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GENOMIC SELECTION

Genomic Prediction of Single Crosses in the Early
Stages of a Maize Hybrid Breeding Pipeline
Dnyaneshwar C. Kadam,* Sarah M. Potts,† Martin O. Bohn,† Alexander E. Lipka ,†

and Aaron J. Lorenz*,1

*Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 and †Department of Crop
Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

ABSTRACT Prediction of single-cross performance has been a major goal of plant breeders since the
beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but
only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no
studies have examined the potential of predicting single crosses among random inbreds derived from a
series of biparental families, which resembles the structure of germplasm comprising the initial stages of a
hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic
prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its
application. To accomplish these objectives, we designed and analyzed a novel population of single crosses
representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the
development of North American commercial maize hybrids. The performance of single crosses was
predicted using parental combining ability and covariance among single crosses. Prediction accuracies
were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant
height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and
genomic prediction method used. The genomic estimated general and specific combining abilities showed
an advantage over genomic covariances among single crosses when one or both parents of the single cross
were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a
hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.
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Contemporary hybrid breeding programs are based on the pure-line
method of corn breeding proposed by Shull (1909). This method in-
cludes the development of inbreds by self-pollination, followed by eval-
uation of selected inbreds for single-cross performance when crossed to
other inbreds. A major challenge with this method is achieving ade-
quate testing of the inbreds to evaluate performance in single-cross

combinations (Hallauer et al. 1988). In maize, heterotic groups are well
defined, and single crosses are almost exclusively made between heter-
otic groups. The fullest assessment of single-cross performance in
maize, therefore, would be a complete factorial mating design achieved
by making all between-heterotic groups single crosses. This would pro-
vide complete information on both general combining ability (GCA)
and specific combining ability (SCA) (Comstock and Robinson 1948).
However, a full factorial design among inbreds can be cost prohibitive,
as advanced hybrid breeding programs typically have many inbreds to
evaluate, making the number of all possible single crosses extremely
large. For this reason, predicting single-cross performance has always
been a major issue for hybrid breeding programs (Schrag et al. 2009).

Several approaches have been used to evaluate the genetic merit of
inbreds for single-cross performance with variable success. These
approaches include inbred per se performance, performance when
crossed to testers (topcross test), best linear unbiased prediction
(BLUP) using pedigrees, and molecular marker-assisted prediction.
Many of these approaches have been reviewed in detail elsewhere
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(Schrag et al. 2009; Smith and Betrán 2004). Per se performance of
inbreds is typically found to be a very poor predictor of single-cross
performance, especially for traits such as grain yield (GY), where
strong dominance effects underlie the genetic variance (Hallauer
1977; Love and Wentz 1914; Smith 1986). A topcross test is an
established and simple approach to assess the genetic worth of
inbreds in single-cross combinations (Jenkins and Brunson 1932).
However, topcross evaluation of a large number of inbreds is difficult
(Albrecht et al. 2011), and selections based on single-cross perfor-
mances are carried out in later stages, increasing the time required
for commercial hybrid development. Bernardo (1996a) showed that
pedigree-based BLUP is useful for prediction of untested single crosses.
He used pedigree-based covariance matrices among tested and un-
tested single crosses to obtain BLUPs for untested single crosses. The
correlations between observed and predicted performance were mod-
erate (0.43–0.76) for single crosses where both parents were tested in
single-cross combinations. However, correlations were severely de-
creased when one or both of parents were untested (Bernardo 1996b).

The relationship between genetic distance (GD) of parental
inbreds, measured by molecular markers, and heterosis has been
extensively studied in maize. While it is possible to predict single-
cross performance usingmarker-basedGD for hybrid sets composed
of both intra- and inter-heterotic group single crosses, correlations
for predicting interheterotic group single crosses only were reported
to be very low (Lee et al. 2007; Melchinger 1999). Two possible
causes of these low prediction accuracies include (1) loose associa-
tion between heterotic quantitative trait loci (QTL) and the molec-
ular markers used to estimate GD, and (2) opposite linkage phases
between the QTL and marker alleles across heterotic groups
(Bernardo 1992; Charcosset et al. 1991). Commercial hybrids con-
sist of only interheterotic group single crosses, making them the
only type relevant for prediction in breeding programs. In a mod-
ified approach, prediction of single-cross performance and SCA
based on only significant markers was suggested (Vuylsteke et al.
2000), but this approach was found to be inferior to an established
GCA method. Also, extending the GCA predictions with SCA esti-
mates from associated markers did not improve the prediction ac-
curacy (Schrag et al. 2006, 2007).

Genomic prediction is an approach that uses markers to predict
the genetic value of complex traits in progeny for selection and
breeding (Meuwissen et al. 2001). When genomic predictions are
used to make selections, it is referred to as genomic selection (GS).
The primary difference between GS and traditional forms of marker-
assisted selection (MAS) is the simultaneous use of a large number of
markers distributed genome-wide, as opposed to a small set of markers
linked to QTL (Heffner et al. 2009). Implementation of genomic
prediction and selection requires the development of training (cal-
ibration) sets consisting of individuals that have been both pheno-
typed and genotyped, followed by model calibration. A whole suite
of genomic prediction models have been developed, each deploying

different strategies to estimate genome-wide marker effects or
model genomic relationships between individuals (de los Campos
et al. 2013).

