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Fine-tuning Interaction between Aminoacyl-tRNA Synthetase and
tRNA for Efficient Synthesis of Proteins Containing Unnatural Amino
Acids
Nanxi Wang, Tong Ju, Wei Niu, and Jiantao Guo*

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States

*S Supporting Information

ABSTRACT: By using a directed evolution approach, we
have identified aminoacyl-tRNA synthetase variants with
significantly enhanced activity for the incorporation of
unnatural amino acids into proteins in response to the
amber nonsense codon in bacteria. We demonstrated that the
optimization of anticodon recognition of tRNA by aminoacyl-
tRNA synthetase led to improved incorporation efficiency that
is unnatural amino acid-specific. The findings will facilitate the
creation of an optimized system for the genetic incorporation
of unnatural amino acids in bacteria.

KEYWORDS: genetic code expansion, anticodon recognition, unnatural amino acid, aminoacyl-tRNA synthetase engineering,
amber suppression

Orthogonal tRNA-aminoacyl-tRNA synthetase pairs are
widely used for the site-specific incorporation of nearly

80 unnatural amino acids (unAAs) in Escherichia coli,
Saccharomyces cerevisiae, plant, and mammalian cells in response
to unique nonsense (e.g., amber)1,2 and frameshift (e.g.,
quadruplet)3−5 codons. This methodology enables site-specific
introductions of unique chemical or physical probes into
proteins, which could facilitate the study of protein structure
and function as well as the investigation of biological
processes.1,6−8 Recently, nonsense codon suppression-mediated
regulation of biological events were also explored in synthetic
biology applications.9−11 Although unAAs are typically
incorporated into proteins in response to nonsense codon
with good efficiency and excellent fidelity, further system
optimization to increase the incorporation efficiency is still
highly desirable. This is because inefficient incorporation not
only results in a low yield of the desired unAA-containing
protein but also leads to an increased accumulation of truncated
protein products that may negatively affect the fitness of host
cells.
An engineered Methanocaldococcus jannaschii amber suppres-

sor tyrosyl-tRNA (MjtRNACUA
Tyr ) and tyrosyl-tRNA-synthetase

(MjTyrRS) pair is the most extensively used system for the
evolution of aminoacyl-tRNA synthetase (aaRS) variants that
incorporate unAAs with aromatic functional groups in E. coli. In
a previous effort, optimization of the interaction between
MjtRNACUA

Tyr and the E. coli native translational machinery, such
as EF-Tu,12 was explored in order to improve the incorporation
efficiency. Here, we report an approach that focuses on fine-
tuning anticodon recognition of MjtRNACUA

Tyr by MjTyrRS
variants, which led to additional improvement in unAA
incorporation efficiency beyond the EF-Tu strategy. The

observed improvement likely resulted from more efficient
aminoacylation of MjtRNACUA

Tyr by the evolved MjTyrRS
mutants.
The evolved MjTyrRS variant catalyzes the aminoacylation

reaction of MjtRNACUA
Tyr with a tyrosine analogue (an unAA) at

the expense of an ATP. The catalytic efficiency of this reaction,
which contributes to the overall efficiency of unAA
incorporation, is dictated by the substrates (MjtRNACUA

Tyr and
unAA) recognition of the enzyme. Previous work successfully
altered the specificity of MjTyrRS toward unAAs by focusing
on changing the enzyme’s amino acid recognition pocket.
While the anticodon of the tRNA was changed from GUA
(Figure 1) into CUA (MjtRNAGUA

Tyr to MjtRNACUA
Tyr ) to enable

amber suppression with unAA, the substrate promiscuity of the
MjTyrRS allowed reasonable recognition of MjtRNACUA

Tyr

without adjusting the tRNA recognition elements of MjTyrRS
to such change. In light of the crystal structure of MjtRNAGUA

Tyr -
MjTyrRS complex,13 the anticodon region of MjtRNAGUA

Tyr is a
major recognition element of MjTyrRS (Figure 1). Therefore,
the G34C change in the tRNA would render the interaction
between MjTyrRS and the resulting MjtRNACUA

Tyr less optimal.
Previous rational design work showed that a single mutation in
the anticodon recognition pocket of MjTyrRS improved the
aminoacylation rate13 and the amber suppression efficiency.14

However, no systematic effort was devoted to study or to
optimize the recognition of the mutated MjtRNACUA

Tyr by
MjTyrRS. In this work, we report a systematic effort to improve
the unAA incorporation efficiency through fine-tuning the
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recognition of the mutated MjtRNACUA
Tyr by MjTyrRS variants.

