University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Patrick Dussault Publications

Published Research - Department of Chemistry

2012

Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides

Jiliang Hang University of Nebraska-Lincoln

Prasanta Ghorai University of Nebraska-Lincoln

Solaire A. Finkenstaedt-Quinn *Macalester College*

Ilhan Findik Macalester College

Emily Sliz Macalester College

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/chemistrydussault

Hang, Jiliang; Ghorai, Prasanta; Finkenstaedt-Quinn, Solaire A.; Findik, Ilhan; Sliz, Emily; Kuwata, Keith T.; and Dussault, Patrick, "Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides" (2012). *Patrick Dussault Publications*. 27. http://digitalcommons.unl.edu/chemistrydussault/27

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Patrick Dussault Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Jiliang Hang, Prasanta Ghorai, Solaire A. Finkenstaedt-Quinn, Ilhan Findik, Emily Sliz, Keith T. Kuwata, and Patrick Dussault

NIH Public Access

Author Manuscript

Published in final edited form as:

J Org Chem. 2012 February 3; 77(3): 1233-1243. doi:10.1021/jo202265j. Copyright © 2012 American Chemical Society

Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides

Jiliang Hang^a, Prasanta Ghorai^{a,§}, Solaire A. Finkenstaedt-Quinn^b, Ilhan Findik^b, Emily Sliz^b, Keith T. Kuwata^b, and Patrick H. Dussault^{*,a}

^aDepartment of Chemistry, University of Nebraska–Lincoln, Lincoln, NE 68588-0304

^bDepartment of Chemistry, Macalester College, Saint Paul, MN 55105-1899

Abstract

The first singlet excited state of molecular oxygen $({}^{1}O_{2})$ is an important oxidant in chemistry, biology, and medicine. ${}^{1}O_{2}$ is most often generated through photosensitized excitation of ground state oxygen. ${}^{1}O_{2}$ can also be generated chemically through the decomposition of hydrogen peroxide and other peroxides. However, most of these "dark oxygenations" require water-rich media associated with short ${}^{1}O_{2}$ lifetimes, and there is a need for oxygenations able to be conducted in organic solvents. We now report that monoactivated derivatives of 1,1dihydroperoxides undergo a previously unobserved fragmentation to generate high yields of singlet molecular oxygen $({}^{1}O_{2})$. The fragmentations, which can be conducted in a variety of organic solvents, require a geminal relationship between a peroxyanion and a peroxide activated towards heterolytic cleavage. The reaction is general for a range of skeletal frameworks and activating groups and, via in situ activation, can be applied directly to 1,1-dihydroperoxides. Our investigation suggests the fragmentation involves rate-limiting formation of a peroxyanion that decomposes via a Grob-like process.

INTRODUCTION

Singlet molecular oxygen (${}^{1}O_{2}$ is an important oxidant in chemistry, biology, and medicine, and the source of energy for chemical oxygen-iodine (COIL) lasers.^{1a-c} Several typical reactions are illustrated in Scheme 1.^{2,3,4}

corresponding author: pdussault1@unl.edu. [§]Current address: Department of Chemistry, Indian Institute of Science and Education Research, Bhopal, India. Supporting Information

Details regarding experimental procedures, spectral listings for new molecules, ¹H and ¹³C NMR data for new compounds, thermal analysis for 1a and 1c, conformational analysis of model monoperoxyacetate and monopercarbonate structures, and optimized coordinates of calculated structures described in the paper. This material is available free of charge via the Internet at http://pubs.acs.org.

 ${}^{1}O_{2}$ is most commonly generated through dye-sensitized excitation of ground state dioxygen $({}^{3}O_{2})^{1b, 5}$ However, preparative application can be limited by the need for high-volume photoreactors, as well as by safety issues associated with reactions under oxygen.⁶ Following the discovery of the chemical generation of ${}^{1}O_{2}$ from the reaction of hydrogen peroxide and bleach,⁷ a number of methods for "dark oxygenation" have been reported based upon decomposition of ozone,⁸ hydrogen peroxide, ^{1a, 9,10,11,12,13} hydrotrioxides, ^{14,15} and several inorganic peroxides.^{16,17} The majority of these methods require the use of water-enriched media, conditions associated with a very short ${}^{1}O_{2}$ lifetime.¹⁸ However, preparative oxidations have been achieved for relatively reactive substrates using biphasic or emulsion conditions.¹⁹ Generation of ${}^{1}O_{2}$ in organic solvents has been achieved through thermal decomposition of calcium peroxide (suspension),¹⁶ arene endoperoxides,²⁰ phosphite ozonides,²¹ silyl hydrotrioxides,¹⁴ and alkyl hydrotrioxides.¹⁵ However, the latter class of reagents are often thermally unstable and must be prepared immediately prior to reaction. Major classes of reagents for chemical generation of ${}^{1}O_{2}$ are overviewed below.

Our interest in this area arose during investigations of a "reductive ozonolysis" of alkenes.²² This transformation was hypothesized to involve nucleophilic addition of amine *N*-oxides to short-lived carbonyl oxides to generate peroxyanion/oxyammonium acetals. These previously unknown intermediates were surmised to undergo fragmentation to generate the observed "reduction" products, along with a molecule of ${}^{1}O_{2}$, and a molecule of amine (eq. 1). Reasoning that a similar fragmentation should be possible for any species featuring a geminal relationship between a peroxyanion and a heterolytically activated O-X bond, we explored the reactivity of monoperesters of readily available 1,1-dihydroperoxides. Deprotonation of these species resulted in rapid fragmentation accompanied by highly efficient liberation of ${}^{1}O_{2}$ (eq. 2).²³ We now describe our investigations into the scope and mechanism of this process.

(1)

(2)

RESULTS

Range of acetal/ketal scaffolds

1,1-Bishydroperoxides **1a–8a** were prepared through Re(VII)-promoted acetalization of the corresponding ketones (Scheme 2).²⁴ Monoacetylation with acetic anhydride and pyridine furnished isolable monoperesters (**1b–4b**, **6b–8b**); ²⁵ the exception was adamantanone dihydroperoxide (**5a**), which instead underwent ring expansion to a lactone. 1,1-Dihydroperoxides derived from aldehydes (not shown) reacted to form highly polar byproducts, presumably reflecting E_1 cb fragmentation of peresters bearing an adjacent C-H.²⁶

Thermal stability

Dihydroperoxide **1a**, which melts without decomposition at 78–80 °C and is not detonated by a sharp hammer blow, undergoes a highly exothermic decomposition when heated beyond 100 °C. Monoacetate **1b** is stable for prolonged periods at freezer temperature and for days at room temperature, but undergoes an exothermic decomposition beginning at approximately 76 °C (Figure 1). Monocarbonate **1d** undergoes partial decomposition within days at room temperature to form a substituted caprolactone and undergoes exothermic decomposition when heated above 70 °C.

Assay for ¹O₂

The release of ${}^{1}O_{2}$ was quantified by chemical reaction with terpinene (**T**) or diphenylisobenzofuran (DPBF, **D**). Terpinene (**T**) undergoes addition of ${}^{1}O_{2}$ to form the stable endoperoxide ascaridole (**T**-**O**₂ eq. 3).²⁷ Furan **D** undergoes an even faster addition to generate diketone D-O₂ via an unstable endoperoxide (eq 4). **T**-O₂and **D**-O₂ are easily quantified through isolation or by NMR or GC/MS analysis in the presence of an internal standard. Details are provided in Supporting Information.

(3)

J Org Chem. Author manuscript; available in PMC 2013 February 3.

Variation of the bisperoxyacetal skeleton

We next investigated the generality of the fragmentation across a range of peroxyacetal skeletons. Solutions of monoesters **1b–4b**, and **6b–8b** were decomposed with TBAF in the presence of 0.5 equiv of terpinene (Table 1); the relative stoichiometry was chosen to facilitate product separation. Addition of base was accompanied by the disappearance (TLC) of the monoesters and the appearance of the corresponding ketone and **T-O**₂. The yield of trapped ¹O₂ varied little with peroxyacetal structure. By comparison, a 1,1-dihydroperoxide (**1a**) did not react under the reaction conditions.

Influence of peroxyacetal backbone on relative reactivity

The decomposition of mixtures of dihydroperoxide monoesters in the presence of a limiting amount of TBAF revealed little difference in reactivity between acyclic and cyclic substrates or between cyclic substrates possessing different amounts of ring strain (Scheme 3).

Influence of Solvent

Decomposition of monoester **1b** in a number of solvent systems (Table 2) revealed the yield of dioxygen transfer (as **T-O**₂) to be increased in solvents associated with greater ${}^{1}O_{2}$ lifetime.¹⁸ The exception was for perfluorinated media, in which reaction appeared limited by reagent solubility. However, improved yields were possible in fluorocarbon/CH₃CN mixtures.

Order of addition

In early experiments involving decomposition of monoperester 1b,²³ we had observed the yield of ${}^{1}O_{2}$ to vary with the relative order of addition of KOtBu and perester, suggesting the possibility of disproportionation to form poorly reactive bisperesters (vida infra). However, a reinvestigation of the phenomenon using peracetate 1b and TBAF revealed insignificant differences (Table 3).

Range of activating groups

Base-promoted decomposition of a perbenzoate (1c) and a percarbonate (1d) proceeded rapidly to furnish yields of trapped ${}^{1}O_{2}$ similar to those observed for the peracetate (Table 4). Attempts to prepare the analogous percarbamate or persulfonate led only to ring-expansion.

Influence of Base/Counterion

As shown in Table 5, the decomposition of **1b** in the presence of $LiN(TMS)_2$ resulted in much lower yields of ${}^{1}O_2$ trapping compared to reactions involving the comparably basic KOtBu or TBAF.

Effect of temperature and rate of addition

The base-promoted decomposition of the 1,1-dihydroperoxide monoesters is rapid; for example, rapid (1–2 sec) injection of 1*M* THF solution of TBAF into a rapidly stirring solution of monoester **1a** (1M in THF) results in immediate effervescence. Although the decomposition of monoperester **1b** proceeds significantly faster at higher temperatures, the yield of trapped ${}^{1}O_{2}$ is improved at lower temperatures (Table 6, entries 1–4). Slowing the rate of reagent addition resulted in a significant increase in the yield of trapped ${}^{1}O_{2}$ (entries 5 and 6).

Attempted gas-phase transfer

The inverted relationship between the yield of oxygen transfer and the rate of peroxide decomposition (Table 6, entries 5 and 6) led us to investigate whether ${}^{1}O_{2}$ could be escaping into the gas phase. The headspace of a septum-covered flask containing an acetonitrile solution of perester **1b** was exhausted via a short Teflon tube into an acetonitrile solution of terpinene (**T**). Rapid ($\leq 10 \text{ sec}$) addition of TBAF/THF into the solution of monoester led to vigorous effervescence and net efflux of a high volume of gas through the receiving solution. However, no significant amount of ascaridole (**T**-**O**₂) was detected.

Generation of the peroxyanion via nucleophilic desilylation

We investigated an alternative route to the presumed peroxyanion intermediate through nucleophilic desilylation. Monotrialkylsilylated substrates were readily available via silylation of the monoesters (Scheme 4). Curiously, the perester carbonyl remained invisible by ¹³C NMR despite use of pulse delays (≥ 5 sec) or the addition of Ni(acac)₂ as a relaxation agent.²⁸ The perester carbonyl could be observed as a single sharp signal at 167.8 ppm if spectra were acquired at ≤ 40 °C (9a, 9b, 11). We are unsure as to the basis of this phenomenon, which was not encountered with either the monoperesters (e.g. **1b**) or a bisperester (**16**, vida infra).

Reaction of the silvlated monoesters with TBAF in the presence of a trapping agent resulted in yields of transferred ${}^{1}O_{2}$ equal to or exceeding those observed through deprotonation of the dihydroperoxide monoesters (Table 7).

Reactivity of bissilyl and bisacyl derivatives

Preparation of bissilyl and bisacyl derivatives of dihydroperoxide **1a** are illustrated in Scheme 5. The bistriethylsilyl derivative (**15**) was an oily compound that decomposed at ~ 140 °C. The bisacyl derivative (**16**) was a solid that melted without decomposition at 54–56 °C.²⁹ Saponification of **16** with cesium hydroxide in CH₃CN resulted in reformation of the parent ketone and generation of ¹O₂. Bissilyl ether **15** was decomposed by *n*-Bu₄NF without apparent transfer of oxygen.

Tandem activation and fragmentation

Intrigued by the possibility of generating and decomposing the monoactivated bisperoxide intermediate *in situ*, we investigated the reactivity of dihydroperoxide **1a** towards four classes of activating agents: an electron-poor nitrile, a heteroaromatic known to undergo S_NAr reaction with tertiary hydroperoxides, ³⁰ a sulfonyl chloride, and an acid anhydride. Our initial assay qualitatively monitored the formation of ketone upon addition of base to solutions containing the dihydroperoxide and the individual additive (Table 8). In each case, the addition of stoichometric electrophile and excess KOtBu resulted in rapid conversion of **1a** to 4-*tert*-butylcyclohexanone without any evidence of intermediates. Although these reactions should in theory require only two equivalents of base, we found that four equivalents were invariably required to achieve complete consumption of the dihydroperoxide.