Recent results from simulation and experimental studies have in-
dicated the usefulness of genomic prediction models to predict hybrid
performance in maize (Albrecht et al. 2011, 2014; Jacobson et al. 2014;
Massman et al. 2013; Riedelsheimer et al. 2012; Technow et al. 2012,
2014; Windhausen et al. 2012). However, most of the experimental
studies were focused on prediction of topcross performance under a
single tester scenario (Albrecht et al. 2011, 2014; Jacobson et al. 2014;
Riedelsheimer et al. 2012; Windhausen et al. 2012). Experimental stud-
ies on genomic prediction of single-cross performance have been based
on historical data consisting of established inbred parents with mixed
and complex ancestry (Massman et al. 2013; Technow et al. 2014).
These studies used covariances among tested and untested single
crosses estimated from realized genomic relationship matrices to pre-
dict the performance of untested single crosses. The prediction accu-
racies were high, often exceeding 0.75, even when both parents of the
single cross were untested.

Identification of superior single crosses early in the hybrid breeding
pipeline would be beneficial to developing commercial hybrids more
quickly. The current practice of initial selection among available inbreds
based on their topcross performance, followed by evaluation of single
crosses made among selected inbreds, increases time required for
commercial hybrid development. Moreover, this approach does not
allow evaluation of all possible single-cross combinations among avail-
able inbreds. It is important, therefore, to study the potential of genomic
prediction of early-stage single crosses (i.e., single crosses between sets of
random inbreds derived from each heterotic group).

With this inmind, themainobjective of this studywas toevaluate the
potential of genomic prediction for identifying superior single crosses
early in the breeding pipeline. Also, the effect of model and training
set composition on single-cross prediction accuracy was evaluated. To
accomplish these objectives, we designed and analyzed a novel pop-
ulation of single crosses. The parental recombinant inbred lines (RILs)
and doubled haploid lines (DHLs) were randomly selected from three
Iowa Stiff Stalk synthetic (SSS) and three non-Stiff Stalk synthetic (NSS)
biparental populations. All single crosses, therefore, represented the
SSS/NSS heterotic pattern commonly used in the development ofNorth
American commercial maize hybrids. All RILs and DHLs were geno-
typed using genotyping by sequencing (GBS) (Elshire et al. 2011); an
affordable genotyping option which is critical to the routine use of these
methods in a breeding program.

MATERIALS AND METHODS

Germplasm
Three SSS inbred parents (PHG39, PHJ40, and B73) and three NSS
inbred parents (LH82, PHG47, and PHG84) were used to create six
biparental families bymaking each of the three possible crosses between

n Table 1 Family designations of nine single-cross families and number of single crosses belonging to each of the nine families

PHG47 · PHG84 (35) LH82 · PHG47 (69) LH82 · PHG84 (67) Total

PHJ40 · PHG39 (8) f1 (27) f2 (39) f3 (33) 99
B73 · PHG39 (36) f4 (51) f5 (49) f6 (49) 149
PHJ40 · B73 (2) f7 (21) f8 (19) f9 (24) 64
Total 99 107 106 312

Biparental families are listed in the row and column headings. The numbers in the parentheses indicate numbers of recombinant inbred lines (RILs) or doubled haploid
lines (DHLs) in the biparental family or number of single crosses in each single-cross family. The total number of single crosses are displayed in 4th column (for SSS
biparental families) and 4th row (for NSS biparental families).
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the three SSS inbreds, and also between the three NSS inbreds
(Supplemental Material, Figure S1). The parents were selected to
be both genetically diverse and superior in GCA for GY under high
planting density (Mansfield and Mumm 2014). A total of 217 lines
were developed from crosses between these parents. Approximately
10% of these lines were RILs and 90% were DHLs. RILs and DHLs
will hereafter be referred to collectively as “inbred progenies.” The
number of inbred progenies in each of the six biparental families
ranged from two to 69 (Table 1). Random crosses among the inbred
progenies were made between heterotic groups to produce 312 sin-
gle crosses (Figure 1). Single crosses representing each biparental
family were balanced to the extent possible while maximizing the
number of inbred progenies used in the single crosses. Completely
balanced representation was not achieved due to seed limitations
and comparatively fewer inbred progenies available for certain bi-
parental families. Single crosses were grouped into nine single-cross
families, which we define as a group of single crosses created using
inbred progenies from the same biparental family on each side of
the heterotic pattern (Table 1). For example, a single cross with
pedigree (PHJ40 · PHG39)DH-1/(PHG47 · PHG84)DH-1 belongs
to the same single-cross family as a single cross with pedigree
(PHJ40 · PHG39)DH-2/(PHG47 · PHG84)DH-2. The mean num-
ber of times an individual SSS inbred progeny was used in a cross
was 6.9. The mean number of times an individual NSS inbred prog-
eny was used in a cross was 1.8. Number of single crosses per single-
cross family ranged from 19 to 51 (Table 1).

Field experiments
The 312 single crosses were evaluated at two locations in 2012 and three
locations in 2013. Two locations were common between years. The
locations were as follows: South Farms (Urbana, IL; 2012 and 2013),
Maxwell Farms (Urbana, IL; 2012 and 2013), and Monmouth (IL;
2013 only). The five location–year combinations were defined as
separate environments. The experimental design was an a(0, 1)-
incomplete block design (Patterson and Williams 1976) with three
replications at each environment. All trials were planted with an
Almaco Seed Pro 360 planter set at 0.64 m row spacing and 4.46 m
long row. Entries were grown in small plots consisting of two rows.

