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Abstract 

The identification and mobilization of useful genetic variation from germplasm banks for use in 

breeding programs is critical for future genetic gain and protection against crop pests. 

Plummeting costs of next-generation sequencing and genotyping is revolutionizing the way in 

which researchers and breeders interface with plant germplasm collections. An example of this is 

the high density genotyping of the entire USDA Soybean Germplasm Collection. We assessed 

the usefulness of 50K SNP data collected on 18,480 domesticated soybean (G. max) accessions 

and vast historical phenotypic data for developing genomic prediction models for protein, oil, 

and yield. Resulting genomic prediction models explained an appreciable amount of the variation 

in accession performance in independent validation trials, with correlations between predicted 

and observed reaching up to 0.92 for oil and protein and 0.79 for yield. The optimization of 

training set design was explored using a series of cross-validation schemes. It was found that the 

target population and environment need to be well represented in the training set. Secondly, 

genomic prediction training sets appear to be robust to the presence of data from diverse 

geographical locations and genetic clusters. This finding, however, depends on the influence of 

shattering and lodging, and may be specific to soybean with its presence of maturity groups. The 

distribution of 7,608 non-phenotyped accessions was examined through the application of 

genomic prediction models. The distribution of predictions of phenotyped accessions was 

representative of the distribution of predictions for non-phenotyped accessions, with no non-

phenotyped accessions being predicted to fall far outside the range of predictions of phenotyped 

accessions.  
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Introduction 

The foundation of plant breeding is genetic diversity yet the success of modern scientific plant 

breeding is leading to an erosion of the very genetic diversity it relies upon as farmers discard 

landraces in favor of genetically improved and uniform cultivars derived from a limited ancestral 

base. This genetic erosion increases vulnerability to agricultural insect and disease epidemics, as 

well as diminishes gains from breeding and selection. Germplasm collections serve as an 

important source of variation for germplasm enhancement; that variation sustains long-term 

genetic gain in breeding programs. A stunning number of accessions –7.4 million -- is being 

maintained ex situ by plant germplasm collections worldwide, also referred to as gene banks 

(FAO[Food and Agriculture Organization] 2010). The largest number of accessions belongs to 

wheat with approximately 856,000 accessions held, followed by rice with nearly 774,000 

accessions (FAO[Food and Agriculture Organization] 2010). The USDA National Plant 

Germplasm System (NPGS) alone holds more than 571,207 accessions for 14,965 species as of 

June 2015, ranging from 53,525 accessions for rice to 165 accession for quinoa (http://www.ars-

grin.gov/npgs/stats/summary.html).  

 The identification and mobilization of useful genetic variation from germplasm banks for 

use in breeding programs is clearly a necessity not only for sustaining current rates, but also for 

increasing future rates of crop genetic improvement (Sehgal et al. 2015). Nevertheless, there is 

evidence that these collections are woefully underutilized. In 2004, Carter and coworkers 

estimated that among approximately 45,000 unique soybean accessions maintained in germplasm 

collections worldwide, only 1,000 have been used in applied breeding programs (Carter et al. 

2004). Beneficial alleles for traits like yield have been mined from exotic and wild germplasm 

http://www.ars-grin.gov/npgs/stats/summary.html
http://www.ars-grin.gov/npgs/stats/summary.html
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(Tanksley et al. 1996; Fox et al. 2015), and breeders accept that landraces and exotic germplasm 

likely contain alleles that could enhance their germplasm, even for intensely selected traits, such 

as yield. However, efficiently mining such large germplasm collections with little knowledge on 

accession breeding values and the distribution of favorable alleles for complex traits like yield is 

a huge challenge, yet selecting exotic parents for yield improvement is just as critical as selecting 

elite parents.  