We used a directed evolution approach to identify MjTyrRS
mutants that led to significantly higher amber suppression
efficiency than both the parent MjTyrRS variants and the
reported MjTyrRS mutant.13,14 While other beneficial factors
may be picked up as well in our cell growth-based selection
process, the major contributor to the observed improvement is
likely due to better recognition of MjtRNACUA

Tyr by MjTyrRS
mutants. Our results also showed that the mutations for each
unAA-specific MjTyrRS variant are different, which further
strikes the notion that the catalytic efficiency of MjTyrRS is
determined by recognitions of both substrates, the tRNA and
the amino acid. We finally demonstrated that the MjTyrRS
mutants obtained in this study, when paired with a previously
evolved MjtRNACUA

Tyr (MjtRNACUA
Tyr -Nap1) that has optimized

interaction with E. coli EF-Tu,12 further improved amber
suppression efficiency.
Examining the X-ray crystal structure of the MjtRNAGUA

Tyr -
MjTyrRS complex13 reveals that the anticodon of MjtRNAGUA

Tyr

is recognized by the C-terminal domain of MjTyrRS (Figure 1).
Residues Phe261 and His283 engage in stacking interaction
with the base of G34 in MjtRNAGUA

Tyr . Residue Asp286 forms
two hydrogen bonds with N1 and N2 of G34. Asp286 is well
conserved among the archaeal and eukaryotic TyrRSs. It was
reported that mutation of Asp286 into alanine led to a 10-fold
reduction of the aminoacylation rate of MjtRNAGUA

Tyr by
MjTyrRS.15 On the other hand, the Asp286Arg mutation
resulted in a more efficient aminoacylation of MjtRNACUA

Tyr (an
amber suppressor tRNA with G34C mutation).13,14 In addition
to Phe261, His283, and Asp286, residue Met285 is in the close
proximity to G34 and may provide additional interaction to
fine-tune the anticodon recognition by MjTyrRS. We envisaged
that a directed evolution approach involving mutagenesis of
above residues within the anticodon recognition pocket of
MjTyrRS could optimize the interaction between MjTyrRS and
MjtRNACUA

Tyr , and therefore improve the overall efficiency of
unAA incorporation in response to amber nonsense codon.
To test the hypothesis, we first examined an MjTyrRS

variant, AcPheRS (referred as AcPheRS-wt hereafter),16 that
was evolved previously for the incorporation of p-acetyl-L-
phenylalanine (AcPhe, Figure 2A) in response to amber
nonsense codon. We created an AcPheRS library in which
residues Phe261, His283, Met285, and Asp286 were completely
randomized. Overlapping polymerase chain reaction (PCR)
was performed with synthetic oligonucleotide primers in which
the randomized residues were encoded as NNK (N = A, C, T,
or G; K = T or G) to generate a library with a theoretical

diversity of 1.05 × 106. The quality of the library (>99%
coverage) was validated by DNA sequencing. The resulting
AcPheRS library was subjected to a positive selection to identify
functional AcPheRS variants followed by a negative selection to
remove AcPheRS variants that could charge MjtRNACUA

Tyr with
natural amino acid as previously described.16 Briefly, the
positive selection is based on resistance to chloramphenicol
(Cm), which is conferred by the suppression of an amber
mutation at a permissive site (Asp112) in the chloramphenicol
acetyltransferase-encoding gene in the presence of MjtRNACUA

Tyr ,
AcPhe, and functional AcPheRS mutants. The negative
selection uses the toxic barnase gene with amber mutations at
permissive sites (Gln2TAG and Asp44TAG) and was carried
out in the absence of AcPhe. The surviving AcPheRS variants
from two positive and one negative rounds of selection were
subsequently screened for chloramphenicol resistance level in
the presence and absence of AcPhe. A few clones that survived
on 150 μg/mL chloramphenicol in the presence of AcPhe and
did not grow on 75 μg/mL chloramphenicol in the absence of
AcPhe were identified. Among these clones, AcPheRS-8G and
AcPheRS-12B displayed the fastest growth rate in the presence
of chloramphenicol and the brightest GFP fluorescence (The
selection plasmid, pREP,17 contains a T7 RNA polymerase
gene with amber mutation at permissive site. The synthesis of
full-length T7 RNA polymerase with amber suppression drives
the expression of a green fluorescent protein). Another clone,
AcPheRS-2B, showed higher amber suppression efficiency than
that of AcPheRS-wt, but the efficiency is lower than that of
AcPheRS-8G and AcPheRS-12B. We next examined the relative
protein expression level of AcPheRS-wt and AcPheRS-8G
(Supporting Information Figure S3) by Western blot. We did
not detect any notable difference between the two, suggesting
that the observed improvement in AcPhe incorporation was not
a result of higher expression level of the evolved AcPheRS-8G

