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1. The Purpose of Statistical Quality Control
I would like to describe a few concepts that I think are basic to the 

understanding of statistical quality control. Perhaps we should start by 
distinguishing between quality control and statistical quality control. It 
seems to me that quality control of a manufactured product involves 
three activities that are repeated over and over:

a. the development of information about the process and product
b. engineering decisions based on this information
c. implementation of the decisions

As an example, suppose a base course has been finished and is up for 
acceptance. Density measurements may give information from which to 
decide whether or not the job is satisfactory, and this decision will be 
implemented in one way or another. I think we will agree that good 
quality control requires good information, good decisions, and good 
implementation.

Now statistical quality control is mainly concerned with the devel
opment of information that is objective, unbiased, and adequate for 
decisions that: will be based on this information. In the example that we 
have mentioned, statistical quality control would be concerned with 
sampling techniques, measurement procedures, and with converting the 
measurements into quantities that are immediately useful for making 
engineering decisions. In a nutshell, then, statistical quality control is 
aimed at producing good information for quality control activities, either 
during the manufacturing process or when the manufactured product is 
submitted for acceptance.

2. Variability in All Aspects of a Manufacturing Process
The most basic concept in statistical quality control is that there is 

variability in every aspect of a manufacturing process. Materials vary
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from place to place and from time to time. So do construction pro
cedures. As a result, the properties of the manufactured product have 
what we will call inherent variability.

When we measure any property such as density, we use measurement 
systems that involve variable equipment and variable test procedures. 
Thus we expect to get testing variability even if the inherent variability 
is very small. Finally, when a variable property is evaluated with a 
variable measurement system, we are almost certain to get variable 
measurements1 as a basis for our decisions.

Fig. 1. Lot, sampling units, measurements.

3. Sarnpling Units and Lot Distributions
T o talk intelligently about statistical quality control we must first 

define quantities of material, or completed product, to which quality 
control decisions apply. Let us call one of these quantities a lot. For 1

1 Analysis of variance for measurements from designed experiments can be 
used to obtain separate estimates of inherent and testing variability for any 
controlled process. In general, testing variability can be made arbitrarily 
small by using the average of a sufficient number of repeated measurements on 
the same sampling unit.
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example, a lot might be an aggregate stockpile, a batch of concrete, an 
hour’s production of hot mix, one hundred yards of subgrade embank
ment, one-half mile of surfacing, etc. Next we assume that each lot 
consists of a relatively large number of sampling units such that any 
measurement we obtain applies to just one sampling unit. In Figure 1 
we see a lot that consists of eight sampling units, and one measured 
value of some property is shown for each sampling unit. The sampling 
units of a lot could be time units, volume units, area units, etc., but the 
important concepts are: (a) an observed measurement applies to just 
one sampling unit, and (b) a quality control decision applies to the 
whole lot. W e see that the illustrative measurements are variable. If 
we make a frequency distribution of the measurements from all sam
pling units we have a lot distribution which shows how many sampling 
units have each measured value. Figure 2 shows the lot distribution of 
measurements that were given in Figure 1.

Statistical quality control is mostly concerned with three character
istics of lot distributions:

(a) the mean of the distribution, X '. For the example X ' =  9.5.

Fig. 2. Lot distribution of test measurements.
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Fig. 3. Normal curve approximation to lot distribution.
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W e can see how information on these three distribution character
istics can be applied to quality control. For example, we may be able to 
decide whether the lot quality is acceptable— in terms of X ', </, and the 
percent of the distribution that falls between given limits. If the lot 
is not acceptable we may decide to alter the materials and/or construc
tion procedures to change X ' and/or </, and thus to change the percent 
of measurements that fall between the given limits.

Another example of a lot distribution is shown in Figure 4 which 
gives a frequency distribution of thicknesses for over 1,000 asphaltic 
concrete cores. W e will assume that each core represents a small amount 
of surface area, and the whole distribution represents about one-quarter 
mile of two-lane pavement, 24 feet wide. The mean of this lot distri
bution is X '= 3 . 2  inches, and the standard deviation is .37 inches. 
Suppose the specified thickness for this lot is 3.0 inches and it is desired 
that nowhere should the thickness be less than 2.5 inches. The lot 
distribution shows, however, that two percent of the sampling units 
have thicknesses below this limit. W e will not pass any judgment here, 
but we may suppose that this information could be used for accepting 
or rejecting the lot— as far as thickness is concerned. As a matter of 
fact, if this were an actual distribution we would have a quarter mile 
of pavement that had over 1,000 holes in it. This brings us to our next 
basic concept— that we never expect to see a complete lot distribution.