Plots were overplanted by 15% to compensate for germination fail-
ure and later thinned to the target plant density of 116,000 plants/
ha–1. All fields were controlled for weeds. Nitrogen (N) was applied
before planting as 28% urea-ammonium nitrate at a rate of 336.4 kg/ha
to all fields. Phosphorous and potassiumwere each applied at 112 kg/ha
according to recommended levels determined by soil tests performed
by the University of Illinois Crop Science Research and Education
Center. Stand counts were recorded and plots with planting densities
lower than 106,000 plants/ha–1 discarded. Additionally, issues with
seed production resulted in fewer single crosses being planted at all
locations in 2013 (South Farms, 260; Maxwell Farms, 259; and
Monmouth, 258). Plots were machine harvested and data were recorded
for several agronomic traits. For this study, data on GY, plant height
(PH), and staygreen (SG) were used for downstream analyses. GY was
converted to Mt/ha on a 155 g/kg moisture basis. PH was measured
postanthesis on a single representative plant determined by visually
surveying the entire plot before measurement. SG was evaluated visu-
ally as a percentage of total dry down, where a rating of 1 represented
complete senescence and a rating of 10 represented fully green leaves.

GBS
Five plants of each inbred progeny were germinated. A total of 0.1 g of
tissue was sampled from leaf tips and pooled across the five plants.
DNA was extracted using the Qiagen DNeasy Plant 96 kit following
theDNeasy PlantHandbook. DNA samples were sent to the Institute
for Genomic Diversity at Cornell University for GBS, where library
construction and sequencing was performed as described by Elshire
et al. (2011). Single nucleotide polymorphisms (SNPs) were scored
from the raw sequence data using the TASSEL GBS Pipeline version
3.0 (Glaubitz et al. 2014). SNPs with .20% missing values and
,5% minor allele frequency were removed from the dataset. Hetero-
zygotes were treated as missing data. Missing data were replaced by the
mean coded value for the marker (i.e., naïve imputation). Of the
markers remaining after filtration, markers that were polymorphic
among both SSS and NSS inbred progenies were retained for analysis.
The final marker data set consisted of 2296 high-quality SNPs. The
distribution of SNPs among the 10 chromosomes of the B73 reference
genome is displayed in Figure S2.

Figure 1 Crossing scheme between RILs or DHLs derived from three biparental families representing the SSS (y-axis) and NSS (x-axis)
heterotic groups. Colored boxes indicate the presence while unfilled boxes indicate absence of a particular single cross. Bold lines delineate
single-cross families.
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Phenotypic data analysis
The phenotypic data were unbalanced due tomissing observations. We
used the following statisticalmodel for the analysis of the data across the
five environments:

yiklq ¼ mþ gi þ ek þ ð geÞik þ rlðkÞ þ bqðklÞ þ eiklq; (1)

where yiklq is the phenotypic observation for ith single cross evaluated
in the kth environment in the lth complete block (i.e., replicate) and qth

incomplete block. The effects in the model are as follows: m is the
grand mean; gi represents effect of the ith single cross; ek represents
the effect of the kth environment; ðgeÞik represents the interaction
effect between single cross and environment; rlðkÞ represents the effect
of the lth complete block nested within the kth environment; bqðklÞ
represents the effect of the qth incomplete block nested within the
lth complete block in the kth environment; and eiklq represents the
residual. Environment and replication nested within environment
effects were modeled as fixed effects while all other effects were treat-
ed as random. In model (1), gi � Nð0;Is2Þ: Error and block variances
were allowed to be heterogeneous among environments.

The above model was implemented using ASReml-R software
(Butler et al. 2009) to obtain restricted maximum likelihood estimates
of all variance components and solve themixed linear model equations.
Significance of the variance components was determined using likeli-
hood ratio tests at 0.001 level of significance. The entry-mean herita-
bility of each trait was computed according to Holland et al. (2003) as:
H2 ¼ s2

g=
�
s2
g þ ðs2

g · e=hkÞ þ ðs2
e=htÞ

�
; where, s2

g represents the var-
iance among single crosses, s2

g · e represents the variance of interaction
effects of single crosses with environments, s2

e is the residual variance,
hk is the harmonic mean of number of observations per single cross
within an environment, and ht is the harmonicmean of total number of
observations per single cross. Similarly, model (1) was used to estimate
the genetic variance and broad-sense heritability for an individual
single-cross family. Finally, we calculated BLUPs of single crosses using
model (1), which were used as validation to estimate genomic predic-
tion accuracy in downstream analyses.

Single-cross prediction methods
The linear model used for single-cross performance was as follows:

yijklq ¼ mþ fi þmj þ sij þ ek þ rlðkÞ þ bqðklÞ þ ð feÞik
þ ðmeÞjk þ ðseÞijk þ eijklq; (2)

where yijklq is the phenotypic observation on a single cross between
the ith and jth inbred progeny, evaluated in the kth environment in the
lth complete block and qth incomplete block. The effects in the model
are as follows: m is the grand mean; fi and mj represents the GCA
effects of the females (SSS inbred progenies) and males (NSS inbred
progenies), respectively; sij represents the SCA effect of the single
cross; and ðfeÞik; ðmeÞjk;   and  ðseÞijk represent the interaction effects
of respective terms with the kth environment. The remaining terms
were as described in model (1).

The random effect vectors f ; m; and s were assumed to have the fol-
lowingmultivariate normal (MVN)distributions: f � MVNð0;Gfs

2
GCA FÞ;

m � MVNð0;Gms
2
GCA MÞ; and s � MVNð0; Ss2

SCAÞ; where Gf and
Gm were additive genomic relationship matrices of females and
males, respectively, calculated according to method 1 of VanRaden
(2008). The dominance relationship matrix, S; was computed accord-
ing to Bernardo (2002), using the corresponding elements from ma-
trices Gf and Gm: Model (2) was implemented using ASReml-R
(Butler et al. 2009).