Figure 1. Recognition of G34 of MjtRNAGUA
Tyr by MjTyrRS (PDB,

1J1U).

Figure 2. Evolution of anticodon recognition region of AcPheRS. (A)
The structure of p-acetyl-L-phenylalanine (AcPhe). (B) Mutations in
the anticodon recognition region of the evolved AcPheRS variants.
(C) GFP fluorescence assays of cells expressing AcPheRS variants.
Fluorescence readings of E. coli GeneHogs cells expressing wild type
(AcPheRS-wt) or the evolved mutants, each coexpressed with
MjtRNACUA

Tyr , in the presence (blue column) or the absence (red
column) of 1 mM AcPhe. Fluorescence intensity was normalized to
cell growth. Each data point is the average of duplicate measurements
with standard deviation.
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mutant. We also conducted cell growth experiments and
observed similar growth rates of strains harboring different
AcPheRS variants (Supporting Information Figure S4A). It is
therefore unlikely that the observed improvement was due to
lower toxicity of the evolved AcPheRS mutants.
DNA sequencing results revealed mutation convergence at

positions Phe261 and Asp286 of all three hits (Figure 2B). The
Asp286 residue was mutated into neutral residues (Asn, Gln,
and Leu) that have similar side chain size to that of the Asp
residue in AcPheRS-wt. Residue Phe261 in all three hits was
mutated into nonaromatic amino acids, which apparently
reduce the stacking interaction between the synthetase and
the pyrimidine base of C34 in MjtRNACUA

Tyr . This observation
indicates that the favorable stacking interaction in MjTyrRS-
MjtRNAGUA

Tyr may not be essential for AcPheRS-MjtRNACUA
Tyr

when the G34C mutation leads to the replacement of a purine
base with a pyrimidine base in MjtRNACUA

Tyr . In addition to
mutations at positions Phe261 and Asp286, Met285 was
mutated to smaller amino acids (Figure 2B), which is
inconsistent with the notion that cytosine is a smaller base
than guanine and a larger amino acid may be needed to restore
the lost interaction.13,18 The possible explanation is that the
amino acid residue at position 285 does not directly interact
with the nucleotide but rather affect anticodon recognition
through fine-tuning the local conformation of the anticodon
recognition region of AcPheRS.
To determine the efficiency and the fidelity of AcPhe

incorporation into proteins in E. coli, an amber mutation
(TAG) was introduced at position Asp149 in a C-terminal His-
tagged GFP variant (GFP149TAG). Protein expression experi-
ments using the two most promising hits (AcPheRS-8G and
AcPheRS-12B) as well as two controls (AcPheRS-wt and
AcPheRS-D286R) were carried out in LB medium supple-
mented with and without 1 mM AcPhe. Fluorescence analysis
of E. coli cultures showed that significant amount of full-length
GFP protein was produced only in the presence of AcPhe for
the two evolved AcPheRS variants (Figure 2C). This result
indicates that the evolved AcPheRS mutants are not cross-
active with any endogenous amino acids in E. coli. The
incorporation fidelity of the evolved AcPheRS mutants is
comparable to that of the AcPheRS-wt. Fluorescence intensities
of GFP also showed that the evolved AcPheRS-8G and
AcPheRS-12B mutants had significantly higher amber suppres-
sion efficiency (Figure 2C) than that of AcPheRS-wt and
AcPheRS-D286R, an AcPheRS variant with the previously
reported beneficial mutation (Asp286Arg).13,14 Comparing to
the rational designed AcPheRS-D286R mutant, better recog-
nition of MjtRNACUA