We next reinvestigated the most promising conditions in the presence of a trapping agent. The yields of oxygen transfer, which were as good as those obtained from the dihydroperoxide monoesters, were similar regardless of activating agent (Table 9).

Preparative Reactions

Our experiments until this point had focused on the yield of liberated oxygen. We next investigated the amount of reagent necessary to completely consume a trapping reagent

using either the fragmentation of a preformed perester (**1b**, **8b**) or the tandem activation/ fragmentation of dihydroperoxide **1a**. As illustrated in Table 10, complete consumption of terpinene was generally possible with as little as 5 equiv. of reagent.

Reaction order and apparent rate constant

The base-promoted decomposition of monoperbenzoate **1c** was monitored at 272 nm (Figure 2). In the first experiment, rapidly stirred THF solutions (0.5 mM) of dihydroperoxide monoester **1c** were mixed with THF solutions of TBAF ranging in concentration from 0.50 to 2.00 m*M*. The reaction solutions were then placed in the UV spectrophotometer, and the absorbance at 272 nm monitored for 1.0 minute. Plotting the log[TBAF]_{initial} against the $-\log(\Delta_{abs})$ revealed an apparent reaction order of 0.94 in TBAF and a calculated rate constant of 10^2 L/mol-sec; details are provided in the Supporting Information. Repeating the experiment with a constant concentration of TBAF and varying concentrations of **1c** indicated an order of 1.2 in peroxide and a calculated rate constant of 10^2 L/mol-sec. Overall, the results support a mechanism that is first-order in both peroxide and base.

Theoretical investigations of the putative fragmentation step

The base-promoted fragmentation of the monoactivated 1,1-dihydroperoxides could conceivably involve either a concerted Grob-like fragmentation of a zwitterion or the formation and decomposition of an intermediate trioxetane.^{31ab} The latter pathway cannot be simply disregarded. Dioxetanes are readily formed by intramolecular nucleophilic displacements of β -halo alkylhydroperoxides,³² while dioxiranes are generated with good efficiency from intramolecular attack of a hemiacetal oxygen on an electrophilically activated peroxide. ³³ We therefore turned to density functional theory (specifically, the B3LYP hybrid functional and the 6–31+G(d,p) basis set) to investigate each transition state (**TS**) and intermediate (**MIN**) involved in the decomposition of the monoactivated dihydroperoxides. We focused our efforts on heterolytic processes as fragmentations involving radical intermediates would be expected to generate ³O₂ and not ¹O₂.

Decomposition of the monoperester

Comparison of the predicted zero-point corrected relative energies for transition states and intermediates in the decomposition of a peroxyanion found a concerted fragmentation to offer the lowest energy pathway for generation of ${}^{1}O_{2}$ and a carbonyl (Scheme 6). The alternative pathway is disfavored by the strain in the trioxetane intermediate, presumably reflecting electron pair repulsions, and by the high barrier for loss of ${}^{1}O_{2}$. (The combined energy of the trioxetane and acetate is 6.5 kcal/mol *higher* than the trioxetane formation transition state. This reflects the existence of an exit channel complex of the trioxetane and acetate that is bound by 16.3 kcal/mol.) For simplicity, calculations were performed on an unsubstituted acetal framework. Repeating the computations on a more substituted acetal framework (not shown) lowered the energies of most intermediates and transition states on the order of 5 kcal/mole but did not, in general, alter the relative energies of the transition states The exception was the transition state for trioxetane formation, which increased significantly in energy for the more substituted scaffold. Optimized coordinates for calculated structures are provided in the Supporting Information.

Conformational analysis of the peroxyanion

Figure 3 shows the optimized geometries of two of the 12 possible conformers of the peroxyanion in the unsubstituted acetate system. There is a striking difference in energy between conformers **MIN-1a** (and the structurally and energetically similar **MIN-1b**, not shown) versus the remaining ten conformers, exemplified by **MIN-1c**, all of which lie at least 8 kcal/mol higher in energy.³⁴

The most stable conformer (MIN-1a, Figure 3a) possesses two pairs of synclinal O-O and C-O bonds, allowing for hyperconjugation of oxygen lone pairs from O₂ and O₃ into neighboring C-O antibonding orbitals (C1-O3; C1-O2) The antiperiplanar orientation of the C_2 - O_5 and O_3 - O_4 bonds minimizes the repulsion between the lone pairs on O_3 and O_5 . Several lines of evidence suggest the presence of a stabilizing intramolecular hydrogen bond between the anionic oxygen (O_1) and the C_3 -H₁ bond. The O_1 ---H₁ distance is less than 1.9 Å, and the C_3 -H₁ bond is 0.03 Å longer than the other two methyl C-H bonds. The C_3 -H₁ bond also vibrates at a much lower frequency (2693 cm^{-1}) compared with the other hydrogen atoms on C_3 (~3100 cm⁻¹). These data support a normal hydrogen bond in which electron density from the peroxyanion is delocalized into the sigma antibonding orbital of the C-H bond. There is precedence for normal C-H hydrogen bonds in the literature.³⁵ Conformer **MIN-1b** (not shown) is structurally very similar to **MIN-1a**. In particular, MIN-1b also possesses an intramolecular hydrogen bond, with an O₁---H₁ distance of 1.851 Å. In contrast, the O_1 - O_2 and C_1 - O_3 bonds in conformer **MIN-1c** are antiperiplanar instead of synclinal (Fig. 3b). This difference deprives MIN-1c of the intramolecular hydrogen bond and removes one of the hyperconjugative interactions, raising the energy of **MIN-1c** by 7-8kcal/mol.34

Conformational analysis of the Grob-like transition states

The lowest energy conformer of the transition state for Grob fragmentation, **TS-2** (Figure 4a), is predicted to lie only 6.7 kcal/mol higher in energy than the ground state reactant conformer; **TS-2** benefits from antiperiplanar O_2 - C_1 and O_3 - O_4 bonds. As described by Grob,^{31a,b} this arrangement facilitates fragmentation since electron density in the O_2 - C_1 bond can be donated into the sigma antibonding orbital of the O_3 - O_4 bond. Intrinsic reaction coordinate calculations reveal that **TS-2** does not correlate directly with any of the reactant conformers (see the Supporting Information), but rather the unnumbered van der Waals complex shown in Figure 4b. This complex lies only 0.4 kcal/mol below the transition state in energy, and the excess -1 charge in the complex is evenly distributed between the OOCH₂O and OC(O)CH₃ moieties.

Another fragmentation transition state, **TS-2**^{*} (Figure 4c), which is only 0.7 kcal higher in energy than **TS-2**, is derived from the most stable peroxyanion conformer, **MIN-1a** (Figure 3a). **TS-2**^{*} lacks antiperiplanar O₂-C₁ and O₃-O₄ bonds but is stabilized by a weak intramolecular hydrogen bond between O₁ and H₁: the C₃-H₁ bond is 0.01 Å longer than the other two methyl C-H bonds, and the C₃-H₁ stretch is ~200 cm⁻¹ to the red of the other methyl C-H stretches.

For a more substituted system (methine rather than methylene acetal), the two lowest energy transition states are structurally analogous to those shown in Figures 3 and 4. However, the methylated transition state lacking antiperiplanar O_2 - C_1 and O_3 - O_4 bonds, but possessing an intramolecular hydrogen bond, is slightly (0.8 kcal/mol) lower in energy than the one possessing antiperiplanar O_2 - C_1 and O_3 - O_4 bonds.

Pathways for fragmentation of the monopercarbonate

We were interested in whether the pathways for fragmentation varied with the nature of the electrophilic activating group. Scheme 7 shows calculated zero-point corrected relative energies for selected intermediates and transition states in the decomposition of a peroxyanion derived from a dihydroperoxide monopercarbonate, as modeled for the unsubstituted (formaldehyde acetal) backbone.³⁴ The methyl carbonate nucleofuge in the percarbonate stabilizes negative charge more effectively than the acetate leaving group in the perester, as indicated by a calculated *E* of decomposition ~6 kcal/mol more exothermic than in the acetate series (compare Schemes 6 and 7). The two lowest energy pathways for

liberation of ${}^{1}O_{2}$ from the deprotonated monocarbonate are illustrated in Scheme 7. A third pathway involving an intermediate trioxetane, analogous to one illustrated in Scheme 6 for the monoperester, was predicted to involve a very high energy transition state and is not described here.

Concerted fragmentation of the most stable conformer of the acyclic peroxyanion of the dihydroperoxide monocarbonate is calculated to occur with a significantly lower activation barrier (4.3 vs. 6.7 kcal/mol) compared with the corresponding transformation of the perester (Scheme 6). We note that bond breaking in **TS-4** (see Figure 5) is significantly less advanced than in the most stable transition state for the acetate system (**TS-2**, Figure 4a), and is comparable to the bond breaking that exists in the second most stable acetate conformer (**TS-2***, Figure 4c). As is the case for the most stable peracetate transition state conformer, **TS-4** (Figure 5) benefits from antiperiplanar O₂-C₁ and O₃-O₄ bonds. However, overlap of the σ (O₂-C₁) and σ *(O₃-O₄) orbitals is not optimal, since the dihedral angle between the O₂-C₁ and O₃-O₄ bonds is significantly less than 180°.

The peroxyanion derived from the dihydroperoxide monocarbonate can also undergo decomposition via a six-membered ring intermediate (Scheme 7). The barrier for cyclization to the 1,2,4,5-tetroxan-3-oxide is predicted to be nearly identical to that for fragmentation of the acyclic peroxyanion. The preference for the cyclic isomer is substantial: the ground state conformer of the tetroxane oxide (**MIN-3a**) is over 9 kcal/mol lower in energy that the most stable acyclic conformation (**MIN-3d**).³⁴ reflecting the significant number of hyperconjugative interactions between C-O sigma antibonding orbitals and oxygen lone pairs in the chair-like conformation of the cyclic peroxide to generate a carbonyl, ¹O₂, and a methyl carbonate anion. The activation barrier for fragmenting the cyclic structure, while greater than that for fragmenting the acyclic form. As was the case in the monoester series, fragmentation of a more substituted acetal is predicted to be more favorable by ~ 5 kcal/mol; however, there is predicted to be a minimal impact, typically less than 1 kcal/mol, on the relative energies of individual pathways.

Comparison with intermediates in "reductive" ozonolysis

We also modeled analogous intermediates and transition states postulated to be involved in the fragmentation of zwitterionic peroxy/ammonium acetals during reductive ozonolyses (Scheme 8).²² As a result of a stabilizing electrostatic interaction, the zwitterionic acetal is predicted to strongly favor a ground-state conformation with a gauche O-C-O-O. The low-energy transition state for fragmentation lies less than 5 kcal/mol above the ground state; the fragmentation itself is predicted to be significantly downhill. (These calculations are based upon a zwitterionic acetal incorporating a fully substituted nitrogen; repeating these calculations on a species containing one or more N-H bonds predicted proton transfer would take place in preference to fragmentation).

DISCUSSION

The reactions described here constitute a new class of fragmentations involving a peroxyanion geminally linked to an electrophilically activated peroxide.³⁶ The peroxyanion can be generated via deprotonation, desilylation, or deacylation. The higher yields observed in the presence of tetraalkylammonium or potassium counterions vs. lithium point to the potential importance of anion dissociation, but must be interpreted with caution given the potential for different levels of ${}^{1}O_{2}$ quenching by the different bases and their protonated byproducts. The data from competition reactions suggests that deprotonation may be rate limiting.

The ability to achieve tandem activation and fragmentation of readily available 1,1dihydroperoxides is noteworthy. Hydroperoxyimidates, while not isolable, have been postulated as short-lived intermediates in epoxidations.³⁷ Alkylperoxytriazenes, which have been prepared from tertiary hydroperoxides via S_N Ar reactions, have mainly been of interest as radical initiators.³⁰

Relationship between reaction conditions and efficiency of ¹O₂ transfer

The observation of more efficient oxygen transfer in deuterated or halogenated solvents is in keeping with the enhanced lifetime of ${}^{1}O_{2}$ in solvents lacking C-H, O-H, or N-H bonds.¹⁸ The failure of the results to scale linearly to ${}^{1}O_{2}$ lifetime results from the presence of the trapping substrate, by definition a potent quenching agent. The observation of improved trapping yields at reduced reaction temperatures is not unexpected. While the lifetime of ${}^{1}O_{2}$ in organic solvents varies little with temperature,³⁸ reaction of ${}^{1}O_{2}$ with electron-rich alkenes has a near-zero enthalpy of activation and a strongly negative entropy of activation;³⁹ photosensitized oxygenations are often quite rapid even at low temperatures.⁵ However, the observation of increased yields from a slower rate of fragmentation is not easily explained. Although rapid injection of reactants was associated with significant effervescence, we could detect no evidence for transfer of ${}^{1}O_{2}$ into the gas phase. We therefore suspect that yields of oxygen transfer under conditions associated with higher ${}^{1}O_{2}$ flux are limited by self-quenching.⁴⁰

Relationship to known fragmentations

A number of heterolytic fragmentations involve formation of a new C-O bond through migration of a C-C sigma bond with cleavage of an activated O-O bond.^{41a-d} These include the Criegee rearrangement of peresters,^{41a} the Hock rearrangement of protonated or Lewis acid-complexed peroxides,^{41b} the fragmentation of primary ozonides derived from allylic alcohols,^{41c} and the fragmentation of 2-hydroperoxycarboxylates.^{41d} Overall, the new fragmentation bears a close topological resemblance to the Grob fragmentation, an extended elimination reaction in which formation of C=O and C=C pi systems drives the cleavage of C-C and C-X sigma bonds.^{31ab} The fragmentations described above are likely to require a similar antiperiplanar alignment of the breaking peroxyanion C-O with the activated O-O bond.

