time following an earlier period of
steady linear increase, hereafter called ‘upper yield plateaus’
(Table 1, Fig. 5 and Supplementary Table S4). Upper yield
plateaus were observed in 14 of the 36 cases. Moreover, there was

no case of a return to the previous rising yield trend after a
statistically significant upper yield plateau occurred. Taken
together, cases with statistically significant upper yield plateaus
represent 33% of global rice and 27% of global wheat production
(Table 2). Given the importance of these intensive systems
to global food supply, identification of underpinning causes for
yield plateaus in these systems is fundamental for estimating
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crop-region yields

Yes

Yes

Yes

Yes

Yes

Yes

No

Discard
models

Select
models

Discard LUP or LLP model

PW and
LUP or LLP model

both selected?

Difference
in r.m.s.e. between

two models with smallest
r.m.s.e. is >5%

One
model violates

one or more assumptions
of regression analysis

(P <0.01)

Model
with lowest r.m.s.e.

also has smallest number of
parameters

Box–cox method indicates that data transformation
increases model fit (diference in r 2 > 5%)

Select two models
with smallest r.m.s.e.

Select model with
smallest r.m.s.e.

Estimated
model parameters

are significant (P <0.01)
and no trend detected

in residuals plots

No

No

No

No

No

Best-fit
model(s)

Transformation
needed

No transformation
needed

Select the
two models

Select model with
smallest number of

parameters

Select model that
does not violate
assumption (s)

Figure 4 | Decision tree used to identify best-fit models for each crop–country or –region case. Note the description of statistical tests and

detailed explanation of the cases exhibiting significant serial correlation, as detected with the Durbin–Watson test and the residual plots, in the Methods

section. r.m.s.e., root mean square error; r2, coefficient of determination.
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future food production capacity. A hypothesis that can explain
the occurrence of yield plateaus is that average farm yields
approach a biophysical yield ceiling for the crop in question,
which is determined by its yield potential in the regions where the
crop is produced19–21. This seems to be the case in high-yield
systems for rice in East Asia (China, Republic of Korea
and Japan), wheat in Northwest Europe (United Kingdom,
France, Germany, The Netherlands, Denmark) and India,
and maize in South Europe (Italy and France). Other factors
may also contribute to observed yield plateaus, including cyclical
weather patterns, land degradation, shift in the location of
production area to regions with poorer soils and climate, policies
on the use of fertilizers and pesticides, and insufficient or poorly
oriented investment in agricultural research and development
(R&D)27,29,31.

At issue is how many years of plateau are needed before the
trend becomes statistically significant. Analysis of cases in this
study indicates that 4–18 years of ‘flat’ yields are needed to
detect a statistically significant yield plateau, depending on the
degree of year-to-year variability in yield along the entire time
series (Supplementary Table S6). In favourable irrigated or
rainfed environments where yield variability due to weather
and water supply is small, B8 years are needed to identify a
significant yield plateau (for example, irrigated rice in China
and California, rainfed wheat in Northwestern Europe and
maize in South Europe). Longer time series (13–18 years)
are needed to identify yield plateaus in harsher rainfed
cropping systems due to the high year-to-year variability in yield,

such as for wheat in the southern US Great Plains where it
appears there has been little improvement in yields of recent
varietal releases22.

Length of the ascending linear phase is also important. For
example, a recent study of wheat yield trends in three regions
in The Netherlands reports that average farm yield continues to
rise at a linear rate32, in contrast to our analysis (Table 1 and
Fig. 5). The reason for this different conclusion is that the Dutch
study uses a shorter time series, which begins in 1979, and thus
has only 15 years of ascending linear phase, based on the
breakpoint year (1993) found in the present study. In our
analysis, the time series begins in 1965 and thus has 29 years to
establish the linear phase.