4. Inferences About Lot Distributions

In practice we know we must operate from measurements on only 
a few of the sampling units in any lot, perhaps on just two or three out 
of hundreds or thousands that actually exist. Thus quality control 
decisions for lots are based on uncertain information, that is, on infer
ences rather than facts about lot distributions. This is a basic concept 
in quality control. W e must admit from the start that our sample 
measurements will not give sure information about X ', </, or the per
cent of the lot distribution between any two limits. But we can use 
statistical methods to produce objective and unbiased estimates of these 
quantities, and to regulate the degree of uncertainty that is involved 
in our inferences about a lot distribution. Offhand we might assume 
that the more samples we observe, the more certain we will be about 
the lot distribution. This assumption is valid only if the sampling units 
have been selected at random from all possible sampling units in the 
lot. In this illustration, for example, 500 cores all taken from the right 
side of the distribution will give us quite biased estimates of both X ' and 
or'. A  random sample of five or ten measurements, however, could give
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Fig. 4. Lot distribution of surfacing thickness— 1030 cores.

a fairly accurate picture of the lot distribution, and in addition could be 
used to determine the degree of uncertainty of the picture they do give.2

If we agree that we must have random samples and that we can only 
draw inferences about lot distributions, then we are ready to look at two 
major techniques of statistical quality control— the use of control charts, 
and the use of acceptance sampling plans.

5. Use of Control Charts in Manufacturing Processes
W e can’t discuss control charts in any detail, but we will indicate 

the kind of information they provide. Suppose that we select n sampling 
units, perhaps only two or three, from each successive lot of material or 
constructed item that is being inspected and measured for quality. For 
each set of n measurements we can calculate a mean, X , and a standard 
deviation, a, then plot these values as shown in Figure 5. If we wish,

2 Statistical methods can be used to determine confidence limits, with any 
degree of confidence, for lot characteristics that are obtained from a given 
number of sample measurements.



31

we can imagine that this figure is concerned with slump measurements 
on two sampling units from each successive batch (lot) of concrete.3

Fig. 5. Sample means and standard deviations.

W e will suppose here that control charts are used to decide whether 
the materials or construction procedures should be altered during the 
manufacturing process. For our illustration we will suppose that the 
centerlines for the X  and a charts represent aimed-at values for the lot 
distributions mean, X ', and standard deviation, cr', respectively.

Before the charts are complete we must add control limits in such 
a way that when we compare the plotted points with the control limits 
we will be able to infer whether the process is running along satisfac
torily or whether it should be changed. T o discover how to compute 
control limits let’s go back to our first illustration whose lot distribu
tion is now shown on the left in Figure 6. Here we had a lot consisting 
of eight sampling units whose measurements formed a distribution

3 The standard deviation of a set of n measurements is found by summing 
the squared deviations from the mean, dividing this sum by n - 1, then taking

the square root. Thus a —  y j  S (X -X )2/ (n-1).
When n is small, variability is almost always expressed in terms of the 

range, R, from the largest X to the smallest X.
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having X ' =  9.5 and a' =  3.4. Suppose we can afford to observe 
n — 4 randomly selected sampling units from this lot. It turns out 
there are seventy possible sets of four that can be selected from the 
eight units, and any of these sets is equally likely to occur with random 
sampling. The figure shows that the means, X , of the seventy possible 
selections form a frequency distribution whose mean is the same as the 
mean of the lot distribution, X ' =  9.5. The distribution of means, 
however, is much more normal than was the lot distribution and is not 
as variable, ranging from 7 through 12 instead of from 4 to 16. It is a 
mathematical fact that the distribution of means, for all possible sets 
of sampling units, will have a standard deviation of < // V  n. Since the 
example is for n =  4, the distribution of X  has only one-half the vari
ability that existed in the lot distribution. Furthermore, we can find 
from normal curve tables that there is only a very small chance that any 
set of n selected units will have a mean, X , that is any farther from X ' 
than 2< // V  n, say. W e won’t attempt to say why, but there is also a
very small chance that the standard deviation, a, of n random measure-

____ 4
ments will be farther from a' than 2 a '/ V  2n.

LOT DISTRIBUTION MEANS DISTRIBUTION

Fig. 6. Distribution of individual measurements and of means.