CONCLUSIONS

The decomposition of monoactivated derivatives of 1,1-dihydroperoxides is established as a new peroxide fragmentation that provides an efficient means for preparative generation of ${}^{1}O_{2}$ in organic media.

EXPERIMENTAL SECTION

Standard procedure for synthesis of 1,1-dihydroperoxides

1,1-Dihydroperoxides were prepared by a reported procedure.²⁴

1,1-Dihydroperoxy-4-*tert*-butylcyclohexane (1a)—84%, white solid, mp 81–83°C, $R_f = 0.33$ (30% EA/Hex), other physical data were identical to literature reports.²⁴

1,1-Dihydroperoxycycloheptane (2a)—83%, white solid, mp 59–61°C, $R_f = 0.33$ (30% EA/Hex), other physical data were identical to literature reports. ²⁴

1,1-Dihydroperoxycyclooctane (3a)—58%, colorless oil, $R_f = 0.33$ (30% EA/Hex), other physical data were identical to literature reports.²⁴

4-Phenyl-2,2-dihydroperoxybutane (4a)—72%, white solid, mp 61–63°C, $R_f = 0.36$ (40% EA/Hex), other physical data were identical to literature reports.²⁴

1,1-Dihydroperoxyadamantane (5a)—88%, white solid, mp 148–150°C, $R_f = 0.30$ (30% EA/Hex), other physical data were identical to literature reports.²⁴

5,5-Dihydroperoxynonane (6a)—75%, colorless oil. $R_f = 0.25$ (20% EA/Hex), other physical data were identical to literature reports.²⁴

1,1-Dihydroperoxy-3-*tert*-butylcyclopentane (7a)—84%, colorless oil. $R_f = 0.30$ (30% EA/Hex), IR: 3420, 2956, 2870, 1365, 1104, 963 cm⁻¹; ¹H NMR δ 9.83 (s, 2H), 2.05 (m, 2H), 1.9 (m, 2H), 1.7 (m, 2H), 1.47 (m, 1H), 0.85 (s, 9H); ¹³C NMR δ 121.7, 49.2, 34.5, 32.6, 31.5, 27.4, 25.6; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for C₉H₁₈NaO₄ (M+Na)⁺: 213.1103; found 213.1110

1,1-Dihydroperoxycyclododecane (8a)—93%, colorless oil, $R_f = 0.33$ (30% EA/Hex), other physical data were identical to literature reports.²⁴

Standard procedure for preparation of 1,1-dihydroperoxide monoacetate (illustrated for 1b)

To a solution of 4-*tert*-butylcyclohexyl-1,1-dihydroperoxide **1a** (1.48 g, 7.2 mmol) in CH_2Cl_2 (15 mL), was added DMAP (0.09 g, 0.75 mmol), and pyridine (0.57 g, 7.2 mmol). The reaction mixture was cooled to 0 °C and a solution of Ac₂O (0.74 g, 7.2 mmol) in CH_2Cl_2 (10 mL) was added dropwise over 10 min. Upon completion of addition, the reaction was stirred for 30 min at 0 °C, and then diluted with CH_2Cl_2 (100 mL). The solution was washed with saturated NaHCO₃ (20 mL), water (20 mL), brine (20 mL), and then dried over anhydrous Na₂SO₄. The residue obtained upon removal of the solvent *in vacuo* was purified by silica flash chromatography (5% EA/Hex) to give a white solid (1.47 g, 84% yield). The acid anhydride could be replaced by acid chloride (peresters) or ethoxycarbonyl chloride (percarbonates) without any other change.

1-Acetyldioxy-1-hydroperoxy-4-*tert***-butylcyclohexane (1b)**—84%, white solid, mp $35-37^{\circ}$ C. R_f = 0.33 (10% EA/Hex); other physical data were identical to literature reports.²³

1-Acetyldioxy-1-hydroperoxycycloheptane (2b)—76%, colorless oil. $R_f = 0.33$ (10% EA/Hex); IR: 3345, 2930, 2859, 1756, 1425, 1171, 1006, 899 cm⁻¹; ¹H NMR δ 10.13 (s, 1H), 2.09 (2, 3H), 1.92 (m, 4H), 1.54 (br, 8H); ¹³C NMR δ 171.7, 117.4, 32.5, 29.6, 22.6, 17.5; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for C₉H₁₆NaO₅ (M+Na)⁺: 227.0895; found 227.0898

1-Acetyldioxy-1-hydroperoxycyclooctane (3b)—73%, colorless oil. $R_f = 0.33$ (10% EA/Hex); IR: 3340, 2924, 1756, 1409, 1200, 1078, 898 cm⁻¹; ¹H NMR δ 10.13 (s, 1H), 2.15 (s, 3H), 2.00 (m, 2H), 1.89 (m, 2H), 1.63 (br, 4H), 1.57 (br, 6H); ¹³C NMR δ 171.7, 116.8, 27.8, 27.4, 24.9, 21.8, 17.6; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for $C_{10}H_{18}NaO_5$ (M+Na)⁺: 241.1052; found 241.1046

4-Phenyl-1-acetyldioxy-1-hydroperoxybutane (4b)—86%, colorless oil. $R_f = 0.33$ (10% EA/Hex); IR: 3340, 2988, 2900, 1758, 1378, 1066, 899, 748, 698 cm⁻¹; ¹H NMR δ 10.39 (s,1H), 7.35 (m, 2H), 7.28 (m, 3H), 2.86 (m, 2H), 2.24 (dd, J = 5.46, 12.9 Hz, 1H), 2.20 (s, 3H), 2.09 (dd, J = 5.46, 12.2 Hz, 1H), 1.61 (s, 3H); ¹³C NMR δ 171.7, 141.0, 128.6, 128.4, 126.3, 113.7, 34.9, 30.2, 18.1, 17.6; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for C₁₂H₁₆NaO₅ (M+Na)⁺: 263.0895; found 263.0899

5-Acetyldioxy-5-hydroperoxynonane (6b)—76%, colorless oil. $R_f = 0.33$ (10% EA/Hex); IR: 3350, 2960, 2873, 1760, 1198, 1056, 899 cm⁻¹; ¹H NMR δ 10.13 (s, 1H), 2.12 (s, 3H), 1.73 (m, 2H), 1.56 (m, 2H), 1.34 (m, 8H), 0.90 (t, J = 7.15 Hz, 3H); ¹³C NMR δ 171.6, 116.0, 28.9, 25.6, 22.7, 17.4, 13.8; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for $C_{11}H_{22}NaO_5$ (M+Na)⁺: 257.1365; found 257.1361

1-Acetyldioxy-1-hydroperoxycyclododecane (8b)—81% colorless oil. $R_f = 0.33$ (10% EA/Hex); IR: 3307, 2946, 2851, 1748, 1426, 1190, 997, 850 cm⁻¹; ¹H NMR δ 10.22 (s, 1H), 2.17 (s, 3H), 1.76 (m, 2H), 1.59(m, 6H), 1.39 (br, 14H); ¹³C NMR δ 171.7, 116.8, 26.1, 25.9, 25.8, 22.1, 21.8, 19.3, 17.7; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for $C_{14}H_{26}NaO_5$ (M+Na)⁺: 297.1678; found 297.1679

1-Benzoyldioxy-1-hydroperoxy-4-*tert*-butylcyclohexane (**1c**), 37%, white solid, mp 76–78 °C, $R_f = 0.43$ (10% EA/hex), other physical data were identical to literature reports.²³

4-*tert*-Butyl-1-hydroperoxycyclohexyl ethyl carbonoperoxoate (**1d**), 76%, colorless oil, $R_f = 0.22$ (10% EA/Hex), other physical data were identical to literature reports.²³

Standard procedure for preparation of monosilylated peresters (illustrated for 8a)

To a solution of monoacetate **1b** (2.46 g, 10 mmol) in CH_2Cl_2 (150 mL), was added DMAP (0.24 g, 2.0 mmol), and Et_3N (2.7 ml, 20 mmol), The reaction mixture was cooled to 0 °C and a solution of TESCl (1.5 g, 10 mmol) in CH_2Cl_2 (50 mL) was added dropwise over 10 min. The reaction was stirred for 30 min at 0 °C, and then the solvent was removed in vacuo. The residue obtained was purified by silica flash chromatography (5% EA/Hex) to give a colorless oily product (2.09 g, 58% yield).

1-Acetyldioxy-1-triethylsilyldioxy-4-*tert***-butylcyclohexane (9a)**—58%, colorless oil, $R_f = 0.65$ (20% EA/Hex); IR 2954, 1777, 1366, 1180, 865 cm⁻¹; ¹H NMR δ 2.33 (d, J = 14.48Hz, 2H), 2.15 (s, 3H), 1.70 (d, J = 13.2Hz, 2H), 1.46 (dt, J = 3.78, 13.8Hz, 2H), 1.30 (m, 2H), 1.05 (m, 1H), 0.98 (t, J = 7.69Hz, 9H), 0.87 (s, 9H), 0.69 (dd, J = 7.55, 16.27Hz, 6H); ¹³C NMR (233K) δ 167.9, 110.6, 47.2, 32.5, 30.4, 27.7, 23.2, 18.3, 7.0, 3.4; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for C₁₈H₃₆NaO₅Si (M+Na)⁺: 383.2230; found 383.2224

1-Acetyldioxy-1-*tert***-butyldimethylsilyldioxy-4***-tert***-butylcyclohexane (9b)**— TESCl was replaced by TBSCl without any other change, 65%, colorless oil. $R_f = 0.65$ (20% EA/Hex); IR: 2954, 2859, 1777, 1365, 1178, 873, 830, 784 cm⁻¹; ¹H NMR δ 2.33 (m, 2H), 2.14 (s, 3H), 1.68 (m, 2H), 1.46 (dt, J = 3.85, 13.63Hz, 2H), 1.29 (m, 2H), 1.05 (m, 1H), 0.93 (s, 9H), 0.87 (s, 9H), 0.14 (s, 6H); ¹³C NMR (233K) δ 167.9, 110.7, 47.2, 32.5, 30.4, 27.7, 26.3, 23.2, 18.6, 18.3; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for C₁₈H₃₆NaO₅Si (M +Na)⁺: 383.2230; found 383.2235

1-Acetyldioxy-1-triethylsilyldioxycycloheptane (10)—81%, colorless oil. $R_f = 0.65$ (20% EA/Hex); IR: 2969, 1776, 1409, 1170, 1056, 796 cm⁻¹; ¹H NMR δ 2.08 (s, 3H), 1.95 (m, 4H), 1.55 (br, 8H), 0.97 (t, J = 7.86 Hz, 9H), 0.68 (q, 6H); ¹³C NMR δ 115.9, 33.0, 30.2, 22.8, 17.8, 6.6, 3.7; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for $C_{15}H_{30}NaO_5Si$ (M+Na)⁺: 341.1760; found 341.1759

1-Acetyldioxy-1-triethylsilyldioxycyclooctane (11)—70%, colorless oil. $R_f = 0.65$ (20% EA/Hex); IR: 2956, 1776, 1363, 1184, 1066, 833, 729 cm⁻¹; ¹H NMR δ 2.10 (s, 3H), 1.97 (m, 4H), 1.56 (br, 10H), 0.97 (t, J = 7.63 Hz, 9H), 0.68 (q, 6H); ¹³C NMR (233K) δ 168.1, 115.0, 27.8, 27.2, 24.7, 22.0, 18.2, 7.0, 3.7; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for $C_{16}H_{32}NaO_5Si$ (M+Na)⁺: 355.1917; found 355.1906

4-Phenyl-1-acetyldioxy-1-triethylsilyldioxybutane (12)—79%, colorless oil. $R_f = 0.65$ (20% EA/Hex); IR: 2957, 1780, 1182, 1103, 825, 698 cm⁻¹; ¹H NMR δ 7.31 (m, 2H), 7.23 (m, 2H), 2.78 (t, J = 8.95 Hz, 2H), 2.15 (m, 5H), 1.57 (s, 3H), 1.04 (t, J = 7.95 Hz, 9H), 0.75 (q, 6H); ¹³C NMR δ 141.3, 128.5, 128.3, 126.1, 111.9, 35.5, 30.4, 18.5, 17.8, 6.7, 3.7; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for C₁₈H₃₀NaO₅Si (M+Na)⁺: 377.1760; found 377.1756