In contrast to plateaus in high-yield systems, yield stagnation at
low-yield levels or very low rates of yield gain are observed in
countries or regions where farmers lack access to agricultural
inputs, infrastructure, capital, markets and extension services,
such as for maize in Africa (Supplementary Table S4). These

10,000
Rice China (LUP)

China (L)

Australia (L)

France (LUP)
India (LUP)

The Netherlands (LUP)

United Kingdom (LUP)

Brazil (PW+)

Central Africa (LLP)
China (PW–)

India (LLP)

Italy (LUP)

Eastern (L)
Western, rainfed (L)

India (L)
Indonesia (PW–)
Korea, Rep. (LUP)
Vietnam (LLP)

California (LUP)
South-central (LLP)

Wheat

Maize

G
ra

in
 y

ie
ld

 (
kg

 h
a–1

)

8,000

6,000

4,000

2,000

0

10,000

8,000

6,000

4,000

2,000

0

10,000

12,000

8,000

6,000

4,000

2,000

0

Year
1970 1980 1990 2000 2010

United States:

Western, irrigated (L)

US Corn Belt:

Figure 5 | Trends in grain yield of the three major cereal crops for
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Table 1 | Best-fit models identified for each crop and country
or region.

Country/region Crops

Rice Wheat Maize

Africa
East LUP*
Central LLP
West LLP

America
Argentina L, EXP PWþ , EXP
Brazil PWþ
Canada LLP
United States

California LUP
South-central LLP
South Great Plains LUP
Central Great Plains L, EXP
North Great Plains LLP, EXP
Eastern corn belt L, EXP
Western Corn Belt

Irrigated L, EXP
Rainfed L, EXP

Asia
Bangladesh PWþ
China LUP L PW�
India L LUP LLP
Indonesia PW�
Japan L, LUP
Korea LUP *
Philippines L
Thailand PWþ
Vietnam LLP

Europe
Denmark LUP
France LUP LUP
Germany LUP
Italy LUP
The Netherlands LUP
United Kingdom LUP

Oceania
Australia L, EXP

L, linear (no plateau); QP, quadratic plateau; PW, piecewise with (þ ) increasing or (� )
decreasing rate after breakpoint year; LUP or LLP, linear with upper or lower plateau; EXP,
compound exponential.
*Box–Cox procedure indicates that reciprocal transformation improves model fit.
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regions exhibit the highest potential for intensification because
substantial increases in crop production can be achieved without
expansion of current cropland area, through modest increases in
current yield gain rates. For example, Africa accounts for 15% of
global maize harvested area but produces o5% of current global
maize. With current rates of yield gains of 0, 13 and 29 kg ha� 1

per year (East, Central and West Africa, respectively), total
maize production in Sub-Saharan Africa will increase only by 9%
in the next 10 years which, in turn, will put pressure on
expanding cropland area as observed during the last decade
(Fig. 1 and Supplementary Table S1). In contrast, if current yield
gains could be increased to a modest rate of 80 kg ha� 1 per year,
similar to the rates observed for maize in other harsh
environments such as the western US Corn Belt, total maize
production in Sub-Saharan Africa would increase by 53% in the
next 10 years, helping to decrease pressures to expand cropland
area and food imports.

Table 2 | Percentage of global crop production under
different crop yield trajectories.

Crop
species

% of
global

production*

Increasing
rate (%)w

Constant
rate (%)

Decreasing
rate (%)

Upper
yield

plateaus
(%)

Rice 84 19 23 9 33
Wheat 56 5 24 0 27
Maize 71 13 33 20 5
Total rice,
wheat and
maize

70 12 27 10 21

*Percentage of global production of rice, wheat and maize, and the three crops together
accounted for by the 36 crop–country cases analysed in this study.
wThe 36 crop–country cases were grouped according to the pattern of change in rates of crop
yield gains during the 1965–2010 interval and total production was calculated for each group and
for each crop.
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No support exists for use of compound, exponential rates of
yield increase to project yield trends. Exponential models
underperformed compared with linear models and exhibited large
biases in the distribution of yield residuals (Figs 6–8 and
Supplementary Table S7). Even in the few cases where expo-
nential models performed well at describing yield trends, their
residual error was comparable to that of the best-fit linear model
(for example, maize and wheat yields in USA). Hence, there are
three reasons why the use of exponential models to describe or
project yield trajectories is not appropriate. First, where yields are
increasing, absolute rates of yield increase are linear. Second,
there is no case in which relative rates of yield gain have con-
sistently increased or remained constant over time. Third, there
are a number of cases where yield plateaus or a discontinuous
break to slower rates of yield gain suggest the possibility of a
biophysical ‘ceiling’ yield. In contrast, much of the published
literature on yield projections is based on exponential rates of

yield increase (Fig. 2 and Supplementary Table S2), which, as
shown here, do not occur in the real world (Fig. 5). For example, a
previous published study projected an average 1.4% per year
compound rate of yield increase for irrigated rice in California
from 2010 to 2050 (ref. 14) even when the average actual yield of
California rice has not increased since 1990 (Fig. 5). Predicted
irrigated rice yield in California by 2050, based on the above
compound rate, is B15,000 kg ha� 1, which is 470% above the
current average yield of B9,000 kg ha� 1.