W e can use these facts to construct control limits on our charts, as 
in Figure 7, at distances 2 a '/ V n from X ' on the X  chart, and at 4 4

4 Limits set in this way would be “ two-sigma” limits, and include about 96 
percent of the sampling variation of X  about X ' and of a about cr\ In many 
control chart applications, “ three-sigma” limits are used to include about 99.7 
percent of the sampling variation.
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distances 2o' / V  2n from o' on the o chart. W e are now ready to draw 
inferences about the sampled lots:

(a) If the sample means, X , and standard deviations, o, show no 
trends and if all fall inside the control limits, we infer that the 
lot distributions are being controlled at the levels indicated by 
X 7 and o'. The control limits allozu for nearly all uncertainty 
that is associated with our incomplete information about the 
lot distribution.

(b) If points on the o chart show a trend or fall outside the control 
limits, we infer that the corresponding lots have a different 
variability than o'. W e could be wrong, since the control limits 
do not cover all uncertainty that is associated with sampling 
variations, but we prefer to believe that o' has changed. If the 
inferred change is toward a higher o', and we are dealing with 
slump tests, we may decide that the mixing time should be 
increased— to give more uniform batches. If the inference is 
toward a lower o', we might decide to check the measurement 
system— to see if the slumps of two specimens from the same 
batch are really as alike as the measurements indicate.

(c) If the o chart shows control, but X  points show trends, or fall 
outside the control limits, we infer that such lots have means 
that are different from X '— and decide to take action. If this 
X  chart is for slump measurements, for example, we infer that 
the average slump for lots 9 and 10 is actually higher than X '. 
In this case it might be decided to use less water in the mixing 
operation. We could be wrong, but it’s a good bet that the 
process mean has shifted away from X r in lots 9 and 10, and 
that corrective action needs to be taken. Samples from succeed
ing lots will soon indicate on these charts whether or not the 
process has been brought back in control.

There are many types of control charts and many ways to 
use them, but we have the basic idea if we see that they can 
provide objective and useful information for decisions that must 
be made in the face of uncertain information about the process.

6. Acceptance Sampling Plans
I will conclude with the application of statistical quality control to 

decisions which result in the acceptance or rejection of submitted lots. 
An acceptance plan involves four considerations:

a. a procedure for selecting and measuring sampling units
b. one or more statistics computed from the measurements
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Fig. 7. Control charts for means and standard deviations.

c. a rule for accepting or rejecting the submitted lot— in terms of 
the measurement statistics

d. an operating characteristic for the acceptance plan
W e have time to look at only one illustration. Suppose that one 

hundred (lineal) yards of compacted subgrade must be accepted before 
any further construction is permitted. This lot of material might cover, 
say, 15,000 square feet. Let’s suppose that this area consists of sampling 
units each ten feet by ten feet, and that density measurements will be 
made for each of four randomly selected sampling units. T o  simplify 
our example we will assume that the standard deviation of the lot 
distribution is known to be v =  6 pcf from past experience, and that 
the subgrade will be accepted or rejected according to the mean value, 
X , of our four sample densities. Thus X  is the statistic whose value 
will be computed from the four sample measurements. Next we will 
suppose that our rule is simply to accept the subgrade (as far as density 
is concerned) if X  is 100 pcf or more, and reject it if X  is less than 
100 pcf.5 In effect we have just spelled out a specification for subgrade

5 This example deals with only one specification limit. In other cases this 
rule might call for acceptance if X is between two limits and rejection if X 
is outside either limit.
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density. But before we can tell whether this rule makes any sense we 
must look at its operating characteristic, that is, what actually happens 
when we start using this acceptance specification.

Tw o lot distributions are shown in Figure 8, both with c/ =  6 pcf, 
but one with X ' =  95 pcf and the other with X ' = 1 1 0  pcf. W e will 
suppose that we want to reject the subgrade if its mean density is as 
low as 95 pcf and that we want to accept the subgrade if X ' is as high 
as 110 pcf.

Fig. 8. Poor and good quality lot distributions.