We evaluated four methods to predict single-cross performance
using model (2). Broadly, these methods can be grouped into two
categories: (1) parent GCA and SCA effects, and (2) additive and
dominance covariances among single crosses.

Method 1a: Parent GCA: Performance of untested single crosses ðŷuÞ
was predicted from the GCA of the corresponding parents, i and j,
estimated from model (2) as:

ŷu ¼ m̂þ f̂ i þ m̂j: (3)

GCA of females and/or males with no performance data were esti-
mated from related inbred progenies using information from relatives
through Gm and/or Gf in model (2).

Method 1b: Parent GCA and single-cross SCA: Performance of
untested single crosses ðŷuÞ was predicted using the sum of the parent
GCA and SCA of the single crosses as:

ŷu ¼ m̂þ f̂ i þ m̂j þ ŝij: (4)

As for the GCA effects, the SCA effects for untested single crosses
were estimated using the dominance genomic relationship matrix in
model (2).

Method 2a: Additive covariance among single crosses: The perfor-
mance of untested single crosses ðŷuÞ was predicted based on the
covariance among tested and untested single crosses as:

ŷu ¼ CutC
21
tt yt ; (5)

where Cut is the genetic covariance matrix of untested and tested
single crosses, Ctt is the phenotypic covariance matrix of the tested
single crosses, and yt is a vector of tested single-cross BLUPs
obtained from model (1). The elements of Cut and Ctt were com-
puted according to Bernardo (2002), using the genomic relationship

Figure 2 Schematic visualization of T2, T1F, T1M, and T0 cross-
validation scenarios. Each small square represents one single cross.
Completely filled squares (T2) indicate that both male and female
parents of a single cross contained in the validation set were tested,
half-filled squares indicate either the female (T1F) or male parent (T1M)
of single cross contained in the validation set was tested, and unfilled
squares (T0) indicate that neither parent of a single cross contained in
the validation set was tested.
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matrices Gf and Gm: Briefly, let i and i9 denote any two female (F)
inbred progenies and j and j9 any two male (M) inbred progenies.
For a given pair of single crosses, (i · j) and (i9 · j9), the elements of
Cut and the off-diagonal elements of Ctt were calculated as ðGf Þii9
s2
GCA F + ðGmÞjj9 s2

GCA M : The diagonal elements of Ctt were esti-
mated as ðGf Þii s2

GCA F + ðGmÞjj s2
GCA M þ s2

X
; where s2

X
was equal

to s2
e divided by the total number of observations for single cross

ði · jÞ: The estimates of s2
GCA F and s2

GCA M were obtained from
model (2).

Method 2b: Additive and dominance covariance among single
crosses: The method described in 2a was extended by including dom-
inance covariance among the tested and untested single crosses. Spe-
cifically, the elements of Cut and off diagonal elements of Ctt were
computed as ðGf Þii9 s2

GCA F + ðGmÞjj9 s2
GCA M þ ðGf Þii9ðGmÞjj9 s2

SCA:
The diagonal elements of Ctt were estimated as ðGf Þii s2

GCA F +
ðGmÞjj s2

GCA M þ ðGf ÞiiðGmÞjj s2
SCA þ s�X2

: The estimates of s2
SCA was

obtained from model (2).

Cross-validation and prediction accuracy estimation
Accuracy of single-cross prediction was evaluated using leave-one-out
cross-validation (LOOCV). LOOCV is a particular case of k-fold cross-
validation with k = n. We chose LOOCVbecause the greater number of
folds minimizes bias in the estimator (Kohavi 1995). Five different
LOOCV scenarios involving varying degrees of relationship between
training and validation set single crosses were considered (Figure 2).
The cross-validation scenarios were as follows: (1) T2, both parents of a
single cross contained in the validation set were tested; (2) T1F, only the
female parent of a single cross contained in the validation set was tested;
(3) T1M, only the male parent of a single cross contained in the vali-
dation set was tested; (4) T0, neither of the parents of a single cross
contained in the validation set was tested; and (5) novel single-cross
family, all single crosses belonging to one single-cross family were re-
moved from the training set and thus formed the validation set. The
conventional LOOCVwas slightlymodified tomaintain constant train-
ing set size for each of the five cross-validation scenarios considered.
The common maximum possible training set size across the five sce-
narios was 261.With this in mind, we decided to set the training set size
to 250 for all five cross-validation scenarios in order to remove the
confounding effect of population size. For the first four scenarios, the
cross-validation is repeated such that each of the 312 single crosses was
placed into the validation set exactly one time (i.e., leave-one-individual-
out cross-validation). For each of the 312 rounds, a random sample of

250 single crosses from the remaining single crosses was drawn
without replacement and formed the training set. This was repeated
30 times to allow for sufficient resampling of the training set for a
total of 9360 (30 · 312) resampled training sets. For each of the
30 repetitions, the predictions were integrated into a single vector
and correlated with the phenotypic observations, as described be-
low. For scenario 5, the cross-validation was repeated so that each of
the nine single-cross families was entered into the validation set one
time (i.e., leave-one-family-out cross-validation). This was repeated
30 times by resampling 250 single crosses without replacement from
the training set. The prediction accuracy, however, was evaluated
only for the six largest families because size of the three families (f7,
f8, and f9) was too small to accurately estimate correlation coeffi-
cients (Table 1).