Discussion
Results from our analysis suggest that projections of crop yield
trajectories based on extension of historical trends of the past five
decades should be viewed with caution because these past trends
were driven by rapid adoption of green revolution technologies
that were largely one-time innovations. These include the
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development of semi-dwarf wheat and rice varieties, first
widespread use of commercial fertilizers and pesticides, and
large investments to expand irrigation infrastructure. A concern
is that despite the increase in investment in agricultural R&D
and education during this period27,33, the relative rate of yield
gain for the major food crops has decreased over time together
with evidence of upper yield plateaus in some of the most
productive domains. For example, investment in R&D in
agriculture in China has increased threefold from 1981 to 2000
(ref. 33). However, rates of increase in crop yields in China
have remained constant in wheat, decreased by 64% in maize as a
relative rate and are negligible in rice (Fig. 5 and Supplementary
Table S5). Likewise, despite a 58% increase in investment in
agricultural R&D in the United States from 1981 to 2000 (sum
of public and private sectors), the rate of maize yield gain
has remained strongly linear (Fig. 5 and Supplementary
Table S5), implying that the marginal yield increase per unit of

research investment has decreased substantially over time and
highlighting the need for increasing the level of investment
on agricultural R&D to sustain current and future increases in
crop yields33.

These findings are consistent with the notion that as farmers’
yields move up towards the yield potential threshold, it becomes
more difficult to sustain further yield gain because it requires fine
tuning of many different facets of management in the production
system34. Such fine tuning is often difficult to achieve in farmer’s
fields, and the associated marginal costs, labour requirements,
risks and environmental impacts may outweigh the benefits34.
Therefore, substantial increases in future grain production will
require significant increases in average crop yields in countries
where current yield gaps are large as others have noted35.
Paradoxically, many of the countries exhibiting the largest gaps
have the poorest access to technology, infrastructure and capital
required for agricultural development36.

CROP: maize
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To summarize, we found widespread deceleration in the
relative rate of increase of average yields of the major cereal
crops during the 1990–2010 period in countries with greatest
production of these crops, and strong evidence of yield plateaus
or an abrupt drop in rate of yield gain in 44% of the cases
(Table 1), which, together, account for 31% of total global rice,
wheat and maize production (Table 2). The results strongly
support the proposition that estimates of future cereal production
should be derived from yield projections based on linear models,
with breakpoints and plateaus to reflect the linear nature of the
crop yield gains in an ascending phase during which modern crop
management practices are adopted, and the existence of a
biophysical upper limit for grain yield best estimated by robust
crop simulation models3. Approaches that rely on compound
rates of yield increase or constant linear rates with no upper limit
to yield growth are not supported by the analysis of historical
yield trends and current understanding of crop physiology, and
they are likely to overestimate future increases in crop yields by a
large margin (Fig. 2 and Supplementary Table S2). In turn,
overestimating trajectories in crop yields leads to estimates of
land requirements for crop production that are too low and
diminish capacity for effective strategic planning and research
prioritization to ensure future food security and conservation of
natural resources.

Methods
Overview. The time period of 1965–2010 over which yield trends were evaluated is
the most relevant for use in estimating historical rates of yield gain to inform
projections of future food security because it represents a contemporary period
when public and private sectors in many developed and developing countries have
invested heavily in application of modern genetics, agronomy and supporting basic
sciences and information technologies to develop and gain adoption of technolo-
gical advances in crop production.

Evaluated mathematical models were as follows: linear (L), quadratic with
upper plateau (QP), linear piecewise (PW), linear with upper (LUP) or lower
plateau (LLP), and compound-rate exponential (EXP) (Fig. 3). Except for the
United States and Africa, where yield trends were analysed at the subnational and
regional levels, respectively, the present study focuses on average yield at the
national level because this is the spatial scale at which most projections of food
security are made. Criteria for the selection of the best-fit trend are based on the
assumption that the most appropriate statistical model is one that can describe the
observed time trend in yield with the lowest error and minimal bias in distribution
of residuals, and which uses the smallest possible number of estimated parameters
while meeting the assumptions of normality, independence and homogenous
variance in regression analysis37 (Fig. 4).