 Plummeting costs of next-generation sequencing (NGS) is revolutionizing the way in 

which researchers and breeders interface with plant germplasm collections. It is possible that all 

accessions held worldwide will be densely genotyped using NGS technologies. Some present 

examples of wide-scale genotypic characterization of the germplasm collections include the 

genotyping by sequencing of the CIMMYT maize collection (Hearne et al. 2015) and the 

sequencing of 3,000 rice genomes (Li et al. 2014).  This information will greatly benefit the 

selection of accessions for breeding and genetics research. Using genomic data, accessions could 

be selected which contain specific alleles of desired effect (McCouch et al. 2012), or all 

accessions representing all allelic variations at particular loci (such as maturity) could be 

selected. An allele-focused approach could be replaced or augmented by a genomic prediction 

approach to predict the breeding value of each accession held in the collection (Meuwissen et al. 

2001; Habier et al. 2007; VanRaden 2008). Such predictions on breeding value, especially when 

compared to some well-known adapted checks, would greatly increase the value of germplasm 

collections by giving breeders a means to identify those accessions (of the thousands that are 

available) meriting their attention (Longin and Reif 2014).  

 The USDA Soybean Collection dates back to 1895, with record keeping formally starting 

in 1898. A large share of the accessions (~5,000) were collected as part of the expedition of P.H. 
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Dorsett and W.J. Morse in Asia between 1924 and 1932 (Nelson 2011). The USDA Soybean 

Germplasm Collection (hereafter referred to as the Collection) is one of the most intensely used 

germplasm collections in the world, and the most intensely used in the NPGS (Nelson 2011). 

Remarkably, the entire collection has been genotyped with 50K SNPs (Song et al. 2015), 

creating a tremendous resource for understanding the distribution of genomic variation in the 

Collection and how it relates to phenotypic variation.  

 We assessed the usefulness of the genomic and phenotypic data collected on 9,171 

records from the Collection for developing genomic prediction models to evaluate the genetic 

value of accessions held in the collection for the complex, yet economically important, traits of 

protein, oil, and yield. Moreover, we investigated factors affecting prediction accuracy such as 

training set composition both in terms of subpopulation membership and trial locations. Our 

results are the first report on using comprehensive, extensive data gathered over time by the 

curators of a germplasm collection for making genomic predictions that will help breeders select 

accessions in a more rational manner.  

 

Materials and Methods 

Phenotypic and genotypic data 

 The USDA Soybean Germplasm Collection contains approximately 18,500 accessions of 

Glycine max. The phenotypic data used in this study was obtained from the USDA Soybean 

Germplasm Collection evaluations conducted periodically to characterize newly acquired 

accessions for basic morphological, agronomic (including yield), and seed quality traits. Data 

from 25 trials were analyzed (Table 1). Dates of the data sets range from 1963 to 2003 and 
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locations include Urbana, IL; St. Paul, MN; Lexington, KY; and Stoneville, MS. The majority 

(5,731) of accessions were evaluated in just one trial, 2,976 accessions were evaluated in two 

trials, 50 accessions were evaluated in three trials, 11 accessions were evaluated in four trials, 

and three accessions in five trials. Accessions originally classified as maturity group 0 were 

mostly evaluated in St. Paul with a small number evaluated in Urbana. Classification of these 

accessions has now been refined to include 00 and 000 classification. Maturity groups I – III 

were predominantly evaluated in Urbana with some MG I and II evaluated in St. Paul. MG IV 

were evaluated in Lexington, Urbana and, to a small extent, Stoneville. Accessions belonging to 

MGs V – IX were evaluated in Stoneville with the exception of seven MG V accessions being 

evaluated in Urbana in 2001-02 (Table 1). All trials were blocked by MG. The 1MN63 and 

1IL64 trials included two replications planted within the same year. All other trials also included 

two replicates, but replicates were planted in two separate years. Field plots comprising the trials 

conducted between 1963 and 1966 were two rows per entry, 2.4 m long and 1 m apart, except for 

1MN63 in which row spacing was 0.90 cm. Starting in 1980, trials consisted of four-row plots to 

minimize competition effects. Rows were 3 m long and 0.75 m apart at planting and end-

trimmed to 2.4 m long.  The only exceptions were the 1989-90 trials in St. Paul and Urbana, 

where rows were planted to be 4.7 m long but later trimmed to 3.2 m. Data were collected only 

on the center two rows. 