The single-cross BLUPs returned frommodel (1) were treated as the
observed single-cross performance and used for validation. Prediction
accuracy was expressed as the Pearson’s correlation coefficient between
the observed and predicted single-cross performance divided by the
square root of the broad-sense heritability on an entry-mean basis
(Dekkers 2007). Themean prediction accuracy across the 30 repetitions
was reported. SEs of the prediction accuracy were calculated using the
bootstrap method implemented in the R package, boot (Canty 2016).
For each of the 30 repetitions, the predicted and observed values were
resampled with replacement 200 times and the resulting distribution of
200 correlation coefficient estimates was used to estimate the bootstrap
SE. The mean SE across the 30 repetitions was reported.

Data availability
File S1 contains phenotypic data. File S2 contains BLUPs of single
crosses. File S3 contains data for 2296 SNPs scored on SSS inbred
progenies. File S4 contains data for 2296 SNPs scored on NSS inbred
progenies. File S5 contains an additive genomic relationship matrix for
SSS inbred progenies. File S6 contains an additive genomic relationship
matrix for NSS inbred progenies. File S7 contains a dominance geno-
mic relationship matrix for the single crosses.

RESULTS

Variance components and broad-sense heritability
Variance among single crosses ðs2

gÞ was significantly different from
zero ða ¼ 0:001Þ in the whole population as well as within individual
single-cross families for all three traits (Table 2). For GY, the entry-
mean heritability was 0.58 across the whole population of single crosses,

n Table 2 Mean, range, genetic variance, and broad-sense heritability estimates in whole population as well as individual single-cross
families for grain yield (GY; Mt/ha), plant height (PH; cm), and staygreen (SG; 1–10 rating)

Trait Statistic
Single-Cross Populations

Whole f1 f2 f3 f4 f5 f6

GY Mean 8.67 8.6 8.85 8.87 8.88 9.03 9.13
Range 7.14–10.2 7.13–9.91 6.94–9.94 7.79–9.99 6.74–10.7 7.52–10.4 7.46–10.5
s2
g6SE 0.50 6 0.07 0.9 6 0.31 0.48 6 0.18 0.25 6 0.12 0.55 6 0.19 0.51 6 0.15 0.51 6 0.16

H26SE 0.58 6 0.04 0.80 6 0.07 0.66 6 0.09 0.53 6 0.13 0.57 6 0.10 0.71 6 0.07 0.71 6 0.07
PH Mean 210.1 213.4 206.6 205.7 221.2 208.9 216.1

Range 191–231 197–227 187–222 187–222 202–243 182–230 191–241
s2
g6SE 1.18 6 0.1 0.71 6 0.23 0.8 6 0.22 0.95 6 0.27 0.87 6 0.21 0.9 6 0.20 1.07 6 0.24

H26SE 0.89 6 0.01 0.88 6 0.04 0.86 6 0.04 0.90 6 0.03 0.83 6 0.04 0.90 6 0.02 0.91 6 0.02
SG Mean 6.79 6.96 7.05 6.68 6.35 6.75 6.22

Range 5.48–8.31 5.57–7.96 5.82–8.5 5.57–7.96 4.61–7.88 5.67–7.92 5.07–7.39
s2
g6SE 0.69 6 0.07 0.36 6 0.15 0.52 6 0.16 0.26 6 0.1 0.58 6 0.14 0.38 6 0.1 0.26 6 0.07

H26SE 0.81 6 0.02 0.67 6 0.10 0.74 6 0.07 0.68 6 0.09 0.80 6 0.04 0.78 6 0.05 0.78 6 0.05
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and it ranged from 0.53 to 0.83 within the individual single-cross
families. Similarly, for PH and SG, the entry-mean heritability was
0.89 and 0.81 in the whole population, respectively, and ranged from
0.88 to 0.91 and 0.67 to 0.80 within individual single-cross families,
respectively. The sum of parent s2

GCA was greater than s2
SCA for all

traits. The proportion of s2
SCA was highest for GY, followed by PH

and SG (Table 3).

Prediction accuracy for T2, T1F, T1M, and T0 scenarios
We first evaluated the prediction accuracy for T2, T1F, T1M, and T0
scenarios in thewhole population using leave-one-individual-out cross-
validation. Higher prediction accuracies were observed for SG and PH
compared with GY for all scenarios (Figure 3). Prediction accuracies
were highest for T2, followed by T1F, T1M, and T0. The four methods
were similar in accuracy when applied to the T2 and T1F scenarios.
However, methods 1a and 1b were mostly better than methods 2a and
2b for predicting single-cross performance in the T1M and T0 scenar-
ios. Modeling SCA led to small increases in prediction accuracy for GY
and PH, with a maximum increase in the T0 scenario (Table S1).

Prediction accuracy for novel single-cross family
We next investigated the potential to predict the performance of single
crosses in a new single-cross family, using the phenotypic and genotypic
information on the single crosses from related single-cross families
(leave-one-family-out cross-validation).Wheneight of the familieswere
used as a training set to predict performances of single crosses from the
remaining family, prediction accuracieswere generallymoderate forGY
and high for PH and SG (Figure 4). The mean accuracies of methods 1a
and 1b for prediction of novel single-cross families were 0.67 and 0.62
for GY, 0.85 and 0.76 for PH, and 0.78 and 0.78 for SG, respectively
(Table S2). Variation in prediction accuracy across families was ob-
served, especially for GY. We also evaluated the effect of adding single
crosses from the family being predicted to the training set by comparing
prediction accuracy of individual family with leave-one-individual-out
and leave-one-family-out cross-validations. The goal of this analysis
was to measure the benefit of including information from the same
single-cross family to accurately separate single crosses within the same
family. Although the prediction accuracies were increased slightly for
some families, they were decreased for other families (Figure 4). The
mean prediction accuracies of methods 1a and 1b were 0.60 and 0.61
for GY, 0.84 and 0.85 for PH, and 0.79 and 0.78 for SG, respectively.
Adding individuals from the family being predicted benefited method
1b more than method 1a (Table S2).