W e realize that we do not get to look at the complete lot distribu
tion, but only at four measurements from any one lot. The two distri
butions in Figure 9 show all the possibilities for sample means, X , when 
n =  4 sampling units are observed from either lot distribution of the 
previous figure.

Our acceptance rule is shown across the bottom of the figure. Now 
about 5 percent of all means from the undesirable distribution extend 
above X  =  100. Thus when undesirable lots with X ' =  95 pcf are 
completed, our acceptance rule will result in acceptance about one time 
in twenty. This is a consumer risk— that poor lots will be accepted.

On the other hand, we see that a very small percent of means from 
the desirable distribution extends below X  =  100. This tells us that 
our acceptance plan will result in the rejection of lots with X ' =  110 
pcf perhaps once in 2,000 submissions. This is the producer s risk— that 
good lots will be rejected. A basic concept of quality control is that any 
acceptance plan or specification, statistical or not, involves the chance
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that poor material will be accepted or that good material will be re
jected. The element that statistical quality control adds is simply a way 
to know what these risks are and thus to set specifications in terms of 
agreed-upon risks. W e can see from the figure, for example, that mov
ing our acceptance statistic, X  =  100 pcf, in either direction will change 
both risks. Thus if we accept when X  =  105 or more, we will greatly 
reduce the chance of accepting poor lots, but at the same time we will 
increase the risk of rejecting good lots. T o  use statistical acceptance 
plans in highway work, the producer (contractor) and the consumer 
(highway department) have to decide how to share the two risks.

Fig. 9. Means distributions— acceptance rule.

Before we leave this figure we should note that these curves are for 
n =  4 sampling units selected randomly from a completed lot. If we 
were to decrease the size of n the curves would be wider, and both risks 
would increase. If we increase the sampling, however, the curves will 
become narrower and both risks will decrease. Thus we have another 
way to control producer and consumer risks.6

Finally we must note that we have talked about acceptance and 
rejection as though there were only two lots involved, one with X ' =  95 
pcf and one with X 7 =  110 pcf. W e need to see how our plan will 
operate for any submitted lot quality. In the next figure (Figure 10), 
the horizontal scale gives the average quality characteristic, X 7, in sub
mitted lots— ranging from 80 to 120. For the acceptance rule we have 
been discussing, two operating characteristics are given by the curves in 
the figure, one for n =  1 and one for n =  4.

6 The risks would also be different for different values of the lot standard
deviation, <r\
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Fig. 10. Operating characteristic of the acceptance plan.

If we read from the bottom up to a curve and over to the left scale 
we find the probability that the submitted lot will be accepted. If we 
read from the curve to the right hand scale we find the probability that 
the lot will be rejected when the rule is used. W e see that low quality 
lots, say when X 7 is less than 95 pcf, will be rejected 95 percent of the 
time if we use n =  4 samples, but only 80 percent of the time if we use 
only n =  1 sample. The curves also show that high quality lots, say 
when X ' is 110 pcf or more, will be accepted almost always if n =  4, 
but only 95 percent of the time if n =  1. W e can thus see that n — 4 
gives a better operating characteristic than does n =  1. By now it should 
be rather clear that we can have almost any operating characteristic we 
want for an acceptance specification— by altering the number of samples, 
by altering the definitions of high and low quality, or by altering the 
risks we will assume for accepting lots with poor quality or rejecting 
lots with good quality. But the main point is that statistical acceptance 
plans or acceptance specifications, if you please, are objective and have 
known operating characteristics. If we cannot draw the operating 
characteristic of an acceptance specification, I am afraid we really don’t 
know what is going on.

Before I conclude we should decide what to do with our illustrative 
subgrade. Suppose our four random density measurements are 94, 98, 
103 and 109 pcf. These numbers look pretty variable but their standard
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deviation is 6.5 pcf, only slightly more than the assumed value of </ =  
6.0 pcf. The sample mean is X = 1 0 1  pcf, and since this exceeds 
X! =  100, our rule says to accept the embankment— at least as far as 
density is concerned. W e realize this may be the one time in twenty 
that relatively poor material will be accepted by our plan, but we have 
already agreed to assume this risk. If the sample mean had been less 
than 100 we would reject the embankment in its present form— and 
perhaps decide that more compaction is necessary.

W e have now discussed many of the basic concepts of statistical 
quality control. Through further study and through practical applica
tions I think we will find that statistical methods can be quite useful in 
the quality control of highway materials and construction.
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