 Protein and oil were also measured using seeds of accessions stored in cold room of the 

Urbana maintained Collection. This dataset is named SOYBEAN.CHEMICAL.NB.2009 and 

consists of 2721 samples. Soybean samples were sent from the Collection to St. Paul, MN where 

they were ground and scanned by NIR (Foss 6500) at the University of Minnesota. All 

accessions included in this set were also grown and phenotyped as part of other trials.  
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The traits analyzed for this study were seed yield, oil, protein, lodging, and early shattering. Seed 

yield was measured as the machine harvestable seed weight per plot adjusted to 13% seed 

moisture and expressed as Mg ha-1. From 1963 – 1966 protein concentration was determined 

using the Kjeldahl method and oil concentration was determined using the Butt extraction 

method. From 1981 and beyond, oil and protein concentration were determined using near-

infrared reflectance on ground samples. Lodging is rated on a 1-5 scale with one given to plots 

with 100% erect plants and 5 given to plots with prostrate plants. Early shattering is scored at 

harvest on a 1-5 scale, where 1 = no shattering, 2 = 1 to 10% shattering, 3 = 10 – 25% shattering, 

4 = 25 – 50% shattering, and 5 = greater than 50% shattering. More detailed trait descriptions 

and information on methods of measurement can be found at http://www.ars-grin.gov/cgi-

bin/npgs/html/desclist.pl?51. 

 In addition to the phenotypic data routinely collected by the USDA and collaborators on 

the collection, an independent data set on MGs I-V PIs was obtained to serve as an additional 

validation set. These data were collected by co-author J.E. Specht at the University of Nebraska 

in 2003 and 2004. Briefly, 101 accessions were selected from a larger set of approximately 1500 

accessions on the basis of acceptable lodging, seed shattering, disease resistance, and overall 

appearance.  Most of these 101 accessions belong to MGs II and III. They were evaluated in field 

trials under two water regimes, dryland and full irrigation, at Lincoln, NE. Plots were arranged in 

a randomized complete block design with four replications per water regime. Replications 

receiving the same water treatment were blocked together in the field. Plots consisted of two 

rows 0.76 m apart and 2.90 m long.  Plots were machine harvested and seed yield was adjusted 

to 13% seed moisture. Protein and oil concentration were measured using near-infrared 

reflectance spectroscopy. For use here, the data were divided into four water regime-year 

http://www.ars-grin.gov/cgi-bin/npgs/html/desclist.pl?51
http://www.ars-grin.gov/cgi-bin/npgs/html/desclist.pl?51
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combinations. A linear model was fit to each dataset separately to calculate estimates of broad-

sense heritability on an entry-mean basis. The linear model included rep (fixed) and accession 

(random).  

 The original genotype data set consisted of 52,041 single nucleotide polymorphisms 

(SNPs) scored using the Illumina Infinium SoySNP50K BeadChip as described by (Song et al. 

2013). The SNP data is publicly available at http://www.soybase.org/dlpages/index.php. SNPs 

with greater than 80% missing scores and minor-allele frequencies less than 0.01 were removed 

from the data set, leaving 38,452 SNPs for analysis and genomic prediction model training.  

 

Subpopulation assignment 

 The effect of predicting across and within subpopulations was investigated. Previous 

research found that country of origin and MG explain only a small proportion of the 

subpopulation structure (Bandillo et al. 2015). Accessions were clustered using ADMIXTURE 

(Alexander et al. 2009) to objectively assign accessions to more genetically differentiated 

subpopulations. ADMIXTURE provides model-based estimations of ancestry based on multi-

locus genotype data. A number of subpopulations, K, is defined by the user. Each individual is 

assigned a membership probability to each subpopulation. For this study, the conversion from 

membership probabilities to discrete subpopulation memberships was accomplished by assigning 

each accession to the subpopulation which it had the highest probability of belonging to. 