Genomic predictions of GY of all possible single crosses
Genomic predictions were calculated for all possible 7866 single crosses
between 46 SSS and 171 NSS inbred progenies based on the prediction
model, including parent GCA and cross SCA effects (i.e., method 1b).
The genomic predictions for GY ranged from 7.5 to 9.5 Mt/ha. The top
100 single crosses based on genomic predictions included only one
single cross that was actually made and tested; the remaining 99 single
crosses were never made. Moreover,.50 untested single-cross combi-
nations surpassed the highest genomic prediction of any tested single
cross (Figure 5).

DISCUSSION
Typical hybrid maize breeding programs involve the creation of large
biparental families for topcrossing to elite testers early in the breeding
pipeline. Early-stage selections are performed on the basis of topcross
performance with a single elite tester, which is the sum of the candidate

lineGCAeffect andanySCAeffectbetween the candidate lineand tester.
While this is a very convenient and routine method, it has long been
recognized that it would be ideal to test all combinations of possible
parents immediately in the hybrid breeding pipeline (Fehr 1987). There
are two main advantages of early evaluation of all potential single
crosses. First, it could identify the best parental combination immedi-
ately after progeny development. Selection of inbred progenies only on
the basis of topcross evaluation leaves open the possibility that some
unique parental combinations never made and tested could be superior
in performance and become commercial hybrids. Second, early evalu-
ation based on single-cross performance could enable commercializa-
tion of hybrids in less time by essentially skipping the topcross stages.
Despite these advantages, field testing of all potential single crosses of
inbred progenies is completely impractical for a mature hybrid maize
breeding program.

Advances in genotyping technology, such as GBS, have made it
practical to genotype all parental candidate lines with dense, genome-
wide markers (He et al. 2014). Genomic prediction models can predict
the performance of all possible single-cross combinations, allowing in
silico evaluation of all parental combinations, as in the ideal scenario
described above. In the present study, GBS and yield trial data were
used to build genomic prediction models for predicting single-cross
performance. The accuracy of predicting single crosses estimated using
cross-validation ranged from 0.28 to 0.77 for GY, 0.53 to 0.91 for PH,
and 0.49 to 0.94 for SG, depending on the model and cross-validation
scenario (Table S2). These prediction accuracies were 37–97, 56–96,
and 54–100% of the accuracy of phenotypes ð

ffiffiffiffiffi
h2

p
Þ for GY, PH, and

SG, respectively. Therefore, the prediction accuracies of single-cross
performance achieved in this study indicate that this approach holds
great potential for increasing the efficiency of a hybrid breeding
program by enabling the effective evaluation of all single-cross
combinations.

Prediction accuracy for T2, T1F, T1M, and T0
single crosses
In order to understand the effect of parent testing on the accuracy of
single cross predictions, we evaluated the accuracies of prediction of
singlecrosseshavingboth(T2), either female (T1F)ormale (T1M),orno
(T0) parent tested for single-cross performance. Observeddifferences in
prediction accuracies between these scenarios were considerable, with
thehighestpredictionaccuracy forT2 single crosses followedbyT1(T1F
or T1M) andT0 single crosses. The T0 scenario was themost difficult to
predict. Similar trends have been observed using simulations (Technow
et al. 2012), as well as experimental studies based on historical data in
maize (Massman et al. 2013; Technow et al. 2014) and wheat (Zhao
et al. 2015). This finding can be explained by the representation of
parents among a differing number of single-cross combinations in
the training set. The information shared between the single cross being
predicted and the training set increases as the number of times the
parents are tested in different single cross combinations. As a result,
the GCA and SCA effects are estimatedwith high accuracy, as indicated

n Table 3 GCA variance of SSS (s2
GCA F ) and NSS (s2

GCA M) inbred
progenies and SCA variance (s2

SCA) of single crosses between them

Variance Components Grain Yield Plant Height Staygreen

s2
GCA F 0.44a 60.32a 0.23a

s2
GCA M 0.26a 53.09a 0.39a

s2
SCA 0.16a 9.71a 0.04a

s2
SCA=ðs2

GCA F þ s2
GCA MÞ 0.23 0.09 0.06

a
Significant at a = 0.001.
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by decreasing SEs along with increased representation of single-
cross parents in the training set (Figure 6). In the T2 scenario, both
parents are tested in multiple single-cross combinations within the
training set, enabling accurate estimation of parent GCA effects.
With a preponderance of GCA variance over SCA variance, geno-
typic values of T2 single crosses can, therefore, be predicted with
higher accuracy. In the T1 scenario, however, only one of the par-
ents is tested in single-cross combination and consequently the
prediction accuracy of T1 single crosses is lower than for T2 single
crosses. The mean of T1 single-cross prediction accuracies observed
in this study were 78, 86, and 80% of the T2 single-cross prediction
for GY, PH, and SG, respectively. The prediction accuracy of the
T1F single crosses is greater than that of the T1M single crosses.
This finding can be explained by the smaller total number of females
than males, which increases the number of times each female is
tested in a single-cross combination. The mean accuracies of T0
single-cross prediction were 53, 75, and 59% of the mean accuracies
of T2 single-cross prediction for GY, PH, and SG, respectively. This
suggests that performance of single crosses having at least one tested
parent can be effectively predicted using genomic-estimated GCA
and SCA effects, but prediction accuracies suffer considerably if
neither of the parents of a single cross are tested. This issue should
be studied using larger population sizes, both in terms of more
interconnected biparental populations and progenies per popula-
tion, to determine if population size can overcome parent represen-
tation in the training set.