Analysis of trends in cropland harvested area. Long-term (1965–2011) data in
crop-harvested area were retrieved from FAOSTAT and used to analyse changes in
cropland area of staple crops (cereal, oil, sugar, fibre, pulses, tuber and root crops)
and three major cereal crops (rice, wheat and maize; FAOSTAT Database–Agri-
cultural Production (http://faostat.fao.org/). A three-phase linear model was fitted
to the observed trends using the PROC NONLIN procedure in SAS Version 9.1
(SAS Institute, 9.1 Foundation for 64-bit Microsofts Windowss, SAS Institute,
Cary, NC):

y ¼ aþ bx if xox1

y ¼ aþ bx1ð Þþ c x � x1ð Þ if x1 � x � x2

y ¼ aþ bx1ð Þþ c x2 � x1ð Þþ d x � x2ð Þ if x4x2

ð1Þ

where y is crop-harvested area (Mha), x is year and x1, 2 are the breakpoint years.
The fitted trilinear models have coefficient of determination (r2) of 0.97 and 0.93
(root mean square error (r.m.s.e.)¼ 9.5 and 6.9 Mha) for area of staple crops and
three major cereal crops, respectively. A total of 47 years of yield data were used in
the regression analysis (1965–2011 time period). All estimated parameters were
significant (Student’s t-test, Po0.01), except for parameter c in the fitted trend for
cropland area of the three major cereal crops (Student’s t-test, P¼ 0.20). An initial
period of increase in harvested area occurred until 1980, followed by a period of
little or no increase in harvested area of staple and major cereal crops, respectively,
which lasted until early 2000s (Fig. 1). This period was followed by an unprece-
dented rate of expansion in harvested cropland area during the last decade, as
indicated by the statistically significant higher rates of increase in harvested area of
staple and major cereal crops during the last decade (parameter d in (equation 1))
compared with earlier rates of increase during the first two decades of the green
revolution (parameters b and c in (equation 1); Student’s t-test; Po0.01).

Change in crop-harvested area during the last 10 years (2002–2011) was
calculated for staple crops and, separately, for four crops (rice, wheat, maize and
soybean) that accounted, altogether, for 83% of observed increase in staple crop
area:

Net change ¼ HA2010� 2011 �HA2002� 2003 ð2Þ

Relative change ¼ Net change=HA2002� 2003

� �
�100 ð3Þ

where net and relative changes are the absolute (Mha) and relative (%) differences
in harvested area between two periods (Mha), and HA2002–2003 and HA2010–2011 are
the calculated 2-year average harvested area for the 2002–2003 and 2010–2011
intervals, respectively. A net change of 85 Mha was observed for staple crops
between 2002–2003 and 2010–2011 intervals, indicating that an 8% increase in
global cropland area has occurred in only 10 years (Supplementary Table S1). This
change was mostly accounted for by increased harvested area of maize and rice in
Africa (þ 9 Mha), soybean in South America (þ 15 Mha) and maize, rice and
soybean in South and Southeastern Asia (þ 16 Mha). In addition, remarkable was
the little relative change of harvested crop areas (negative in some cases) observed
for North and South Africa, West Asia, Europe and North America
(Supplementary Table S1).

Published projections in grain yields of cereal crop yields. Previously published
projections on yield trajectories, based on exponential compound rates, were
retrieved from the literature12–18 (Supplementary Table S2). In many of these
projections, countries were grouped into categories according to their geographic
location or degree of economic development, and a crop-specific exponential yield
gain rate was assumed for each category. Other studies simplified this approach by
assuming a single, worldwide exponential yield gain rate for each crop. A common
feature of previous studies is the lack of recognition of a biophysical limit on crop
yields determined by solar radiation, temperature and water supply from both
rainfall and irrigation. To illustrate the discrepancy between reported projections
and observed historical trends, reported projected trajectories for the US average
maize yield were plotted and compared against the projected yields based on the
historical (1965–2011) yield trend (Fig. 2).