Determining the value of K was accomplished using the differences from the estimated 10-fold 

cross-validation errors (CV) obtained from ADMIXTURE for successive K-values (ΔCV). 

http://www.soybase.org/dlpages/index.php
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Although the election of an optimal number of subpopulations is not a critical objective of this 

research, the K value at which ΔCV plateaued was chosen. 

 

Models  

The Bayesian models here presented include genetic and non-genetic (or structural) 

covariates.  The non-genetic covariates were included to remove, as much possible, the 

phenotypic variance generated by environmental and population structural factors such as 

location and maturity group. Since all models have the same linear predictor form, at this point, 

only the general structure is shown and further specifications will be given to stress differences 

among models.  

The linear predictor can be written as 

                                                  𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑒𝑒𝑖𝑖 + 𝑚𝑚𝑖𝑖(𝑖𝑖) + 𝑔𝑔𝑖𝑖 + ℇ𝑖𝑖𝑖𝑖𝑖𝑖                                           [1] 

where 𝜇𝜇 is the overall mean common to all phenotypes, 𝑒𝑒𝑖𝑖 is the effect of the jth trial (for j=1,..,26); 

𝑚𝑚𝑖𝑖(𝑖𝑖) is the effect of the kth maturity group nested in the jth trial; 𝑔𝑔𝑖𝑖 is the additive genetic effect 

of the ith accession modeled using whole-genome markers; and ℇ𝑖𝑖𝑖𝑖𝑖𝑖 is the residual. Residuals are 

assumed to be independent and identically distributed (IID) following a normal distribution with 

mean zero and variance 𝜎𝜎𝜀𝜀2. Since the effects of the maturity group are expected to change in 

accordance with the latitude of the trial locations, these effects were considered as nested within 

trials. Flat priors were given to the trial and maturity group effects to approximate fixed effects in 

maximum likelihood estimation.  
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The additive genetic effect of the ith accession is modeled as a linear combination of 

random marker effects represented by  𝑔𝑔𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖
𝑝𝑝
𝑖𝑖=1 , where p is the number of markers, xil is 

indicator variable for the lth marker scored on the ith accession with bil being the marker effect. 

The election of the prior distribution of the random terms enables the model to perform different 

actions with respect to the treatment of these marker effects as described below. A 

comprehensive review of the five popular models used for genomic selection (GS) can be found 

in (de los Campos et al. 2013), but a very brief description follows:. 

Genomic Best Linear Unbiased Prediction (G-BLUP) 

 A convenient re-parameterization to reduce the computational burden is given by 

considering 𝐠𝐠 = 𝐗𝐗𝐗𝐗 with 𝐠𝐠 = {𝑔𝑔𝑖𝑖}. From the properties of the multivariate normal distribution 

(MVN) 𝐠𝐠~𝑀𝑀𝑀𝑀𝑀𝑀�𝟎𝟎,𝐗𝐗′𝐗𝐗𝜎𝜎b2� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝟎𝟎,𝐆𝐆𝜎𝜎g2� where { }'iiG=G  an 𝑛𝑛 × 𝑛𝑛 symmetric matrix whose 

entries are given by ( )( )
( )∑ =

−

−
−−

=
p

l
ll

llilil
ii

xxpG
1

'1
' 12

22
θθ

θθ and lθ is the estimated allele frequency at 

the lth marker. This matrix is known as the genomic relationship matrix (GRM) whose entries 

describe genomic similarities among pairs of accessions. The posterior mean of g is the best 

linear unbiased predictor of g,  𝐠𝐠� = [𝐼𝐼 + 𝜆𝜆𝐆𝐆−1]−1𝒚𝒚� = 𝐗𝐗�̂�𝐗, where 𝜆𝜆 = 𝜎𝜎2
𝜎𝜎𝑔𝑔2�  is obtained via 

restricted maximum likelihood (REML) methods. 