Comparison of single-cross prediction methods
The published studies on prediction of single-cross performance have
used covariance among tested and untested single crosses (methods 2a
and 2b) to predict the performance of untested single crosses (Massman
et al. 2013; Technow et al. 2014). In an alternative approach, we used
genomic-estimated GCA and SCA (methods 1a and 1b) to predict the
performance of untested single crosses. The comparison of prediction
accuracies showed that the four methods achieved comparable ac-
curacies for predicting T2 and T1F single crosses. For T1M and T0
single crosses, however, methods 1a and 1b provided higher pre-
diction accuracies compared with methods 2a and 2b. Although the

same information is input into the two different types of methods
(i.e., additive genomic relationship matrices of parents, dominance
relationship matrix of the single crosses), the methods differ in their
underlying assumptions and in the way in which resulting predic-
tions are calculated. Methods 1a and 1b use the three genomic re-
lationship matrices separately in order to model the covariances of
GCA effects of females, males, and SCA effects of single crosses.
Methods 2a and 2b, on the other hand, combine the covariance
matrices to estimate the single-cross covariance through summation
of the covariance between the female parents and the covariance
between the male parents. This difference can explain the improved
performance of method 1 over method 2 under the T1M and T0
cross-validation scenarios. In general, the amount of information
used from the tested genotypes for BLUP of untested genotypes
depends upon the covariance between the tested and untested ge-
notypes. The genetic covariance is a function of the population ge-
netic variance and genetic relationship. In the case of a single
population, the genetic variance is constant and thus, in essence,
most of the information used in calculating BLUP of an untested
genotype is derived from the most closely related tested genotypes.
However, in the case of two separate populations, two individuals
with higher covariance from the first population would not neces-
sarily be more closely related than two individuals with a lower
covariance from a second population. This is due to the fact that
the genetic covariance estimate is population specific, as it depends
on the genetic variance within a population (Falconer and Mackay
1996). As a result, in single crosses where two parental populations
are involved (female population and male population), having
higher covariance (as estimated in this and previous studies) may
not mean they are more related than single crosses having lower
covariance. Methods 2a and 2b, however, invariably assume that
single crosses having higher covariance are more related than single
crosses with lower covariance. This could result in wider use of
information from comparatively less related single crosses, which
could ultimately affect prediction accuracy.

To test this hypothesis for differences in prediction accuracy of two
groups of methods, we randomly sampled a balanced (equal number
of females and males) subset of single crosses among 40 females and

Figure 3 Prediction accuracy for T2, T1F, T1M, and T0 cross-validation scenarios for traits GY, PH, and SG obtained using the four methods 1a
(parent GCA), 1b (parent GCA and single-cross SCA), 2a (additive genetic covariance among single crosses), and 2b (additive and dominance
covariance among single crosses) as evaluated with training set of 250 and leave-one-individual-out cross-validation.

Volume 6 November 2016 | Single-Cross Hybrid Genomic Prediction | 3449



40males.Methods 2a and 2bweremodified to correct the discrepancies
in weighting of relationship between females and males by using the
average of GCA variance of females and males. Specifically, for method
2a, the elements of Cut and off-diagonal elements of Ctt were computed
as:

�
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The diagonal elements of Ctt were estimated as:
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Method 2b was similarly modified. The GY prediction accuracy of the
four methods for the T2, T1F, T1M, and T0 scenarios was evaluated
using leave-one-individual-out cross-validations. Themodifiedmeth-
ods 2a and 2b obtained higher accuracies for T1M and T0 compared
with the original methods 2a and 2b (Table 4). The accuracies were
comparable to methods 1a and 1b. For T2 and T1F scenarios, how-
ever, the modified methods 2a and 2b obtained lower accuracies than
the original methods. This could also be explained based on our
hypothesis. The use of average GCA variance enabled the model to
extract information from more closely related tested single crosses.
However, the amount of information extracted is related to the ge-
netic covariance, which, as mentioned above, is a function of the
genetic relationship and genetic variance. The T2 and T1F scenarios
include tested female parents in the training set. Because GCA vari-
ance of the female population is larger in our study, use of the average
GCA variance lowered the amount of information from the female
parents relative to what would have been achieved if the populations
were treated separately.

Overall, these results indicate that single-cross covariance-based
methods (2a and 2b) confound the genetic relationship and genetic
variance in using information from tested single crosses. The combining

ability-basedmethods (1aand1b)correctlyusegenetic relationshipsand
variances by separately estimating female andmale GCA. The previous
studies on single-cross prediction in maize (Schrag et al. 2009, 2010;
Technow et al. 2014), wheat (Longin et al. 2013), sunflower (Reif et al.
2013), and triticale (Gowda et al. 2013) have reported different esti-
mates of GCA variance between two parental populations of single
crosses. This suggests that single-cross prediction based on genomic
estimated GCA and SCA is a better approach compared with the com-
monly used method using genomic covariances among single crosses.

The prediction accuracies for T2, T1, and T0 single crosses reported
by Technow et al. (2014) and T2 and T1 single crosses reported by
Massman et al. (2013) are higher than the corresponding accuracies
observed in the present study. This discrepancy is likely due to differ-
ences in population and family structure between the present study and

Figure 5 Distribution of genomic predictions for grain yield (GY) for all
7866 possible single crosses between the 46 SSS inbred progenies
and 171 NSS inbred progenies.