Data on grain yield data for cereal crops. Average annual yield data from 1965
to 2010 were retrieved for rice, wheat and maize in selected countries and regions,
resulting in a total of 36 (crop–country or –region) cases that include a wide range
of production environments and yield levels (FAOSTAT Database–Agricultural
Production (http://faostat.fao.org/; National Agricultural Statistics Service—Crops
US state and county databases (http://www.nass.usda.gov/index.asp;
Supplementary Table S3). Available wheat and maize yield data in the USA also
includes 2011 National Agricultural Statistics Service—Crops US state and county
databases (http://www.nass.usda.gov/index.asp). Hence, a total of 46 years of yield
data were used for the yield trend analysis, except for the United States where a
total of 47 years of yield data were used. In the case of the United States, trends
were analysed for major producing regions: rice in California and south-central,
wheat in the southern, central and northern Great Plains, and maize in the eastern
and western Corn Belt. These regions accounted for 77, 47 and 85% of total US
production of rice, wheat and maize, respectively. Separate analyses were per-
formed for rainfed and irrigated maize yields in the western US Corn Belt, where
both irrigated and rainfed production are important (54 and 46% of total maize
production in western US Corn Belt, respectively). The analysis of maize yield
trends in Africa was conducted for three regions: East, Central and West Africa.
The average yield for a given region in the United States or Africa was calculated as
the sum of total crop production in all the states (the United States) or countries
(Africa) within the region divided by total harvested area.

Statistical analysis of yield trends. Data on average annual grain yield were
plotted against year for each crop–region case. Six statistical models, extensively
used in the literature to describe yield trajectories, were evaluated for their
performance of fitting trends in grain yields since the onset of the green revolution
(Fig. 3):

Linear Lð Þ y ¼ aþ bx ð4Þ

Quadratic with plateau QPð Þ y ¼ aþ bxþ cx2 if xox0

y ¼ y0 if x � x0

x0 ¼ 0:5b=c
ð5Þ

Linear piecewise PWð Þ y ¼ aþ bx if xox0

y ¼ aþ bx0ð Þþ c x� x0ð Þ if x � x0
ð6Þ

Linear with upper plateau LUPð Þ y ¼ aþ bx if x � x0

y ¼ y0 if x4x0
ð7Þ

Linear with lower plateau LLPð Þ y ¼ y0 if x � x0

y ¼ y0 þ b x� x0ð Þ if x4x0
ð8Þ

Compound exponential EXPð Þ y ¼ a bþ 1ð Þx�xi ð9Þ

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3918 ARTICLE

NATURE COMMUNICATIONS | 4:2918 | DOI: 10.1038/ncomms3918 | www.nature.com/naturecommunications 9

& 2013 Macmillan Publishers Limited. All rights reserved.

http://faostat.fao.org/
http://faostat.fao.org/
http://www.nass.usda.gov/index.asp
http://www.nass.usda.gov/index.asp
http://www.nature.com/naturecommunications


where y is grain yield (kg ha� 1), x is year, xi is the initial year of the time series
(1965 in the present study) and y0 is the yield plateau level (kg ha� 1).

SAS Version 9.1 programmes and procedures were used for all statistical
analyses. The six models were fitted to observed yields using the PROC MIXED,
PROC REG and PROC NONLIN procedures. Estimates of model coefficients (and
associated confidence intervals), coefficient of determination (r2) and the r.m.s.e.
were calculated for each crop–region model combination (Supplementary Tables
S4 and S7). In the case of nonlinear models, r2 was calculated as the square
correlation between predicted and observed values38. Violations of assumptions of
regression analysis were identified by performing Shapiro–Wilks test for normality,
Levene’s test for variance homogeneity and the Durbin–Watson’s (D) test for serial
correlation39 (Supplementary Table S8). Residuals were plotted against year and
the significance of linear- and quadratic models fitted to these plots was evaluated
to detect potential biases along the time series (Figs 6–8). Finally, the Box–Cox
method was used to identify suitable power transformations that can improve
models performance40 (Supplementary Table S9).