1-Acetyldioxy-1-triethylsilyldioxynonane (13)—73%, colorless oil. $R_f = 0.65$ (20% EA/Hex); IR: 2959, 1781, 1409, 1184, 1066, 802, 729 cm⁻¹; ¹H NMR δ 2.04 (s, 2H), 1.69 (m, 2H), 1.30 (br, 8H), 0.93 (t, J = 7.85 Hz, 9H), 0.85 (t, J = 6.35Hz, 6H), 0.63 (q, 6H); ¹³C NMR δ 114.1, 29.6, 25.5, 22.7, 17.7, 13.7, 6.5, 3.6; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for C₁₈H₃₀NaO₅Si (M+Na)⁺: 377.1760; found 377.1768

1-Acetyldioxy-1-triethylsilyldioxycyclododecane (14)—80%, colorless oil. $R_f = 0.65 (20\% \text{ EA/Hex})$; IR: 2929, 1779, 1470, 1186, 1003, 851, 728 cm⁻¹; ¹H NMR δ 2.08 (s, 3H), 1.73 (m, 4H), 1.37 (br, 18H), 0.96(t, J = 7.96 Hz, 9H), 0.66 (q, 6H); ¹³C NMR δ 114.9, 26.7, 26.1, 26.0, 22.3, 21.9, 19.4, 6.7, 3.7; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for $C_{20}H_{40}NaO_5Si (M+Na)^+$: 411.2543; found 411.2536

1,1-Triethylsilyldioxy-4-*tert***-butylcyclohexane (15)**—To a solution of 4-*tert*butylcyclohexyl-1,1-dihydroperoxide **1a** (0.50 g, 2.5 mmol) in DMF (30 mL), was added Et₃N (0.76 ml, 5.4 mmol), The reaction mixture was cooled to -40 °C and TESCI (0.91 ml, 5.4 mmol) was added. The reaction was stirred for 1 hour at -40 °C, then quenched with brine (100 mL). The solution was extracted with hexane (50 ml) three times and the combined organic layer was dried over anhydrous Na₂SO₄. The residue obtained upon

removal of the solvent *in vacuo* was purified by silica flash chromatography (5% EA/Hex) to give colorless oil. (0.57g, 53%), $R_f = 0.80$ (20% EA/Hex), other physical data were identical to literature reports.⁴²

1,1-Diacetyldioxy-4-*tert***-butylcyclohexane (16)**—To a solution of 4-*tert*butylcyclohexyl-1,1-dihydroperoxide **1a** (1.48 g, 7.2 mmol) in CH₂Cl₂ (15 mL), was added DMAP (0.09 g, 0.75 mmol), and pyridine (0.57 g, 7.2 mmol). The reaction mixture was cooled to 0 °C and a solution of Ac₂O (1.48 g, 14.4 mmol) in CH₂Cl₂ (10 mL) was added dropwise over 10 min. Upon completion of addition, the reaction was stirred for 30 min at 0 °C, and then diluted with CH₂Cl₂ (100 mL). The solution was washed with saturated NaHCO₃ (20 mL), water (20 mL), brine (20 mL), and then dried over anhydrous Na₂SO₄. The residue obtained upon removal of the solvent *in vacuo* was purified by silica flash chromatography (10% EA/Hex) to give a white solid (1.55 g, 75% yield). mp 54–56 °C; R_f = 0.30 (20% EA/Hex); IR: 2960, 2869, 1785, 1361, 1187, 1057, 896 cm⁻¹; ¹H NMR δ 2.34 (d, J = 12.81 Hz, 2H), 2.08 (s, 3H), 2.07 (s, 3H), 1.75 (d, J = 14.12 Hz, 2H), 1.62 (m, 2H), 1.31 (m, 2H), 1.09 (m, 1H), 0.86 (s, 9H); ¹³C NMR δ 167.5, 167.4, 111.5, 47.1, 32.2, 30.1, 27.5, 23.2, 17.5, 17.4; HRMS (ESI, MeOH/H₂O, NaOAc), calc. for C₁₄H₂₄NaO₆ (M+Na)⁺: 311.1471; found 311.1467

Standard procedure for fluoride-mediated decomposition of silylated monoesters

To a solution of **9a** (77 mg, 0.2 mmol) and 1,3-diphenylisobenzofuran (DPBF, **D**, 27 mg, 0.1 mmol) in CH₃CN (2 ml), was added TBAF (1M in THF, 0.24 ml, 0.24 mmol) over a period of 5 seconds (syringe injection). The resulting reaction mixture was stirred at room temperature for 5 minutes. Then solvent was removed by vacuum, and the residue was purified by column chromatography on silica gel to give the pure product **D**-**O**₂ (19 mg, 66%).

NMR method for quantification of oxygen transfer (illustrated for dioxygenation of terpenine)

To a solution of **1b** (50 mg, 0.2 mmol) and α -terpinene (**T**, 90%, 15 mg, 0.1 mmol) in CH₃CN (2 ml), TBAF (1M in THF, 0.24 ml, 0.24 mmol) was injected within 5 seconds, and the reaction mixture stirred at room temperature for 5 minutes. Then solvent was removed by vacuum. Internal standard 1,2- dichloroethane was added and **T-O**₂ was measured by NMR. The alkene peak at 6.3 ppm (dd, J = 8.56, 25.93Hz) of T-O₂ will be used for calculation via following equations:

Actual $Mole_{T-O2} = Mole_{standard} * 2 * Area_{T-O2} / Area_{standard}$

Therefore, the calculated %yield = 100*Actual MoleT-_{O2}/Theoretical MoleT-_{O2} Alternatively, quantification of **T-O₂** can be conducted by GC/MS using a reported procedure⁵

GC/MS quantification of relative reactivity of dihydroperoxide monoesters (Illustrated for 1b and 4b)

Prepare a standard solution of 4-*tert*-butylcyclohexanone (1 mmol) and benzylacetone (1 mmol) in CH₃CN (2 ml). The standard ratio $\alpha = \text{Area}_{4-tert-butylcyclohexanone standard}/$ Area_{benzylacetone standard}. The mole ratio of the ketone products from the competitive reaction is Area_{4-tert}-butylcyclohexanone actual/(α +Area_{benzylacetone actual})

Standard procedure for tandem activation and decomposition of 1,1-dihydroperoxides (Illustrated for CCl₃CN activator)

To a solution of **1a** (41 mg, 0.2 mmol), CCl₃CN (29 mg, 0.2 mmol) and 1,3diphenylisobenzofuran (DPBF, **D**, 27 mg, 0.1 mmol) in CH₃CN (2 ml), was added KO*t*Bu (90 mg, 0.8 mmol). The reaction was monitored by TLC and stirred at room temperature for 5 minutes. Then solvent was removed by vacuum, and the residue was purified by column chromatography on silica gel to give the pure product **D**-O₂ (21 mg, 72% yield based upon **D** or 36% based upon consumed 1,1-dihydroperoxide).

Standard procedure for preparation of 1,1-dihydroperoxide monoacetates

(illustrated for 1b)—To a solution of 4-*tert*-butylcyclohexyl-1,1-dihydroperoxide 1a (1.48 g, 7.2 mmol) in CH₂Cl₂ (15 mL), was added DMAP (0.09 g, 0.75 mmol), and pyridine (0.57 g, 7.2 mmol). The reaction mixture was cooled to 0 °C and a solution of Ac₂O (0.74 g, 7.2 mmol) in CH₂Cl₂ (10 mL) was added in a dropwise manner over 10 min. Upon completion of addition, the reaction was stirred for 30 min at 0 °C, and then diluted with CH₂Cl₂ (100 mL). The solution was washed with saturated NaHCO₃ (20 mL), water (20 mL), brine (20 mL), and then dried over anhydrous Na₂SO₄. The residue obtained upon removal of the solvent *in vacuo* was purified by silica flash chromatography (5% EA/Hex) to give a white solid (1.47 g, 84% yield). The acid anhydride could be replaced by acid chloride (peresters) or ethoxycarbonyl chloride (percarbonates) without any other change.

Sample procedure for oxygen transfer (illustrated for decomposition of 1b and dioxygenation of *terpenine*)—To a solution of 1b (50 mg, 0.20 mmol) and α -terpinene (T, 90%, 15 mg, 0.10 mmol) in CH₃CN (2 ml) was added via syringe a solution of TBAF (nominally 1M in THF, 0.24 ml, 0.24 mmol) over 5 seconds. The reaction mixture was stirred at room temperature for 5 minutes and then the solvent was removed under vacuum. 1,2- Dichloroethane was added as an internal standard and T-O₂ determined by NMR, GC/MS, or isolation, as described in the Supporting Information.

Standard procedure for preparation of monosilylated peresters (illustrated for

8a)—To a solution of monoacetate **1b** (2.46 g, 10 mmol) in CH_2Cl_2 (150 mL), was added DMAP (0.24 g, 2.0 mmol), and Et₃N (2.7 ml, 20 mmol), The reaction mixture was cooled to 0 °C and a solution of Et₃SiCl (1.5 g, 10 mmol) in CH_2Cl_2 (50 mL) was added dropwise over 10 min. The reaction was stirred for 30 min at 0 °C, and then the solvent was removed in vacuo. The residue was purified by silica flash chromatography (5% EA/Hex) to give **8a** as a colorless oil (2.09 g, 58% yield).

Standard procedure for fluoride-mediated decomposition of silylated

monoesters—To a solution of **9a** (77 mg, 0.2 mmol) and 1,3-diphenylisobenzofuran (DPBF, **D**, 27 mg, 0.10 mmol) in CH₃CN (2 ml), was added via syringe a solution of TBAF (nominally 1*M* in THF, 0.24 ml, 0.24 mmol) and the reaction mixture stirred at room temperature for 5 minutes. Then solvent was removed by vacuum, and the residue was purified by column chromatography on silica gel to give the pure product **D**-**O**₂ (19 mg, 66%)

Standard procedure for tandem activation and decomposition of 1,1-

dihydroperoxides (Illustrated for trichloroacetonitrile)—To a solution of **1a** (41 mg, 0.2 mmol), CCl₃CN (29 mg, 0.2 mmol) and 1,3-diphenylisobenzofuran (DPBF, **D**, 27 mg, 0.1 mmol) in CH₃CN (2 ml), was added KOtBu (90 mg, 0.8 mmol). The reaction was monitored by TLC and stirred at room temperature for 5 minutes. Then solvent was removed by vacuum, and the residue was purified by column chromatography on silica gel to give the

pure product \mathbf{D} - \mathbf{O}_2 (21 mg, 72% yield based upon \mathbf{D} or 36% based upon consumed 1,1-dihydroperoxide).

Calculation Methods—The B3LYP/6-31+G(d,p) model chemistry was used in all calculations. Differences in electronic energies were corrected by inclusion of zero-point vibrational energies scaled by 0.9806. Because B3LYP is based on a single Slater determinant, it cannot rigorously describe either singlet molecular oxygen or transition structures in which singlet O_2 is a distinct moiety. The standard approximate treatment is to relax the restriction that and orbitals be identical. While this allows B3LYP to provide a qualitatively correct description of the electronic structure, this treatment also introduces triplet character into the wave function. We corrected for this spin contamination using the approach of Houk and co-workers.⁴³ This approach predicts a singlet-triplet gap for molecular oxygen of 20.8 kcal/mol, in fair agreement with the experimental value of 22.5 kcal/mol.^{1a} Individual conformers within the monoperacetate and monopercarbonate systems, along with optimized coordinates for each minimized structure or transition state, are described in the Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Research was conducted with funding from NSF (CHE-0749916, -1057982) and the Camille and Henry Dreyfus Foundation in facilities remodeled with NIH support (RR016544). Calculations were performed at Macalester College, the National Computational Science Alliance facility at the University of Illinois (CHE090078), and the Midwest Undergraduate Computational Chemistry Consortium facility at Hope College (NSF-CHE0520704). We thank Dr. Joe Dumais and Prof. Charles Kingsbury for useful discussions.