Bayesian Least Absolute Angle and Selection Operator (LASSO) 

 The structure of this model is very similar to that from the Bayes A model; however, the 

marker-specific prior variances are assumed IID exponential, 𝜎𝜎𝑏𝑏𝑙𝑙
2 ~Exp�𝜎𝜎𝑏𝑏𝑙𝑙

2 |𝜆𝜆2� where 𝜆𝜆 in this 

case is a regularization parameter that controls the shape of the exponential prior distribution. 
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The marginal prior distribution of the marker effects becomes a double exponential distribution 

(DE). 

Bayes B 

 Bayes B is a variable selection model allowing some proportion (π) of marker effects to 

be null and the remaining (1-π) to be non-null. This is captured with a mixture 

density: 𝑝𝑝�𝑏𝑏𝑖𝑖|𝜋𝜋,𝜎𝜎𝑏𝑏𝑙𝑙
2 � = 𝜋𝜋 × (b𝑖𝑖 = 0) + (1 − 𝜋𝜋) × N�b𝑖𝑖|0,𝜎𝜎𝑏𝑏𝑙𝑙

2 � with 𝜋𝜋 as the proportion of 

markers with null effect. With this consideration, the marker-specific prior distributions of the 

non-null marker effects are a scaled inverted chi-squared distribution, 𝜎𝜎𝑏𝑏𝑙𝑙
2 ~𝜒𝜒−2�𝜎𝜎𝑏𝑏𝑙𝑙

2 |𝑑𝑑𝑑𝑑𝑏𝑏𝑙𝑙 , 𝑆𝑆𝑏𝑏𝑙𝑙�. 

The prior distribution of the marker-specific variance parameter for the non-null proportion of 

marker effects is similar to the one used in Bayes A. To completely specify this model, a beta 

prior distribution is assumed for the proportion parameter such that 𝜋𝜋~Beta(𝑝𝑝0,𝜋𝜋0) with 𝑝𝑝0 > 0 

and 𝜋𝜋0𝜖𝜖[0,1]. All of these assumptions result in the marker effects having a marginal prior 

distribution comprised of an IID mixture of a point mass at zero and a scaled-t distribution. 

 Hyperparameters for all models were set using the rules described in (de los Campos et 

al. 2013). All models were implemented using the BGLR package (Pérez and de los Campos 

2014). 

Cross-Validation Schemes 

 A series of cross-validation (CV) schemes was designed to assess the usefulness of 

genomic predictions for selecting accessions as well as optimizing the construction of genomic 

prediction training sets. To accomplish the latter goal, several different grouping criteria for 

splitting the data were used in order to create variable training-testing relationships. The first 

grouping criteria involved splitting the data by trial (i.e., 26 trials for oil and protein; 25 trials for 
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yield). A second grouping criteria used genetic criteria to split the entire population of accessions 

into nine subpopulations as described above. Finally, the training-testing sets were grouped by 

geographical location, which in this case was defined by state in which the evaluation trials were 

conducted (i.e., MN, IL, or MS). The KY data was dropped from this analysis since only one 

trial was conducted in KY. 

 Four CV schemes were applied to each grouping criteria. Each CV scheme mimicked the 

problem of predicting accessions without data. To accomplish this, all phenotypic records of any 

accession in the validation set was removed from the training set before model training. Each CV 

scheme is described individually. 

Leave-one-accession-out within groups (One/Group): Within each group (i.e., trial, 

subpopulation, state) each accession is predicted, one at a time, using as the training set the data 

from the remaining accessions in the same group. This procedure is repeated until all accessions 

in the group are predicted. To assess predictive ability, observations and predictions are 

compiled and correlated for each group separately. 