The following criteria were used to identify the best-fit model for each crop–
region yield trend: highly significant (Student’s t-test; Po0.01) model parameters,
highest r2 and lowest r.m.s.e. compared with other models, and independent,
normally distributed yield residuals with homogenous variance and unbiased
distribution when residuals were plotted against year (Fig. 4). An additional criteria
was that none of the applied data transformations improve model fit by 45%
based on comparison of calculated r2 among models based on transformed and
untransformed data37 (Fig. 4). In the process of selecting the best-fit model, the PW
and LUP or LLP models were mutually exclusive, that is, the LUP or LLP models
were discarded if estimated parameters of the PW model were all significant and no
bias was detected in the distribution of yield residuals. In 22 out of the 36 cases, one
statistical model clearly outperformed the others by a difference in r.m.s.e. Z5%
and this was the chosen best-fit model (Supplementary Tables S4 and S7). When
differences in r.m.s.e. among two or more models were o5% (14 out of 36 cases),
the two models with lowest r.m.s.e. were selected as best-fit models, unless there
was a justification to discard one of them, for example, failure to meet assumptions
of regression analysis (EXP in Canada) or when the model with higher r.m.s.e. also
had the larger number of parameters (QP for wheat in the Netherlands and maize
in Italy).

Selected best-fit models exhibited highly significant coefficients (Student’s t-test;
Po0.01) and higher goodness of fit compared with other fitted models (higher r2

and smaller r.m.s.e.; Supplementary Tables S4 and S7). Out of 45 selected best-fit
models, only 1 and 4 did not meet assumptions of variance homogeneity (LLP
model for rice in Vietnam) and normality (L and EXP models for maize in the
United States), respectively (Levene and Shapiro–Wilks tests; Po0.01)
(Supplementary Table S8). In contrast, ten selected best-fit models exhibited
significant positive serial autocorrelation: rice in Bangladesh, China, Indonesia,
Republic of Korea, Philippines, Vietnam, wheat in China and maize in central and
west Africa and Italy (D-test; Po0.01; Supplementary Table S8). Residual plots of
the best-fit models did not exhibit any obvious trends over time, except for four
cases with severe positive serial autocorrelation: rice and wheat in China and rice in
Indonesia and Philippines (0.45oDo0.80), which are possibly related to vigorous
public sector varietal improvement and agronomic research programmes that
promote rapid adoption of improved rice varieties and associated fertilizer and pest
management practices and/or the frequency of the yield survey (Figs 6–8 and
Supplementary Table S8). Serial correlation affects the estimated variances but does
not affect the value of the estimated model coefficients, which results in the
estimators looking more accurate than they actually are38. To test how serial
correlation may have affected the significance of the estimators, we assumed the
estimated variance to be 60% of the true variance, which is expected for a first-
order serial correlation coefficient (AR(1)) of 0.5 (ref. 39), similar to the estimated
AR(1) of 0.6 found for the above four crop–country cases. Results indicate that the
parameter estimates of the best-fit models were still highly significant despite serial
correlation (Student’s t-test; Po0.01). EXP models exhibited a remarkable bias on
their residuals plots in 75% of the 36 cases (with significant positive autocorrelation
in 58% of the cases) and did not meet assumptions of regression analysis in 31% of
the cases (Figs 6–8 and Supplementary Table S8).

Other evidence of the robustness of selected best-fit models was that their fit,
based on the original untransformed data, was not improved after data
transformation using the Box–Cox method40, except for rice in Republic of Korea
and maize in east Africa (Supplementary Table S9). In both cases, model fitness
increased slightly after applying a reciprocal transformation to the yield data
(r2¼ 0.90 versus 0.84 (Republic of Korea) and 0.57 versus 0.49 (East Africa), with
and without data transformation, respectively). None of the non-selected models fit
to the transformed data outperformed the fit of the selected models shown in
Table 1. And although the presence of abnormally low- or high-yield years
during the last years of the time series can potentially hinter the identification of
yield plateaus, this is not a large concern in the present study because all cases that
exhibited an upper yield plateau have Z10 years of yield data after the break-
point year, except for maize in France with 7 years. Perhaps, more important, the
99% confidence interval of the breakpoint year (x0) was within the 1965–2010
interval in all cases. In addition, visual inspection of the crop–country trends
with statistically significant yield plateaus did not have unusually high or low
yields around the breakpoint year. Therefore, it is unlikely that the upper yield
plateaus identified in the present study are the consequence of a few yield