References

- a) Foote, CS.; Clennan, EL. Active Oxygen in Chemistry. Foote, CS.; Valentine, JS.; Greenberg, A.; Liebman, JF., editors. Blackie Academic and Professional; London: 1995. p. 105b) Clennan E, Pace A. Tetrahedron. 2005; 61:6665.c Endo M. Russ J Phys Chem A. 2007; 81:1497.
- Gollnick, K.; Kuhn, HJ. Singlet Oxygen. Wasserman, HH.; Murray, RW., editors. Academic Press; New York: 1979. p. 287-427.
- 3. Clennan EL, L'Esperance RP. Tetrahedron Lett. 1983; 24:4291.
- 4. Sheu C, Kang P, Khan S, Foote CS. J Am Chem Soc. 2002; 124:3905. [PubMed: 11942827]
- 5. Schmidt R. Photochem Photobiol. 2006; 82:1161. [PubMed: 16683906]
- 6. Wootton RCR, Fortt R, de Mello AJ. Org Proc Res Dev. 2002; 6:187.
- Foote CS, Wexler S, Ando W, Higgins R. J Am Chem Soc. 1968; 90:975.Greer A. Acc Chem Res. 2006; 39:797. [PubMed: 17115719]
- Jary WG, Ganglberger T, Pöchlauer P, Falk H. Monat Chem. 2005; 136:537.Ganglberger T, Jary WG, Pöchlauer P, Aubry JM, Nardello V, Falk H. Monat Chem. 2004; 135:501.
- Adam W, Kazakov DV, Kazakov VP. Chem Rev. 2005; 105:3371. [PubMed: 16159156] Wahlen J, De Vos DE, Jacobs PA, Alsters PL. Adv Synth Catal. 2004; 346:152.
- Catir M, Kilic H, Nardello-Rataj V, Aubry JM, Kazaz C. J Org Chem. 2009; 74:4560. [PubMed: 19449850]
- 11. Sels BF, De Vos DE, Jacobs PA. J Am Chem Soc. 2007; 129:6916. [PubMed: 17488006]
- 12. Nardello V, Barbillat J, Marko J, Witte PT, Alsters PL, Aubry JM. Chem Eur J. 2003; 9:435. [PubMed: 12532292]
- 13. Renirie R, Pierlot C, Aubry JM, Hartog AF, Schoemaker HE, Alsters PL, Wever R. Adv Synth Cat. 2003; 345:849.

- Corey EJ, Mehrotra MM, Khan AU. J Am Chem Soc. 1986; 108:2472. [PubMed: 22175617] Posner GH, Weitzberg M, Nelson WM, Murr BL, Seliger HH. J Am Chem Soc. 1987; 109:278.Cerkovnik J, Tuttle T, Kraka E, Lendero N, Plesnicar B, Cremer D. J Am Chem Soc. 2006; 128:4090. [PubMed: 16551118]
- Deslongchamps P, Atlani P, Fréhel D, Malaval A, Moreau C. Can J Chem. 1974;
 52:3651.Abdrakhmanova AR, Khalitova LR, Spirikhin LV, Dokichev VA, Grabovskiy SA, Kabal'nova NN. Russ Chem Bull Int Ed. 2007; 56:271.
- Pierlot C, Nardello V, Schrive J, Mabille C, Barbillat J, Sombret B, Aubry JM. J Org Chem. 2002; 67:2418. [PubMed: 11950282]
- 17. Carreño MC, González-Lopez M, Urbano A. Angew Chem Int Ed. 2006; 45:2737.
- The half-life of ¹O₂ ranges from 1–2 μsec in H₂O to 60 usec in CH₃CN to nearly msec in perhalogenated solvents. See ref. 1a and Wilkinson F, Helman WP, Ross AB. J Phys Chem Ref Data. 1995; 24:663.
- See, for example: Aubry J-M, Adam W, Alsters PL, Borde C, Queste S, Marko J, Nardello V. Tetrahedron. 2006; 62:10753.Caron L, Nardello V, Alsters PL, Aubry J-M. J Mol Cat, A. 2006; 251:194.
- 20. Aubry JM, Pierlot C, Rigaudy J, Schmidt R. Acc Chem Res. 2003; 36:668–675. [PubMed: 12974650]
- Thompson QE. J Am Chem Soc. 1961; 83:845.Mendenhall, GD. Advances in Oxygenated Processes. Baumstark, AL., editor. Vol. 2. JAI; Greenwich: Connecticut: 1990. p. 203
- 22. Schwartz C, Raible J, Mott K, Dussault PH. Org Lett. 2006; 8:3199. [PubMed: 16836365] Tetrahedron. 2006; 62:10747.
- 23. Ghorai P, Dussault PH. Org Lett. 2009; 11:4572. [PubMed: 19772310]
- 24. Ghorai P, Dussault PH. Org Lett. 2008; 10:4577. [PubMed: 18783232]
- Cudden RCP, Hewlett C. J Chem Soc C. 1968:2983.Dihydroperoxide monoesters have been investigated as radical initiators: Van de Bovenkamp-Bouwman AG, Van Gendt JWJ, Meijer J, Hogt AH, Van Swieten AP. PCT Int Appl. 1999WO 9932442 A1 19990701.
- Dussault, PH. Active Oxygen in Chemistry. Foote, CS.; Valentine, JS.; Greenberg, A.; Liebman, JF., editors. Blackie A&P; London: 1995. p. 141-203.
- 27. The rate constants for reaction of ${}^{1}O_{2}$ with terpinene and 1,3-Diphenylisobenzofuran (DPBF, D) are on the order of 10^{8} and 10^{9} L/mol-sec, respectively; see ref. 18. *Caution:* DPBF is both an efficient ${}^{1}O_{2}$ trap and a visible photosensitizer. In control reactions, we found that stirring a solution of 1b with DPBF in an unlit fume hood gave little oxidized product (D-O₂) over the typical period (≤ 0.5 h) of these reactions. In contrast, care had to be taken to prevent extensive formation of D-O₂ during chromatographic purification of reaction mixtures under normal lab lighting. See: Nowakowska M. J Chem Soc, Faraday Trans 1. 1984; 80:2119.Howard JA, Mendenhall GD. Can J Chem. 1975; 53:2199.No precautions were required with terpinene (T).
- 28. Miller J, Abernathy S, Sharp R. J Phys Chem A. 2000; 104:4839.
- 29. Bis perester derivatives of 1,1-dihydroperoxides have been prepared (Criegee R, Schnorrenberg W, Becke J. Annalen. 1949; 565:7.Warnant J, Joly R, Mathieu J, Velluz L. Bull Soc Chim Fr. 1957:331.Milas NA, Golubovic A. J Am Chem Soc. 1959; 81:6461.and also investigated as polymerization initiators: Van de Bovenkamp-Bouwman AG, Van Gendt JWJ, Meijer J, Hogt Andreas H, Van Swieten AP. (Akzo Nobel N V, Neth) PCT Int Appl. 1999:42.CODEN: PIXXD2 . WO 9932442 A1 19990701.
- 30. Davies AG, Sutcliffe RJ. J Chem Soc, Perkins Trans 2. 1981; 1512
- a Grob CA, Bolleter M, Kunz W. Angew Chem, Int Ed Engl. 1980; 19:708.b Grob CA. Angew Chem, Int Ed Engl. 1969; 8:535.
- 32. Baader, WJ. Science of Synthesis. Berkessel, A., editor. Vol. 38. Georg Thieme Verlag; Stuttgart: 2009. p. 323-344.Four-Membered Ring Cyclic Peroxides
- Adam W, Curci R, Edwards JO. Acc Chem Res. 1989; 22:205.Murray RW. Chem Rev. 1989; 89:1187.
- 34. All identified conformers are described within the Supporting Information
- 35. Tâme Parreira RL, Galembeck SE, Hobza P. Chem Phys Chem. 2007; 8:87. [PubMed: 17121408]

- 36. The successful alkylation of 1,1-dihydroperoxides using CsOH also demonstrates the stability of 1,1-dihydroperoxides and 1-alkyldioxy-1-hydroperoxyalkanes towards strongly basic conditions, although it is interesting to note that ketones are obtained as minor byproducts in these reactions: Hamada Y, Tokuhara H, Masuyama A, Nojima M, Kim H-S, Ono K, Ogura N, Wataya Y. J Med Chem. 2002; 45:1374–1378. [PubMed: 11882006]
- 37. Payne GB. Tetrahedron. 1962; 18:763.Payne GB, Deming PH, Williams PH. J Org Chem. 1961; 26:659.
- 38. Long CA, Kearns DR. J Am Chem Soc. 1975; 97:2018.
- Frimer AA. Chem Rev. 1979; 79:359.Gorman AA, Gould IR, Hamblet I. J Am Chem Soc. 1982; 104:7098.
- 40. Matheson IBC, Lee J, Yamanashi BS, Wolbarsht ML. Chem Phys Lett. 1974; 27:355.
- Criegee: a) Goodman RM, Kishi Y. J Am Chem Soc. 1998; 120:9392.Criegee R. Lieb Ann. 1948; 560:127.Kropf H. Kropf H. Methoden der Organischen Chemie (4). ThiemeStuttgart1988; E13:1095–1099.Hock: b) Hock H, Kropf H. Angew Chem. 1957; 69:313.Dussault PH, Lee HJ, Liu X. Perkin 1. 2000:3006.Anomalous ozonolysis: c) Jung ME, Davidov P. Org Lett. 2001; 3:627. [PubMed: 11178842] Fragmentation of 2-hydroperoxyacids: d) Richardson WH, Smith RS. J Am Chem Soc. 1967; 89:2230.
- 42. Ramirez A, Woerpel KA. Org Lett. 2005; 7:4617. [PubMed: 16209493]
- 43. Goldstein E, Beno B, Houk KN. J Am Chem Soc. 1996; 118:6036.

Figure 1. Thermal stability of dihydroperoxide monoester 1b

Figure 2. Monitoring rate of decompositions

Figure 3.

a) The optimized geometry of the ground state conformer, **MIN-1a**. b) The optimized geometry of conformer **MIN-1c**. Bond lengths are in Å, and bond angles and dihedral angles are in degrees.

Figure 4.

a) The optimized geometry of the most stable conformer of **TS-2**. b) The optimized geometry of the reactant complex leading to the most stable conformer of **TS-2**. c) The optimized geometry of the second most stable transition state conformer, **TS-2***.

Figure 5.

The optimized geometries of the most stable conformers of: a) **TS-4**; b) **TS-5**. Bond lengths are in Å, and bond angles and dihedral angles are in degrees.

Scheme 1. Examples of ${}^{1}O_{2}$ reactivity

Scheme 2. Synthesis of 1,1-dihydroperoxides and derived monoperesters

Scheme 3. Influence of scaffold on reactivity ^aProducts analyzed by GC/MS.

Scheme 4. Synthesis of silylated peresters

Scheme 5.

Reactivity of bissilyl and bisacyl derivatives of 1,1-dihydroperoxides

Scheme 6.

Available pathways and predicted relative energies (kcal/mol) for fragmentation of a deprotonated monoester.

^aEnergetics are based on the most stable conformer of each structure.

Scheme 7.

Calculated relative energies (kcal/mol) for selected intermediates (MIN) and transition states (TS) in fragmentation of percarbonates

Scheme 9. Mechanistic overview

Table 1

Influence of peroxyacetal backbone

, OOH , OOAc + T (0.5 eq)	n-Bu₄NF (1.2 eq) CH ₃ CN (r.t.), 0.08h	T-O ₂
monoperester or bisOO	H yield T	-O ₂ ^{<i>a</i>}
1b	26%	ó
2b	26%	ó
3b	23%	ó
4b	31%	ó
5b	27%	ó
7b	24%	ó
8b	23%	ó
1a	NR	l

^aYield of **T-O2** relative to monoperester

Table 2

Influence of solvent on trapped ${}^{1}O_{2}$

1b (1.0 equiv) + T (0.5 equiv)	<i>n-</i> Bu₄NF (1.2 eq, in TH CH ₃ CN, 0 °C, 0.16h	F) ─→ T-O 2
solvent	base	yield T-O ₂ ^a
CH ₃ CN	<i>n</i> -Bu ₄ NF	26%
CHCl ₃	<i>n</i> -Bu ₄ NF	17%
CDCl ₃	<i>n</i> -Bu ₄ NF	35%
Acetone-d ₆	<i>n</i> -Bu ₄ NF	33%
C_6D_6	<i>n</i> -Bu ₄ NF	30%
C_6F_6	<i>n</i> -Bu ₄ NF	7 % b
C_6F_6	KOtBu	$1\%^b$
C ₆ F ₆ /CH ₃ CN (9:1	l) <i>n</i> -Bu ₄ NF	24 %
C ₆ F ₆ /CH ₃ CN (1:1	l) <i>n</i> -Bu ₄ NF	36 %
C ₆ F ₁₄ /CH ₃ CN (1:1	$n-\mathrm{Bu}_4\mathrm{NF}$	28 %
Freon-113/CH ₃ CN ((1:1) <i>n</i> -Bu ₄ NF	39 %

^aYield of **T-O2** based upon **1b**;

^bLimited reagent solubility;

^cbiphasic

Table 3

Influence of order of addition of reagents

$1\mathbf{b}$ (1.0 equiv) $\mathbf{t} = \mathbf{T}$ (0.5 equiv)	base (1.2eq)	
	solvent, r.t., 0.08h	
conditions	yield T-O ₂	
Add <i>n</i> -Bu ₄ NF to solution of 1b and T	35%	
Add 1b to solution of <i>n</i> -Bu ₄ NF and T	38%	

^{*a*}Based upon T-O₂ vs. starting peroxide
Investigation of other peracyl activating groups

 a Based upon T-O2 vs. stoichiometry of 1c or 1d

J Org Chem. Author manuscript; available in PMC 2013 February 3.