Figure 4 Mean prediction accuracy and SE of methods 1a (orange) and 1b (blue) in predicting performance of novel single-cross families. Two
cross-validation schemes were used: leave-one-family out (bottom panel) and leave-one-individual out (top panel). Traits analyzed were grain
yield (GY), plant height (PH), and staygreen (SG). SEs were estimated using the bootstrap method.
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those previously reported. Massman et al. (2013) and Technow et al.
(2014) used single crosses made among a diverse set of established
inbred parents that could be clustered into genetic groups whereas
the present study consisted of many inbred progenies from only three
families on each side of the heterotic pattern. Moreover, the families
shared parents, resulting in less variation among families. As
Windhausen et al. (2012) reported, when population structure is
present and not accounted for, the prediction accuracy can derive
mostly from differences in mean performances between subpopu-
lations. Our population contained less genetic variation and fewer
subpopulations compared with previously reported studies. In ad-
dition, the average number of single-cross combinations per paren-
tal line was higher in previously reported studies.

The benefit of modeling SCA
We observed an increase in single-cross prediction accuracy for GY by
modeling and estimating SCA effects and subsequently summing GCA
and SCA effects. The increase in accuracy bymodeling SCAwas highest
for T0 single crosses, followed by T1 and T2 single crosses. This result
suggests that modeling SCA can be more beneficial for single crosses
with untested parents compared with those with one or two tested
parents.Thesefindings couldpossiblybe explainedby a smallnumberof
single-cross combinations per parental line. If parents are tested in a
small numberof single-cross combinations, as in the present study, their
GCA effect predictions could capture a significant portion of the SCA
effect as well. The increase in prediction accuracy achieved by adding
SCA would clearly depend on the magnitude of the SCA bias of the
predictedGCAeffect.Wedonothave the ability toestimate this bias, but
in our study the ratio of SCA vs. GCA variance was small for all traits
(Table 3). When a parent has no performance data in single-cross
combination, its GCA is predicted based on all tested relatives, resulting
in a predicted GCA effect less biased by SCA. Hence, SCA is expected to
improve the predictions for single crosses with untested parents.

When predicting the GY of single crosses from a novel family (i.e.,
leave-one-family-out cross-validations), the accuracy was similar or
slightly lower when both GCA and SCA were included compared with
GCA only. When information is not shared between family members,
SCA is determined from single-cross combinations of relatives in other
families, which are expected to be less accurate as SCA depends on
specific parental combinations. This suggests that information from

closely related single crosses is beneficial to SCA effect estimation,
and that if this information is not available overall prediction accuracy
can be reduced through error in the SCA effect estimation. Previously
reported studies on hybrid genomic prediction in maize (Bernardo
1994), wheat (Zhao et al. 2013), triticale (Gowda et al. 2013), and
sunflower (Reif et al. 2013) reported a small decrease in prediction
accuracy bymodeling an SCA effect. These studies used diversity panels
as their experimental material. This decrease in prediction accuracy
could be attributed to an inability to accurately predict SCA from
distantly related single-cross combinations. The accuracy of SCA effect
estimation should be tested in every unique situation (e.g., within-
family selection vs. selection across families) and population where
single-cross genomic prediction is being used, in order to prevent a
possible detrimental outcome by adding SCA effects.

Prospects for early-stage single-cross prediction
Overall, this study indicates that breeders should consider redesigning
hybrid breedingprograms to take advantage of genomic prediction. The
early stages of maize hybrid development consist of the generation of
RILs orDHs frombiparental families on each side of a heterotic pattern,
followed by evaluation of their potential to serve as parents of hybrids.
Traditionally, initial selections are conducted on the basis of topcross
tests. Single crosses among selected inbred progenies are evaluated in
later stages in the breeding pipeline. While this method has many
advantages, one major disadvantage is that not all potential single
crosses among breeding lines can be evaluated. Moreover, the addition
of multiple years of topcross testing increases the time to hybrid release.

n Table 4 Correlation between observed and predicted grain
yield (GY) in a random balanced subset of hybrids for three
groups of hybrid prediction methods, as evaluated by leave-one-
individual-out cross-validation

Hybrid

Prediction Methods

1a 2a 2aa 1b 2b 2ba

T0 0.185 0.136 0.201 0.197 0.144 0.196
T1M 0.200 0.147 0.180 0.071 0.111 0.161
T1F 0.449 0.422 0.378 0.449 0.422 0.374
T2 0.445 0.419 0.315 0.336 0.346 0.301

a
Modified method.

Figure 6 SEs of predicted GCA and SCA effects estimated using differing numbers of single crosses per parental inbred progeny.
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The use of genomic prediction to identify superior single crosses could
both shorten the length of time to hybrid release, and prevent the
discarding of superior single crosses that just never happened to be
phenotypically evaluated in the topcross system.We believe this can be
achieved given the high prediction accuracies observed when both
parents (T2) are included in the training set. Additionally, opportunity
exists to optimize the genomic prediction of early-stage single crosses.
Pedigree selection and frequent use of successful parents creates a family
structure within typical hybrid maize breeding programs consisting of
interconnected biparental families. The results from this study demon-
strate that single-cross genomic prediction methods even hold potential
for separating single crosses from a common family background (Figure
4). The prediction accuracy for novel single-cross families was moderate
to high, and the addition of single crosses from the same family to
the training set only minimally improved accuracy. Further study
of the optimization of larger training sets through leveraging fam-
ily structure could further improve the accuracy of genomic pre-
diction of single crosses.
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