Tyr by AcPheRS-8G and AcPheRS-12B was
likely achieved by exploiting a much larger conformational
space using the directed evolution approach. Between the two
best hits, AcPheRS-8G displayed better reproducibility and
lower background in AcPhe incorporation (Figure 2C). We,
therefore, focused on the AcPheRS-8G hit in following studies.
We next investigated if the beneficial mutations in the

evolved AcPheRS-8G could be functionally transferred to other
unAA-specific MjTyrRS variants to achieve general improve-
ments in the incorporation efficiency. We reasoned that the
beneficial mutations within the anticodon recognition region
are away from the amino acid-binding pocket of MjTyrRS
variants and might not affect the unAA recognition by
MjTyrRSs. To this end, we focused on two other MjTyrRS
variants, BpaRS19 and sTyrRS,20 which were evolved previously
to recognize p-benzoyl-L-phenylalanine (Bpa, Figure 3A) and

sulfotyrosine (sTyr, Figure 4A), respectively. The Bpa is a
useful cross-linking amino acid for the study of protein−protein

interactions. The sTyr, which is a product of post-translational
modification,21 is found in many secreted and membrane-
bound proteins. The direct and more efficient incorporation of
sTyr into proteins is useful for the investigation of its biological
functions.22 Side chain structures of these two unAAs are
significantly different from that of AcPhe. We constructed

Figure 3. Evolution of anticodon recognition region of BpaRS. (A)
The structure of p-benzoyl-L-phenylalanine (Bpa). (B) Mutations in
the anticodon recognition region of the evolved BpaRS mutants. (C)
GFP fluorescence assays of cells expressing BpaRS variants.
Fluorescence readings of E. coli GeneHogs cells expressing wild type
(BpaRS-wt) or the evolved mutants, each coexpressed with
MjtRNACUA

Tyr , in the presence (blue column) or the absence (red
column) of 1 mM Bpa. Fluorescence intensity was normalized to cell
growth. Each data point is the average of duplicate measurements with
standard deviation.

Figure 4. Evolution of anticodon recognition region of sTyrRS. (A)
The structure of sulfotyrosine (sTyr). (B) Mutations in the anticodon
recognition region of evolved sTyrRS mutants. (C) GFP fluorescence
assays of cells expressing sTyrRS variants. Fluorescence readings of E.
coli GeneHogs cells expressing wild type (sTyrRS-wt) or the evolved
mutants, each coexpressed with MjtRNACUA

Tyr , in the presence (blue
column) or the absence (red column) of 1 mM sTyr. Fluorescence
intensity was normalized to cell growth. Each data point is the average
of duplicate measurements with standard deviation.
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BpaRS-8G and sTyrRS-8G, each of which contained beneficial
mutations (Phe261Gly, His283Leu, Met285Val, and
Asp286Gln) from AcPheRS-8G. Based on the expression of
GFP149TAG (Supporting Information Figure S1), no expected
improvements were observed. Two possible explanations could
be proposed from the above result: (1) the observed
improvement of unAA incorporation via the optimization of
anticodon recognition by MjTyrRS is an isolated case for
AcPheRS, and (2) the anticodon and unAA recognition by
MjTyrRS are mutually dependent.
To investigate above possibilities, we examined if BpaRS and

sTyrRS variants with improved incorporation efficiency can be
obtained through the evolution of anticodon recognition
pocket. Using the same approach in AcPheRS evolution, we
created a BpaRS library and a sTyrRS library, where residues
Phe261, His283, Met285, and Asp286 were randomized in each
library. After consecutive rounds of positive and negative
selections, three BpaRS hits (BpaRS-8E, BpaRS-11D, and
BpaRS-11H) and two sTyrRS hits (sTyrRS-2A and sTyrRS-
5A) were identified to display higher amber suppression
efficiency over their parents (Figures 3 and 4). Among these,
BpaRS-8E and sTyrRS-5A are the best ones for the
incorporation of Bpa and sTyr, respectively. It is worth of
noticing that the degree of chloramphenicol resistance (amber
suppression at position 112 of chloramphenicol acetyl trans-
ferase) does not correlate very well with the intensity of GFP
fluorescence (amber suppression at position 149 of GFP).
While cells containing BpaRS hits can survive much higher
concentrations of chloramphenicol (>250 μg/mL) than sTyrRS
hits (75 μg/mL), greater fluorescence intensities were observed
for sTyrRS hits (∼6000−8000 au/OD600 nm; Figure 4C)
relative to those of the BpaRS hits (∼1200−1600 au/
OD600 nm; Figure 3C). In addition, the fold improvement of
sTyrRS hits over the sTyrRS-wt is apparently greater when the
chloramphenicol resistance level was used to evaluate the
improvement. The observation may be due to the structure/
function changes of reporter proteins caused by the