Influence of Base

<i>t</i> -Bu - OOH OOAc + T 1b (1.0 equiv) + T	base (1.2 eq) CH ₃ CN, 0 °C, 0.16h T-O ₂
base	yield T-O ₂ ^a
KOtBu	30%
LiN(SiMe ₃) ₂ (in THF)	4.1%
nBu ₄ NF (in THF)	35%

^a relative to stoichometry of perester

Influence of temperature and rate of addition

t-Bu—∕ 1b	001 00, (1.0 equiv)	H T Ac ⁺ (0.5 e	q) (1 M in THF) allow to rea for 0.25 h);
entry	T (°C)	solvent	addition mode	yield T-O ₂ ^a
1	rt	THF	b	10%
2	0	THF	b	13%
3	- 40	THF	b	19%
4	- 78	THF	b	24%
5	rt	CH ₃ CN	b	24%
6	rt	CH ₃ CN	c	42%

^arelative to perester;

^bsyringe ($\leq 10^{-3}$ h);

^c syringe pump. (0.25 h)

J Org Chem. Author manuscript; available in PMC 2013 February 3.

Fragmentation of silylated dihydroperoxide monoesters

AcOO O برکمبر	OSiR ₃ T (0.5	or D TBAF equiv) C	/THF (1.2 eq) H ₃ CN, rt	T-O ₂ or D-O ₂
subs	SiR ₃	t (min)	trap	yield ^a
9a	SiEt ₃	5	D	33%
9b	TBS	5	D	29%
9b	TBS	5	Т	25%
9b	TBS	10	D	25%
10	SiEt ₃	30	D	34%
11	SiEt ₃	20	D	37%
12	SiEt ₃	10	D	41%
13	SiEt ₃	16	D	38%
14	SiEt ₃	5	D	28%

^{*a*}Yield of **T-O2** or **D-O2** relative to peroxide starting material.

J Org Chem. Author manuscript; available in PMC 2013 February 3.

Investigation of electrophiles for activation/fragmentation

1a	үл ООН Хл ООН	KOtBu, activating age CH ₃ CN, rt	nt → tBu -	⋗
ac	ctivating tents	CI	Cl ₃ C −C≡N	
	MeO		<i>p</i> -TsCl	Ac ₂ O
ac	tivator	KOtBu (eq)	t (h)	convs ^a
С	Cl ₃ CN	2.0	0.75	incomplete
C C	Cl ₃ CN Cl ₃ CN	2.0 4.0	0.75 ≤ 0.1	incomplete complete
C C tr	Cl ₃ CN Cl ₃ CN iazene	2.0 4.0 2.0	0.75 ≤ 0.1 >12	incomplete complete incomplete
C C tr tr	Cl ₃ CN Cl ₃ CN iazene iazene	2.0 4.0 2.0 4.0	0.75 ≤ 0.1 >12 ≤ 0.1	incomplete complete incomplete complete
C C tr tr p	Cl ₃ CN Cl ₃ CN iazene iazene P-TsCl	2.0 4.0 2.0 4.0 2.0	$0.75 \le 0.1$ >12 ≤ 0.1 0.3	incomplete complete incomplete complete incomplete
C C tr tr p p	Cl ₃ CN Cl ₃ CN iazene iazene P-TsCl P-TsCl	2.0 4.0 2.0 4.0 2.0 4.0	$0.75 \le 0.1$ >12 ≤ 0.1 0.3 ≤ 0.1	incomplete complete incomplete complete incomplete complete
C C tr tr p	Cl ₃ CN Cl ₃ CN iazene iazene P-TsCl P-TsCl Ac ₂ O	2.0 4.0 2.0 4.0 2.0 4.0 2.0	$0.75 \le 0.1$ >12 ≤ 0.1 $0.3 \le 0.1$ 0.5	incomplete complete incomplete incomplete complete incomplete

^aConsumption of **1a** (TLC, NMR)

Oxygen transfer via in-situ activation

HOO OOH ್ಸ್ಡರ್ಸ್ 1a	D (0. 5 eq)	KOtBu (4 equ activator (1 ec CH ₃ CN, rt	iv) quiv) ──► D-O ₂
activator	t (m	in) y	ield D-O ₂ ^a
CCl ₃ CN	5		36%
triazene	5		39.5%
p-TsCl	5		39%
Ac ₂ O	5		31%

^arelative to dihydroperoxide **1a**

J Org Chem. Author manuscript; available in PMC 2013 February 3.

Investigation of preparative oxygenations

1b or (exces	1a + ss) +	Trap (1.0 equiv.) [_]	promoter (excess) CH ₃ CN, 0 °C	Oxidized trap
subs (eq)	trap	reagents (eq)) t (min) product, yield ^a
1b (5)	Т	TBAF (5)	10	T-O₂ (83%)
1b (6)	Т	TBAF (6)	10	T-O₂ (100%)
1b (2.5)	D	TBAF (2.5)	5	D-O₂ (100%)
1a (5)	Т	triazine (5), KOtB	u (20) 15	T-O₂ (69%)
1a (7)	Т	triazine (7), KOtB	u (28) 15	T-O₂ (100%)
8b (6)	Т	TBAF (6)	10	T-O₂ (100%)

^ayield of **T-O2** or **D-O2**

J Org Chem. Author manuscript; available in PMC 2013 February 3.

Supporting Information: Experimental Procedures

Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides

Jiliang Hang, Prasanta Ghorai, Solaire A. Finkenstaedt-Quinn, Ilhan Findik, Emily Sliz, Keith T.

Kuwata, Patrick H. Dussault*

pdussault1@unl.edu

Item		Page
General experimental conditions:		2
Calculations Calculation methods Conformation analysis of the peracetate and percarbonate systems Optimized coordinates of structures described in the paper	3 4-5 5-24	3-24
Kinetic Studies		25-28
Thermal stability of 1a and 1d		29
References		30

General Experimental Conditions: All reagents and solvents were used as supplied commercially, except CH₂Cl₂ and THF, which were distilled from CaH₂, and Na/benzophenone, respectively. All reactions were conducted under an atmosphere of N₂ except where noted; "RBF" indicates round-bottom flask. Thin layer chromatography (TLC) was performed on 0.25 mm hard-layer silica G plates. Developed TLC plates were visualized with a hand-held UV lamp or by staining: 1% ceric sulfate and 10% ammonium molybdate in 10% H₂SO₄ (general stain, after charring); 1% N,N'-dimethyl-p-phenylenediamine solution in 1:20:100 acetic acid/water/methanol (specific for peroxides);¹ Melting points are uncorrected. Unless noted, NMR spectra were acquired at 400 MHz (¹H) or 100 MHz (¹³C) in CDCl₃. IR spectra were recorded as neat films on a ZrSe crystal with selected absorbances reported in cm⁻¹.

Calculation Methods:

1. Methodology: The B3LYP/6-31+G(d,p) model chemistry was used in all calculations. Differences in electronic energies were corrected by inclusion of zero-point vibrational energies scaled by 0.9806. Because B3LYP is based on a single Slater determinant, it cannot rigorously describe either singlet molecular oxygen or transition structures in which singlet O_2 is a distinct moiety. The standard approximate treatment is to relax the restriction that and orbitals be identical. While this allows B3LYP to provide a qualitatively correct description of the electronic structure, this treatment also introduces triplet character into the wave function. We corrected for this spin contamination using the approach of Houk and co-workers.² This approach predicts a singlet-triplet gap for molecular oxygen of 20.8 kcal/mol, in fair agreement with the experimental value of 22.5 kcal/mol.³ Individual conformers within the monoperacetate and monopercarbonate systems are illustrated in the Supporting Information.

2. Conformational Analysis of the Acetate System

3. Conformational Analysis of the Carbonate Peroxyanion

SCHEME 2S

4. Optimized Coordinates of All Structures Labeled in the Manuscript

MIN-1a

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.545657	-1.027806	-0.157278
2	8	0	1.784942	0.267046	-0.458797
3	8	0	0.280450	-1.309963	0.529615
4	8	0	-0.808554	-0.983912	-0.387424
5	6	0	-1.372644	0.247968	-0.128065
6	8	0	-2.244246	0.588322	-0.909713
7	1	0	2.248386	-1.430062	0.589585

8	1	0	1.541699	-1.598735	-1.097410
9	8	0	2.061630	1.009662	0.793303
10	6	0	-0.900731	0.999741	1.070427
11	1	0	-1.485217	1.919332	1.142196
12	1	0	0.200622	1.202077	1.011221
13	1	0	-1.036332	0.388195	1.969178

MIN-1b

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.814891	0.387658	-0.232287
2	8	0	-2.933365	1.094644	-0.500733
3	8	0	-1.018589	0.026717	-1.431315
4	8	0	0.268103	0.733936	-1.445155
5	6	0	0.306811	1.799161	-2.317803
6	8	0	1.385937	2.363073	-2.388995
7	1	0	-2.130003	-0.598763	0.140736
8	1	0	-1.129958	0.909121	0.447679
9	8	0	-2.590060	2.528168	-0.615367
10	6	0	-0.948210	2.171635	-3.023743
11	1	0	-0.727162	2.984965	-3.717547
12	1	0	-1.691455	2.473251	-2.232729
13	1	0	-1.381823	1.313031	-3.543097

MIN-1c

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.574247	-0.913104	-0.191240
2	8	0	1.786145	0.434079	-0.305703
3	8	0	0.356650	-1.182998	0.548247
4	8	0	-0.795999	-0.996321	-0.345077
5	6	0	-1.489056	0.153762	-0.095320
6	8	0	-2.501188	0.321497	-0.749130
7	1	0	2.328113	-1.405138	0.450953
8	1	0	1.522491	-1.415144	-1.169442
9	8	0	3.116340	0.475747	-0.987989
10	6	0	-0.959633	1.095032	0.950206
11	1	0	-1.640622	1.945103	1.012090
12	1	0	0.054211	1.406335	0.675232
13	1	0	-0.886400	0.589444	1.917329

MIN-1d

Center	Atomic	Atomic	Coord	inates (Angs	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	1.249348	0.397149	-0.127322
2	8	0	2.657117	0.238349	0.223991

3	8	0	0.775246	-0.587622	0.660456
4	8	0	-1.184721	-1.002884	0.035985
5	6	0	-1.930315	0.039147	-0.012703
6	8	0	-1.609273	1.234868	0.084698
7	1	0	1.142156	0.245866	-1.209205
8	1	0	0.974565	1.417352	0.180026
9	8	0	3.375780	-0.445938	-0.673018
10	6	0	-3.430196	-0.304864	-0.203005
11	1	0	-3.884687	0.425377	-0.879242
12	1	0	-3.924432	-0.220793	0.771983
13	1	0	-3.572727	-1.319384	-0.583146

MIN-1e

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.000122	0.306045	0.202006
2	8	0	1.198638	0.911407	0.397842
3	8	0	-1.114791	1.204150	-0.134286
4	8	0	-1.308158	2.034764	1.051893
5	6	0	-0.616229	3.230995	0.929811
6	8	0	-0.521884	3.860767	-0.100229
7	1	0	-0.278633	-0.285974	1.081576
8	1	0	0.013088	-0.285800	-0.729816
9	8	0	1.521276	0.969811	1.851226
10	6	0	0.008523	3.540557	2.252195

13	1	0	-0.675331	3.337476	3.082196
12	1	0	0.826596	2.776188	2.315637
11	1	0	0.370554	4.570596	2.279544

MIN-1f

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.642007	-1.078422	-0.152775
2	8	0	2.750172	-0.884109	0.570710
3	8	0	0.469138	-0.753812	0.729927
4	8	0	-0.756625	-0.939501	-0.095185
5	6	0	-1.552267	0.150782	-0.062930
6	8	0	-2.604183	0.106091	-0.679139
7	1	0	1.521804	-2.117420	-0.479473
8	1	0	1.588840	-0.352717	-0.983066
9	8	0	3.148375	-2.146230	1.248417
10	6	0	-1.091867	1.339545	0.745938
11	1	0	-1.845543	2.123230	0.656011
12	1	0	-0.119541	1.691301	0.391819
13	1	0	-0.950058	1.055123	1.792033

MIN-1g

Center Atomic Atomic Coordinates (Angstroms)

Number	Number	Туре	Х	Y	Z
1	6	0	-0.810136	-2.333546	-2.054104
2	8	0	0.333062	-2.705031	-1.451981
3	8	0	-2.008687	-2.198491	-1.166980
4	8	0	-1.643332	-1.351290	-0.042914
5	6	0	-1.515491	-0.035983	-0.361546
6	8	0	-1.966146	0.504754	-1.349198
7	1	0	-1.195114	-3.145210	-2.694524
8	1	0	-0.691204	-1.385720	-2.589225
9	8	0	1.097656	-1.473318	-1.081395
10	6	0	-0.678424	0.615761	0.710286
11	1	0	-0.769004	1.701772	0.645106
12	1	0	0.344742	0.277822	0.493271
13	1	0	-0.950092	0.259748	1.708373

MIN-1h

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.615607	-1.387080	0.168795
2	8	0	2.724347	-0.739326	0.542795
3	8	0	0.402462	-1.210167	1.026492
4	8	0	-0.162974	0.116899	0.811553
5	6	0	-1.126802	0.142382	-0.127112
6	8	0	-1.564201	-0.801116	-0.754644