outliers at the end of the time series. The presence of autocorrelation and
changes in variance over time can also hinder the identification of yield plateaus29.
However, out of the 21 selected LUP or LLP models in the present study,
variance was not homogenous in only one case (rice in Vietnam) and
autocorrelation was significant in six cases (rice in China, Republic of Korea and
Vietnam, and maize in central and west Africa, and Italy) (Supplementary Table
S8). And even in the six cases with significant autocorrelation or non-homogenous
variance, visual inspection of the residuals clearly indicated that LUP or LLP
models outperform linear models (Figs 6–8). Although the yield residual versus
time relationship of the linear model exhibited a strong trend, there was no
detectable pattern in the yield residuals of the LUP or LLP models, with the only
exception of maize in West Africa where there was no detectable trend in both
linear and LLP models.

Yield trends from cases in which there was evidence of yield plateaus were re-
analysed to determine the number of years after the breakpoint year (x0) that were
needed to identify a yield plateau (hereafter called xn). The LUP model was
successively fitted to yield trends in which data-years after x0 were removed and
then added one by one until estimated x0 became statistically significant (Student’s
t-test; Po0.01). Values of xn varied across cases, depending on the magnitude of
year-to-year variation in yields along the entire trend line (Supplementary Table
S6). In fact, there was a negative relationship between xn and r2 of the fitted LUP
model to each crop–country case (y¼ 20� 14.9 x; r2¼ 0.63; Student’s t-test;
Po0.01). A conservative value of xn¼ 7 years can be taken as the minimum
number of years needed, after the breakpoint year, to detect a statistically
significant yield plateau in production systems that exhibited high r2 (40.85) such
as rice in China and California, wheat in northwestern Europe and maize in Italy
and France. In production systems with larger variability in yield along the yield
trends, a greater number of years is required, ranging from 9 years in Japan
(r2¼ 0.63) to 17 years in East Africa (r2¼ 0.49). The total number of years with
’flat’ yields required to detect a statistically significant yield plateau, including the
breakpoint year, was calculated as xnþ 1 and this is the value reported in the
Results section.

Calculation of absolute and relative yield gain rates. Absolute yield gain rates
(kg ha� 1 per year) were calculated from the first derivative of the best-fit model,
for each crop–region case, at three points in the time interval: 1970, 1990 and 2010
(Supplementary Table S5). For those cases in which there were two best-fit models,
the model with lowest r.m.s.e. was chosen to describe the yield trend. Despite the
slightly better performance of the EXP model, the L model was chosen to describe
trends in maize yield in the United States because fit of the EXP and L models was
very similar (difference in r.m.s.e. r2%), there was no evidence of changes in the
absolute yield gain rate between 1965 to 2011 as tested using piecewise with one,
two or three breakpoint years and the EXP model underperformed compared with
other models in all the other cases. Moreover, using an exponential model would
imply predicted average maize yields by 2030 that are 35 and 37% higher than the
2010 yield for maize in the eastern and (irrigated) western US Corn Belt, which will
require average (2010–2030) yield gain rates of 180 and 220 kg ha� 1 per year.
These rates are 50 and 70% higher than the observed yield gain rates during the
1965–2010 interval. This is unlikely to occur given the slow down in yield gain
rates observed in other intensive cropping systems and lack of increase observed
for irrigated maize in contest winners and farmers’ fields in the western US Corn
Belt3,19. In fact, although no yield plateau was detected for irrigated maize in the
western US Corn Belt for the 1965–2011 interval, the linear regression for the last
10-year period (2002–2011) has a slope indistinguishable from zero (Student’s t-
test; P¼ 0.26, n¼ 10).

Relative rates of yield gain (% per year) were calculated for 1970, 1990 and 2010
as the ratio between the absolute yield gain rate and the yield-trend-predicted yield
in the particular year, expressed as percentage (Supplementary Table S5).
Exponential compound rates (% per year) were also derived for each crop–region
case from the parameter b in (equation 9), expressed as percentage. The objective
was to highlight the limitations of using compound rates of yield gain to predict
future yield trajectories: out of a total of 29 cases that have compound rate 41%
per year, there was evidence of yield plateaus or decreasing yield gain rates in 41%
of the cases, decreasing relative rates of yield gain during the entire time series in
66% of the cases and decrease in the relative rate of yield gain in the time interval
between 1990 and 2010 in all cases.
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