incorporation of a given unAA with unique physical and
chemical properties. Nevertheless, the general trend of
improvement is obvious regardless which data set is used for
evaluation.
As shown in Figure 3B, BpaRS-11D and BpaRS-11H have

converged protein sequence, which is different from that of
BpaRS-8E. The two sTyrRS hits, sTyrRS-2A and sTyrRS-5A,
have different sequences (Figures 4B). None of the BpaRS and
sTyrRS hits has the same mutation combinations as the
AcPheRS hits. The most significant difference was observed at
position 286 of BpaRS hits. While all the AcPheRS and sTyrRS
hits contain a neutral amino acid residue at position 286, the
BpaRS hits either retained a negatively charged Asp residue or
changed into a positively charged Arg residue. On the other
hand, all the evolved BpaRS, sTyrRS, and AcPheRS variants
have mutations at either positions 261 or 283 or both, which
apparently led to reduced stacking interactions with the C34 of
MjtRNACUA

Tyr . In addition, the Met285 residues in all evolved
mutants were mutated into amino acids with shorter side
chains. These analyses implicate that MjTyrRS variants (i.e.,
AcPheRS, BpaRS, and sTyrRS) interact with the anticodon of
MjtRNACUA

Tyr in a similar fashion but with subtle differences. The
aminoacylation of MjtRNACUA

Tyr by MjTyrRS is likely collabo-
ratively affected by both MjTyrRS-unAA and MjTyrRS-
anticodon interactions, which leads to unAA-specific beneficial
mutations in the anticodon recognition region of different
MjTyrRS variants.
To further investigate above conclusion, we examined the

substrate specificity of the evolved AcPheRS-8G toward
different unAAs. We found that the AcPheRS-8G showed
significantly improved recognition toward p-azido-L-phenyl-
alanine (AzPhe),23 a close analogue of AcPhe (Supporting
Information Figure S2). The results further confirm the theory
that the MjTyrRS-anticodon interaction and the MjTyrRS-
unAA interaction mutually affect each other.
In order to further improve unAA incorporation efficiency,

we next examined if a previously reported MjtRNACUA
Tyr variant

Figure 5. GFP expression with AcPheRS and MjtRNACUA
Tyr variants. (A) GFP fluorescence assays of AcPhe incorporation by using different

combinations of AcPheRS and MjtRNACUA
Tyr variants. Fluorescence intensity was normalized to cell growth; (B) GFP expression yield and SDS-

PAGE analysis.
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(MjtRNACUA
Tyr -Nap1)12 with beneficial T-stem mutations can be

efficiently recognized by the evolved MjTyrRS variants from
the present work. The T-stem mutations in MjtRNACUA

Tyr -Nap1
(the “general” hit that gave the best overall yield improvements
with all unAAs tested)12 was predicted to increase its binding
energy with EF-Tu, which compensates for weaker binding of
unAA in the EF-Tu binding pocket. Since the T-stem of
MjtRNACUA

Tyr -Nap1 does not interact with MjTyrRS, we
envisaged that MjtRNACUA

Tyr -Nap1 could still be recognized by
the evolved MjTyrRS variants. To test this hypothesis, amber
suppression efficiency was examined using GFP-149TAG. As
shown in Figure 5A, both AcPheRS-8G and AcPheRS-12B
worked very well with MjtRNACUA

Tyr -Nap1 and resulted in
significantly improved amber suppression efficiency relative to
that when MjtRNACUA

Tyr was used. We also verified the
fluorescence readings by conducting large-scale protein
expression, partial purification, and SDS-PAGE analysis (Figure
5B).
In conclusion, by using a directed evolution approach, we

were able to identify MjTyrRS variants with significantly
enhanced efficiency for the incorporation of unAA into proteins
in response to amber nonsense codon. We also found that the
optimal efficiencies of MjTyrRS variants-MjtRNACUA

Tyr pairs are
unAA-specific. In addition, the apparent improvement in
anticodon recognition (or other unknown beneficial factors
picked up during the selection) can be combined with previous
improvement in tRNA-EF-Tu interaction to achieve further
increase in unAA incorporation efficiency. Therefore, the
evolved MjTyrRS variants from this work will facilitate the
creation of an optimized and standardized system for the
genetic incorporation of unAA into proteins in E. coli. The
same strategy should be generally applicable to the evolution of
other orthogonal tRNA−aaRS pairs for highly efficient unAA
incorporations in living cells.