7	1	0	1.736573	-2.470673	0.339059
8	1	0	1.320576	-1.139974	-0.857821
9	8	0	2.773695	0.580810	-0.148080
10	6	0	-1.613689	1.573931	-0.276731
11	1	0	-1.683368	1.802040	-1.343292
12	1	0	-0.940062	2.279380	0.211893
13	1	0	-2.615829	1.655249	0.157985

MIN-1i

Center	Atomic	Atomic	Coord	linates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.963010	-0.750778	-0.083265
2	8	0	2.651617	-0.296562	-1.132575
3	8	0	0.581993	-1.263977	-0.331484
4	8	0	-0.238417	-0.139393	-0.760606
5	6	0	-1.149703	0.230062	0.160079
6	8	0	-1.301113	-0.231601	1.271728
7	1	0	1.848873	0.059564	0.653916
8	1	0	2.389100	-1.673118	0.343177
9	8	0	3.161335	-1.451318	-1.923576
10	6	0	-2.007723	1.340572	-0.425973
11	1	0	-3.021832	0.955188	-0.573545
12	1	0	-1.615056	1.701699	-1.378108
13	1	0	-2.059338	2.159998	0.295876

MIN-1j

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.327619	-2.231703	1.165952
2	8	0	0.754531	-3.292260	0.430491
3	8	0	0.358449	-0.991205	0.405516
4	8	0	-0.786853	-0.960043	-0.521717
5	6	0	-1.625132	0.067804	-0.245182
6	8	0	-2.564205	0.246242	-0.998574
7	1	0	1.027012	-1.978132	1.987280
8	1	0	-0.689908	-2.374935	1.570449
9	8	0	0.765511	-4.353696	1.489147
10	6	0	-1.337364	0.921825	0.967443
11	1	0	-2.118904	1.679712	1.035354
12	1	0	-0.353577	1.390608	0.882412
13	1	0	-1.318771	0.309583	1.872868

MIN-1k

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.738089	-0.778737	-0.094178
2	8	0	1.662349	0.530603	0.203657

3	8	0	0.447970	-1.469934	-0.403283
4	8	0	-0.423567	-0.455296	-0.955954
5	6	0	-1.417331	-0.145006	-0.050680
6	8	0	-1.941008	-0.932061	0.700644
7	1	0	2.087045	-1.413385	0.738464
8	1	0	2.374480	-0.867069	-0.989807
9	8	0	0.890673	0.711387	1.457681
10	6	0	-1.773983	1.310102	-0.212050
11	1	0	-2.780393	1.497074	0.169297
12	1	0	-1.681040	1.638286	-1.251697
13	1	0	-1.017215	1.830106	0.391885

MIN-1I

Center Number	Atomic Number	Atomic Type	Coord	dinates (Ang: Y	stroms) Z
		- 7 1 -			
1	6	0	1.738089	-0.778737	-0.094178
2	8	0	1.662349	0.530603	0.203657
3	8	0	0.447970	-1.469934	-0.403283
4	8	0	-0.423567	-0.455296	-0.955954
5	6	0	-1.417331	-0.145006	-0.050680
6	8	0	-1.941008	-0.932061	0.700644
7	1	0	2.087045	-1.413385	0.738464
8	1	0	2.374480	-0.867069	-0.989807
9	8	0	0.890673	0.711387	1.457681
10	6	0	-1.773983	1.310102	-0.212050

_						
	13	1	0	-1.017215	1.830106	0.391885
	12	1	0	-1.681040	1.638286	-1.251697
	11	1	0	-2.780393	1.497074	0.169297

TS-2

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.733188	-0.943000	0.168225
2	8	0	3.295922	-0.905126	0.614313
3	8	0	1.361398	-0.001836	0.972531
4	8	0	-0.794916	-0.751001	-0.305428
5	6	0	-1.790947	0.045679	-0.222290
6	8	0	-2.879336	-0.139252	-0.814787
7	1	0	1.443891	-1.981144	0.377360
8	1	0	1.812466	-0.720263	-0.908619
9	8	0	3.662450	-1.841208	1.420880
10	6	0	-1.614468	1.277006	0.674056
11	1	0	-2.470997	1.948858	0.567432
12	1	0	-0.681191	1.791448	0.429267
13	1	0	-1.526348	0.953585	1.717051

TS-2*

Center Atomic Atomic Coordinates (Angstroms)

Number	Number	Туре	Х	Ү	Ζ
1	6	0	1.539531	-0.935548	-0.232515
2	8	0	2.353381	0.145568	0.042384
3	8	0	0.468005	-0.994021	0.692467
4	8	0	-0.988271	-1.084186	-0.105798
5	6	0	-1.674441	0.065490	-0.035880
6	8	0	-2.761780	0.095859	-0.606363
7	1	0	2.171425	-1.826772	-0.077602
8	1	0	1.140565	-0.888083	-1.255662
9	8	0	1.818865	1.317679	-0.571195
10	6	0	-1.078344	1.223131	0.714917
11	1	0	-1.775072	2.062364	0.660553
12	1	0	-0.095396	1.481061	0.282726
13	1	0	-0.893371	0.943003	1.756433

MIN-3a

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.546563	-0.734064	-0.303429
2	8	0	1.275456	0.580308	0.091233
3	8	0	0.717229	-1.665543	0.334789
4	8	0	-0.643114	-1.424981	-0.206559
5	6	0	-1.121879	-0.068165	0.109862
6	8	0	-2.205050	0.166645	-0.471431

7	1	0	2.562820	-0.953511	0.049287
8	1	0	1.449771	-0.828253	-1.395329
9	8	0	-0.072485	0.875524	-0.455608
10	8	0	-1.046820	0.018750	1.536732
11	6	0	-1.592266	1.223081	2.036328
12	1	0	-1.568600	1.146777	3.129590
13	1	0	-0.998005	2.093735	1.722389
14	1	0	-2.627634	1.361791	1.697915

MIN-3b

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.659021	-0.692222	-0.181884
2	8	0	1.326882	0.178244	0.865638
3	8	0	0.603569	-1.550766	-0.519835
4	8	0	-0.426971	-0.687120	-1.101626
5	6	0	-0.933802	0.232996	0.015912
6	8	0	-1.505182	-0.298420	0.977342
7	1	0	2.458158	-1.337129	0.205820
8	1	0	1.970144	-0.114668	-1.065140
9	8	0	0.311582	1.078671	0.313654
10	8	0	-1.623508	1.183896	-0.810540
11	6	0	-2.959418	1.415080	-0.401467
12	1	0	-3.009755	1.814821	0.619198
13	1	0	-3.365417	2.149536	-1.106410

Hang, et al: "Generation of	singlet oxygen fro	n fragmentation o	of monoactivated 1,	1-dihydroperoxides"
(Experimental procedures	and data)			

14	1	0	-3.560590	0.497749	-0.435460

MIN-3c

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.954908	-0.726550	-0.249784
2	8	0	1.666550	0.630220	-0.015520
3	8	0	0.823486	-1.548132	-0.075776
4	8	0	-0.310078	-0.806569	-0.591503
5	6	0	-0.677133	0.238274	0.462619
6	8	0	-1.443450	-0.084235	1.390031
7	1	0	2.689120	-1.141207	0.462235
8	1	0	2.344989	-0.747134	-1.281745
9	8	0	0.652812	0.640878	1.047356
10	8	0	-1.088698	1.265803	-0.458916
11	6	0	-1.946696	2.223840	0.127631
12	1	0	-2.283490	2.876612	-0.686349
13	1	0	-2.809342	1.748786	0.610250
14	1	0	-1.419840	2.831765	0.880040

MIN-3d

Center	Atomic	Atomic	Coordin	ates (Angst	roms)
Number	Number	Туре	Х	Y	Z

1	6	0	1.498572	-1.121721	-0.046344
2	8	0	1.527438	-0.149082	-0.980698
3	8	0	0.470524	-0.996404	1.003019
4	8	0	-0.823896	-1.096565	0.326398
5	6	0	-1.268937	0.109284	-0.135220
6	8	0	-2.114119	0.121805	-1.009486
7	1	0	2.402294	-1.132422	0.581420
8	1	0	1.307547	-2.079356	-0.553993
9	8	0	2.226203	1.051416	-0.443152
10	8	0	-0.779683	1.143995	0.530602
11	6	0	-0.531703	2.357393	-0.221053
12	1	0	-1.263604	2.456942	-1.027206
13	1	0	-0.642984	3.175748	0.494312
14	1	0	0.507432	2.269999	-0.575592

MIN-3e

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.576651	0.634404	0.357205
2	8	0	-2.485554	-0.334451	0.256274
3	8	0	-0.401051	0.582872	-0.570358
4	8	0	0.431820	-0.554440	-0.194890
5	6	0	1.524438	-0.146705	0.464529
6	8	0	1.833887	0.964243	0.833533

7	1	0	-1.149299	0.635410	1.371803
8	1	0	-1.961345	1.617852	0.041978
9	8	0	-3.342931	-0.078614	-0.934679
10	8	0	2.278240	-1.262721	0.663756
11	6	0	3.487073	-1.040385	1.395785
12	1	0	3.968122	-2.017643	1.462136
13	1	0	4.134833	-0.330395	0.873385
14	1	0	3.271703	-0.653795	2.396439

MIN-3f

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.456993	-0.935924	0.191617
2	8	0	-1.567953	0.356141	-0.243813
3	8	0	-0.231794	-1.130863	0.938920
4	8	0	0.883018	-1.078232	-0.019844
5	6	0	1.321691	0.181580	-0.268611
6	8	0	2.022300	0.382841	-1.239634
7	1	0	-1.501663	-1.649923	-0.644371
8	1	0	-2.203220	-1.203182	0.965225
9	8	0	-2.827435	0.323667	-1.049959
10	8	0	0.997282	1.067108	0.674939
11	6	0	0.924389	2.432522	0.234757
12	1	0	0.832016	3.026154	1.145204
13	1	0	1.823749	2.711990	-0.320117

Hang, et al: "Generation of	f singlet oxygen froi	n fragmentation o	of monoactivated	1,1-dihydroperoxides"
(Experimental procedures	and data)			

14	1	0	0.029611	2.545378	-0.383381

MIN-3g

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.571762	-0.505700	0.485322
2	8	0	-2.513819	0.401597	0.223230
3	8	0	-0.758557	-1.003909	-0.675044
4	8	0	0.279946	-0.044400	-1.053997
5	6	0	1.419132	-0.282008	-0.392838
6	8	0	1.651738	-1.100823	0.470412
7	1	0	-2.039714	-1.476469	0.724169
8	1	0	-0.862572	-0.164627	1.248010
9	8	0	-1.951496	1.763930	0.431026
10	8	0	2.331098	0.597710	-0.885886
11	6	0	3.599289	0.570532	-0.225565
12	1	0	4.201688	1.330336	-0.726473
13	1	0	3.489287	0.812415	0.835558
14	1	0	4.069381	-0.413126	-0.319591

MIN-3h

Center	Atomic	Atomic	Coordin	ates (Angst	roms)
Number	Number	Туре	Х	Y	Z

1	6	0	-1.421332	-0.864462	0.196817
2	8	0	-1.804771	0.415142	0.035493
3	8	0	-0.361259	-1.344908	-0.757246
4	8	0	0.599160	-0.280234	-0.959175
5	6	0	1.295655	-0.009938	0.176942
6	8	0	1.414636	-0.711138	1.155327
7	1	0	-2.229339	-1.553431	-0.098786
8	1	0	-1.044123	-1.046821	1.207588
9	8	0	-0.919489	1.266786	0.887661
10	8	0	1.983913	1.128746	-0.072510
11	6	0	2.255369	1.891897	1.110806
12	1	0	2.875892	1.322041	1.809862
13	1	0	2.787038	2.782561	0.768994
14	1	0	1.301970	2.159459	1.575774

MIN-3i

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.602683	-0.443827	0.392481
2	8	0	1.368718	0.236885	-0.762485
3	8	0	0.427882	-1.181510	0.826195
4	8	0	-0.522248	-0.194783	1.343014
5	6	0	-1.679384	-0.253490	0.659969
6	8	0	-2.032835	-1.042561	-0.181617

7	1	0	1.936743	0.218860	1.206279
8	1	0	2.313801	-1.285924	0.273316
9	8	0	2.688802	0.915867	-0.974037
10	8	0	-2.439940	0.762251	1.147985
11	6	0	-3.726897	0.883004	0.532565
12	1	0	-4.201092	1.735673	1.021151
13	1	0	-3.624878	1.066252	-0.540523
14	1	0	-4.319788	-0.023849	0.685178

MIN-3j

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.577180	0.403678	0.200277
2	8	0	-2.345284	-0.631192	0.636844
3	8	0	-0.297647	0.461500	0.886525
4	8	0	0.578854	-0.612544	0.381074
5	6	0	1.515668	-0.180685	-0.476015
6	8	0	2.364015	-0.944737	-0.895777
7	1	0	-1.988808	1.392352	0.486076
8	1	0	-1.402863	0.375136	-0.888265
9	8	0	-3.606143	-0.366220	-0.129813
10	8	0	1.422156	1.119987	-0.805227
11	6	0	2.399543	1.564977	-1.754651
12	1	0	2.183573	2.622532	-1.911564
13	1	0	3.411226	1.433484	-1.360847

Hang, et al: "Generation of	singlet oxygen from	n fragmentation o	of monoactivated	1,1-dihydroperoxides"
(Experimental procedures	and data)			

14	1	0	2.306170	1.011667	-2.693024

TS-4

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.269297	-0.596152	-0.093764
2	8	0	2.189102	0.126227	0.642310
3	8	0	0.279476	-0.906446	0.868712
4	8	0	-1.173574	-1.321502	0.115609
5	6	0	-1.991774	-0.321550	-0.214546
6	8	0	-2.829704	-0.507981	-1.088043
7	1	0	1.769829	-1.512564	-0.445825
8	1	0	0.859875	-0.000307	-0.920033
9	8	0	1.868532	1.512867	0.639190
10	8	0	-1.942655	0.870995	0.401148
11	6	0	-1.276933	1.125605	1.665305
12	1	0	-0.232151	1.398896	1.494305
13	1	0	-1.842254	1.957863	2.095669
14	1	0	-1.337654	0.252519	2.317033

TS-5

Center	Atomic	Atomic	Coordina	ates (Angst	roms)
Number	Number	Туре	Х	Y	Z

1	6	0	1.954243	-0.551770	-0.372806
2	8	0	1.969954	0.786153	-0.687419
3	8	0	0.853181	-1.279742	-0.886746
4	8	0	-0.256712	-1.522194	0.307806
5	6	0	-1.148074	-0.536324	0.387652
6	8	0	-1.824320	-0.399242	1.397600
7	1	0	2.018542	-0.700425	0.715516
8	1	0	2.817048	-0.993952	-0.901899
9	8	0	1.259340	1.516240	0.328606
10	8	0	-1.281419	0.185963	-0.733173
11	6	0	-1.807914	1.510691	-0.563158
12	1	0	-2.117497	1.832374	-1.560415
13	1	0	-2.661379	1.506703	0.120940
14	1	0	-0.994316	2.139163	-0.187454

Investigations of Reaction Order and Reaction Kinetics

Part I. Fixed monoperester concentration unchanged, variable [TBAF].

Conditions: 0.5mM monoperester 3mL, TBAF 15µL: Rapidly stirred THF solutions (0.5 mM) of dihydroperoxide monoester **1c** in a cuvette were individually treated with a series of THF solutions of TBAF ranging in concentration from 0.5 to 2.00 mM. The reaction solutions were SI_Experimental-23

mixed and the cuvettes then placed in the UV spectrophotometer, with the absorbence at 272 nm monitored for 1.0 minute.

$$V_{0} = k \cdot [\text{Monoperester}]_{0}^{m} \cdot [\text{TBAF}]_{0}^{n}$$

$$-\frac{d[\text{Monoperester}]_{0}}{dt} = k \cdot [\text{Monoperester}]_{0}^{m} \cdot [\text{TBAF}]_{0}^{n}$$
Abs = $\varepsilon \cdot b \cdot [\text{Monoperester}]$

$$-\frac{d(\text{Abs})_{0}}{dt} = k \cdot [\text{Monoperester}]_{0}^{m} \cdot \varepsilon \cdot b \cdot [\text{TBAF}]_{0}^{n}$$
 $K_{1} = k \cdot [\text{Monoperester}]_{0}^{m} \cdot \varepsilon \cdot b$

$$-\frac{d(\text{Abs})_{0}}{dt} = K_{1} \cdot [\text{TBAF}]_{0}^{n}$$

$$\text{Lg}\left(-\frac{d(\text{Abs})_{0}}{dt}\right) = n \cdot \text{Lg}\left([\text{TBAF}]_{0}\right) + \text{Lg}(K_{1})$$

At the initial point, V_0 is the initial rate, $(Abs)_0$ is the initial absorbance, [Monoperester]₀ and [TBAF]₀ are the initial concentration

[TBAF] ₀ /mM	-d(Abs) ₀ /dt	Lg([TBAF] ₀)	Lg(-d(Abs) ₀ /dt)
0.50	0.0302	-0.301	-1.520
0.75	0.0339	-0.125	-1.470
1.00	0.0524	0.000	-1.281
1.25	0.0647	0.097	-1.189
1.50	0.0789	0.176	-1.103
1.75	0.0845	0.243	-1.073
2.00	0.1055	0.301	-0.977

Then plot Lg(-d(Abs)₀/dt) vs Lg([TBAF]₀)

n = 0.9403. This indicates the reaction is a first order reaction to TBAF reactant

 $K_1 = 0.05213 \text{ L} \cdot \text{mmol}^{-1} \cdot \text{s}^{-1}$

Part II. Fixed TBAF concentration unchanged, variable [Monoperester]

Conditions: Monoperester 3mL, TBAF 0.3M $15 \,\mu$ L: The experiment described above was repeated except that the concentration of TBAF was held constant while the concentration of 1c was varied.

$$V_{0} = k \cdot [\text{Monoperester}]_{0}^{m} \cdot [\text{TBAF}]_{0}^{n}$$

$$-\frac{d[\text{Monoperester}]_{0}}{dt} = k \cdot [\text{Monoperester}]_{0}^{m} \cdot [\text{TBAF}]_{0}^{n}$$
Abs = $\varepsilon \cdot b \cdot [\text{Monoperester}]$

$$-\frac{d(\text{Abs})_{0}}{dt} = k \cdot [\text{Monoperester}]_{0}^{m} \cdot \varepsilon \cdot b \cdot [\text{TBAF}]_{0}^{n}$$

$$K_{2} = k \cdot [\text{TBAF}]_{0}^{n} \cdot \varepsilon \cdot b$$

$$-\frac{d(\text{Abs})_{0}}{dt} = K_{2} \cdot [\text{Monoperester}]_{0}^{m}$$

$$\text{Lg}\left(-\frac{d(\text{Abs})_{0}}{dt}\right) = m \cdot \text{Lg}\left([\text{Monoperester}]_{0}^{n}\right) + \text{Lg}(K_{2})$$

At the initial point, V_0 is the initial rate, $(Abs)_0$ is the initial absorbance, [Monoperester]₀ and [TBAF]₀ are the initial concentration

[Monoperester] ₀ /mM	-d(Abs) ₀ /dt	Lg([Monoperester] ₀)	Lg(-d(Abs) ₀ /dt)
0.3	0.0352	-0.523	-1.453
0.4	0.0551	-0.398	-1.259
0.5	0.0695	-0.301	-1.158
0.6	0.0824	-0.222	-1.084
0.7	0.111	-0.155	-0.955
0.8	0.113	-0.097	-0.947
0.9	0.133	-0.046	-0.876

Hang, et al: "Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides" (Experimental procedures and data)

m = 1.1862. This indicates the reaction is a first order reaction to Peroxide reactant

 $K_2 = 0.1551 \text{ L} \cdot \text{mmol-1} \cdot \text{s-1}$

Part III. Calculation of apparent rate constant.

Abs = $\varepsilon \cdot b \cdot [Monoperester]$

[Monoperester]/mM	Abs
0.3	0.323
0.4	0.405
0.5	0.511
0.6	0.612
0.7	0.732
0.8	0.827
0.9	0.927
1.0	1.036

Hang, et al: "Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides" (Experimental procedures and data)

 $\varepsilon \cdot b = 1.0332 \text{ L} \cdot \text{mmol}^{-1}$

With Part I result:

 $K_1 = 0.05213 \text{ L} \cdot \text{mmol}^{-1} \cdot \text{s}^{-1}$, [Monoperester]₀ = 0.5 mmol $\cdot \text{L}^{-1}$

 $K_1 = k \cdot [\text{Monoperester}]_0 \cdot \varepsilon \cdot b$

 $k = 0.101 \text{ L} \cdot \text{mmol}^{-1} \cdot \text{s}^{-1}$

With Part II result

 $K_2 = 0.1551 \text{ L} \cdot \text{mmol}^{-1} \cdot \text{s}^{-1}$, [TBAF]₀ = 1.5 mmol $\cdot \text{L}^{-1}$

 $K_2 = k \cdot [\text{TBAF}]_0 \cdot \varepsilon \cdot b$

 $k = 0.100 \text{ L} \cdot \text{mmol}^{-1} \cdot \text{s}^{-1}$

Therefore the reaction constant k is 0.101 L \cdot mmol⁻¹ \cdot s⁻¹

Thermal stability of 1a and 1d

Hang, et al: "Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides" (Experimental procedures and data)

References

- 1) Smith L.; Hill F. L.; J. Chrom. A 1972, 66, 101
- 2) Goldstein, E.; Beno, B.; Houk, K. N. J. Am. Chem. Soc. 1996, 118, 6036.
- 3) Foote, C. S.; Clennan, E. L. In Active Oxygen in Chemistry; Foote, C. S., Valentine, J. S.,

Greenberg, A., Liebman, J. F., Eds.; Blackie: London, 1995.

Supporting information (NMR spectra)

Generation of singlet oxygen from fragmentation of monoactivated 1,1-" dihydroperoxides

Jiliang Hang, Prasanta Ghorai, Solaire A. Finkenstaedt-Quinn, Ilhan Findik, Emily Sliz,Keith T. Kuwata, Patrick H. Dussault*

pdussault1@unl.edu

• •

Contents	Page
(7a) 1,1-Dihydroperoxy-3- <i>tert</i> -butylcyclopentane (¹ H)	3
(7a) 1,1-Dihydroperoxy-3- <i>tert</i> -butylcyclopentane (¹³ C)	4
(2b) Acetyldioxy-1-hydroperoxycycloheptane (¹ H)	5
(2b) Acetyldioxy-1-hydroperoxycycloheptane (¹³ C)	6
(3b) 1-Acetyldioxy-1-hydroperoxycyclooctane (¹ H)	7
(3b) 1-Acetyldioxy-1-hydroperoxycyclooctane (¹³ C)	8
(4b) 4-Phenyl-1-acetyldioxy-1-hydroperoxybutane (¹ H)	9
(4b) 4-Phenyl-1-acetyldioxy-1-hydroperoxybutane (¹³ C):	10
(6b) 5-Acetyldioxy-5-hydroperoxynonane (¹ H)	11
(6b) 5-Acetyldioxy-5-hydroperoxynonane (¹³ C)	12
(7b) 1-Acetyldioxy-1-hydroperoxy-3- <i>tert</i> -butylcyclopentane (¹ H)	13
(7b) 1-Acetyldioxy-1-hydroperoxy-3- <i>tert</i> -butylcyclopentane (¹³ C)	14
(8b) 1-Acetyldioxy-1-hydroperoxycyclododecane (¹ H)	15
(8b) 1-Acetyldioxy-1-hydroperoxycyclododecane (¹³ C)	16
(9a) 1-Acetyldioxy-1-triethylsilyldioxy-4- <i>tert</i> -butylcyclohexane (¹ H)	17
(9a) 1-Acetyldioxy-1-triethylsilyldioxy-4- <i>tert</i> -butylcyclohexane (¹³ C)	18
(9b) 1-Acetyldioxy-1- <i>tert</i> -butyldimethylsilyldioxy-4- <i>tert</i> -butylcyclohexane (¹ H)	19
(9b) 1-Acetyldioxy-1- <i>tert</i> -butyldimethylsilyldioxy-4- <i>tert</i> -butylcyclohexane (¹³ C)	20

(10) 1-Acetyldioxy-1-triethylsilyldioxycycloheptane (¹ H)	21
(10) 1-Acetyldioxy-1-triethylsilyldioxycycloheptane (¹³ C)	22
(11) 1-Acetyldioxy-1-triethylsilyldioxycyclooctane (¹ H)	23
(11) 1-Acetyldioxy-1-triethylsilyldioxycyclooctane (¹³ C)	24
(12) 4-Phenyl-1-acetyldioxy-1-triethylsilyldioxybutane (¹ H)	25
(12) 4-Phenyl-1-acetyldioxy-1-triethylsilyldioxybutane (¹³ C)	26
(13) 1-Acetyldioxy-1-triethylsilyldioxynonane (¹ H)	27
(13) 1-Acetyldioxy-1-triethylsilyldioxynonane (¹³ C)	28
(14) 1-Acetyldioxy-1-triethylsilyldioxycyclododecane (¹ H)	29
(14) 1-Acetyldioxy-1-triethylsilyldioxycyclododecane (¹³ C)	30
(16) 1,1-Diacetyldioxy-4- <i>tert</i> -butylcyclohexane (¹ H)	31
(16) 1,1-Diacetyldioxy-4- <i>tert</i> -butylcyclohexane (¹³ C)	32

. .

SI_Spectra-5 ...

••

•••

••

SI_Spectra-6 ..

•

SI_Spectra-12.

.

SI_Spectra-16.

••

•

•

SI_Spectra-17.

SI_Spectra-18.

••

•

•

SI_Spectra-19.

•

SI_Spectra-20.

•

SI_Spectra-21.

SI_Spectra-22.

.

SI_Spectra-25.

•

.

SI_Spectra-26.

SI_Spectra-28.

.

SI_Spectra-29.

••

•

SI_Spectra-30.

••

•

•

SI_Spectra-31.

•