■ METHODS
Materials and General Methods. Bpa and AzPhe were

purchased from Bachem. The synthesis of AcPhe16 and sTyr24

followed previously reported procedures. Restriction enzymes,
antarctic phosphatase (AP), and T4 DNA ligase were
purchased from New England Biolabs. KOD hot start DNA
polymerase was purchased from EMD Millipore. Primers were
ordered from Eurofins MWG Operon. Standard molecular
biology techniques were used throughout.25 Site-directed
mutagenesis was carried out using either overlapping PCR or
the QuikChange II site-directed mutagenesis kit by following
the manufacturer’s protocol. E. coli DH5α and GeneHogs were
used for routine cloning and DNA propagation. All solutions
were prepared in deionized water further treated by Barnstead
Nanopure ultrapure water purification system. Antibiotics were
added where appropriate to following final concentrations:
ampicillin, 100 μg/mL; kanamycin, 50 μg/mL; tetracycline,
12.5 μg/mL, and chloramphenicol (varied from 34 to 250 μg/
mL).
Library Construction. Mutants of MjTyrRS were

obtained26 by overlapping PCR using AcPheRS,16 BpaRS,19

or sTyrRS20 as template. Digestion of PCR products with NdeI
and PstI followed by ligation between NdeI and PstI sites of
pBK vector27 resulted in MjTyrRS libraries. Primers that were
used for library construction are listed in the Supporting
Information.
Positive Selection. Library DNAs were transformed into

GeneHogs electrocompetent cells containing plasmid pREP27

that harbors MjtRNACUA
Tyr and a chloramphenicol acetyltransfer-

ase-encoding gene with an amber mutation at position Asp112.
Transformants were cultivated in LB media containing
kanamycin and tetracycline. After 12 h of cultivation, cells
were harvested. Based on calculation, a certain number of cells
(>4.6× the size of the library) were plated on LB agar
containing kanamycin (to maintain the pBK-MjTyrRS
plasmid), tetracycline (to maintain the pREP plasmid), 1 mM
unAA (e.g., AcPhe), and chloramphenicol (varied from 50 to
250 μg/mL). The selection plates were incubated at 37 °C for
24 h. Survived cells were pooled and the pBK-MjTyrRS
plasmids were isolated.

Negative Selection Assay. E. coli GeneHogs was
cotransformed with plasmids pNEG27 (containing MjtRNACUA

Tyr

and a barnase-encoding gene with two amber mutations at
permissive sites, Gln2 and Asp44) and pBK-MjTyrRS plasmids
isolated from the positive selection. Transformants were plated
on LB agar containing ampicillin (to maintain the pNEG
plasmid), kanamycin, and 0.2% L-arabinose (to activate the
transcription of mutant barnase gene). The selection plates
were incubated at 37 °C for 12 h. Survived cells were then
pooled and the pBK-MjTyrRS plasmids were isolated.

Hit Verification. Selected numbers of single colonies from
the last round of positive selection were screened by replication
onto plates with varied concentrations of chloramphenicol (34,
50, 75, 100, 150, or 250 μg/mL) in the presence and the
absence of the appropriate unAA. Only the ones that grew in
the presence of unAA and did not grow in the absence of unAA
were selected for further evaluation.

Fluorescence Analysis of Bacterial Culture. E. coli
GeneHogs strain harboring plasmids pBK-MjTyrRS variant and
pLei-GFP-N149TAG12 was cultured in 5 mL LB media
containing kanamycin and chloramphenicol at 37 °C. The
protein expression was induced at the OD600 nm of 0.6 by
additions of IPTG (0.1 mM) and appropriate unAA (1 mM).
Following cultivation at 37 °C for an additional 16 h, 1 mL of
cell culture were collected, washed, resuspended in 1 mL of
potassium phosphate buffer (50 mM, pH 7.4). The processed
cell suspensions were directly used for fluorescence and cell
density measurements using a Synergy H1 Hybrid plate reader
(BioTek Instruments). The fluorescence of GFP (GFPUV) was
monitored at λEx = 390 nm and λEm = 510 nm. The cell density
was estimated by measuring the absorbance at 600 nm. Values
of fluorescence intensity were normalized to cell growth.
Reported data are the average of two or more measurements
with standard deviations.

Protein Expression and Purification. Similar cell
cultivation procedure for fluorescence analysis was applied to
preparing 25 mL of E. coli culture for protein purification. Cells
were collected by centrifugation at 5000g and 4 °C for 15 min.
Harvested cells were resuspended in lysis buffer containing
potassium phosphate (20 mM, pH 7.4), NaCl (300 mM), and
imidazole (10 mM). Cells were subsequently disrupted by
sonication. Cellular debris was removed by centrifugation (21
000g, 30 min, 4 °C). The cell-free lysate was applied to Ni
Sepharose 6 Fast Flow resin (GE Healthcare). Protein
purification followed manufacture’s instructions. Protein
concentrations were determined by Bradford assay (Bio-Rad).
Purified proteins were analyzed by SDS-PAGE.
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I. Primers  

 

1. For library construction. 

 

pBK-TyrRS-Nde1-F1 
TTGAGGAATCCCATATGGACGA 
 
TyrRS-Lib1-R1 
CAATTCCTTATTTTTAAATAA 
 
TyrRS-Lib1-F2 
TTATTTAAAAATAAGGAATTGNNKCCANNKNNKTTAAAAAATGCTGTAGCTGAAG 
 
TyrRS-Lib1-R2 
GCGAACGCCTTATCCGGCCTG 
 
TyrRS-F261-R 
TTTTTCTGGCCTTTTTATGGT 
 
TyrRS-F261-F 
ACCATAAAAAGGCCAGAAAAANNKGGTGGAGATTTGACAGTTAATA 
 
pBK-wtAcF-D286R-F2 
AAAAATAAGGAATTGCATCCAATGCGCTTAAAAAATGCTG 

 

 

2. For mutation transfer 

 

TTGAGGAATCCCATATGGACGA 

CTCCATCCCTCCAACAGC 

GCTGTTGGAGGGATGGAG 

GCGAACGCCTTATCCGGCCTG 
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Figure S1. GFP fluorescence assays of cells expressing BpaRS and sTyrRS variants that 

contain anticodon recognition region mutations from AcPheRS-8G.   

(A) The structures of p-benzoyl-L-phenylalanine (Bpa) and sulfotyrosine (sTyr); (B) 

Fluorescence readings of E. coli GeneHogs cells expressing BpaRS and sTyrRS variants, each 

co-expressed with MjtRNA
CUA

Tyr , in the presence of 1 mM Bpa and 10 mM sTyr, respectively.  

Fluorescence intensity was normalized to cell growth. 
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Figure S2. GFP fluorescence assays of AzPhe incorporation by AcPheRS-wt and AcPheRS-

8G.  Fluorescence readings of E. coli GeneHogs cells expressing AcPheRS-wt and AcPheRS-

8G, each co-expressed with MjtRNA
CUA

Tyr , in the presence or the absence of 1 mM AzPhe.  

Fluorescence intensity was normalized to cell growth. 
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Figure S3.  Western blot analysis of protein expression level.  Lane 1, marker; lane 2, 

AcPheRS-8G; lane 3, AcPheRS-8G; lane 4, AcPheRS-wt; lane 5, AcPheRS-wt. 

The AcPheRS-8G and AcPheRS-wt were sub-cloned and expressed as C-terminus His6 fusion 

proteins.  Each sample lane was normalized to the same number of cells based on OD600nm 

measurement.  Protein expression experiments were conducted as duplicates for each protein.  

The protein bands were visualized immunochemically using anti-His antibody and HRP-labeled 

secondary antibody. No significant differences in protein expression level were observed 

between AcPheRS-8G and AcPheRS-wt. 
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Figure S4. Growth rate of E. coli cells that contain different MjTyrRS variants.   

Data are the average of three experiments. 

Note. Similar cell growth rates of strains harboring different AcPheRS variants were observed.  

It is therefore unlikely that the evolved aminoacyl-tRNA synthetase mutants mis-aminoacylate 

endogenous tRNAs at detectable higher level than their parent aminoacyl-tRNA synthetases.  

Otherwise, stronger cell growth inhibition would be observed in the presence of the evolved 

aminoacyl-tRNA synthetase mutants. 
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