Leave-one-accession-out across groups (One/All): This CV is the same as One/Group except 

training sets consists of data from all groups rather than only a single group.  

Leave-one-group-out (Group/All): Here, each group is predicted using a training set consisting of 

data from the other groups only. The training set does not include data from the group 

comprising the validation set. 

Group-by-group (Group/Group): A whole group is predicted using the information from another, 

single group. This procedure is repeated for all possible combinations. 

A schematic of these cross validation schemes is displayed in Figure 1. 
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 Predictive ability was assessed using Pearson’s product-moment correlation coefficient 

on the vectors of genomic predictions and observed phenotypes adjusted for trial and MG 

effects. Confidence intervals were computed using the bootstrap procedure with 10,000 bootstrap 

replicates.  

 

Results 

 An initial assessment of predictive ability for oil, protein, and yield was made by 

performing Group/All CV and evaluating predictive abilities among the 25-26 trials with the five 

models described above. Average predictive abilities were moderate to very high for most trial 

and trait combinations (Figure 2; Supplementary Table 1). For oil, predictive ability ranged from 

0.46 to 0.92 with a median across trials of 0.69. Predictive abilities for protein were lower, 

especially on the low end, ranging from 0.29 to 0.92 with a median of 0.56. Genomic prediction 

for accession yield, typically the most difficult trait to predict, was more successful than 

expected, yet highly variable, ranging from 0.17 to 0.79. The median predictive ability for yield 

was 0.64. Predictive abilities among the five models were compared for each trial and trait 

combination. Very little to no difference among models was observably evident. This can be 

seen by examining the performance of three representative models (G-BLUP, Bayes B, Bayes 

LASSO) in Figure 2. For this reason, G-BLUP was exclusively used for all subsequent analyses.  

 It is important to remember that the validation phenotypes were adjusted for MG effects 

and thus variation explained by the genomic prediction model is independent of any variation 

between maturity groups and the predictive abilities calculated reflect the ability to predict 

within maturity groups. Moreover, reported predictive abilities are correlations between 
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predictions and phenotypes corrected for MG, with no adjustment being made for the heritability 

of the validation phenotypes. Since the validation phenotypes are imperfect estimates of true 

additive genetic values, the reported predictive abilities are likely downwardly biased estimates 

of the true prediction accuracies being defined as the correlation between the predictions and true 

breeding values.  

 Since most of the accessions analyzed were unimproved landraces, an important 

consideration is the degree to which variation in lodging and shattering influence variation in 

machine harvestable seed yield. Shattering is a genetically simpler trait compared to yield 

(Funatsuki et al., 2014), and genomic prediction models trained using data from landraces might 

be simply predicting shattering rather than purely seed yield. An analysis of the phenotypic data 

did reveal that machine harvestable grain yield was negatively correlated with shattering and 

lodging, with mean correlation coefficients being -0.27 and -0.21, respectively (data not shown). 

In order to eliminate the influence of shattering and lodging on variation in seed yield, shattering 

and lodging scores were fit as fixed covariates both in the G-BLUP model and to calculate 

adjusted seed yield phenotypes for validation. Predictive ability was calculated as it was for 

Figure 2 using the 8517 records with available shattering and lodging scores. Predictive abilities 

for yield were reduced as expected when variation for lodging, shattering, or both was removed 

through the use of covariates (Supplementary Table 2). The average reduction in seed yield 

predictive ability, expressed as a percentage of the original predictive ability, was near 10% 

when either lodging or shattering were accounted for (Supplementary Table 2). When both traits 

were fit as covariates, the reduction in predictive ability was 23% on average across trials 

(Supplementary Table 2). Predictive ability was not reduced at all, or very little, in some trials, 

whereas in others it was reduced by as much as 47%, indicating shattering and lodging affected 
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seed yield to different degrees across trials. A similar analysis was performed on maturity date, 

but maturity date had a negligible effect on seed yield predictions after correction for MG effects 

(results not shown).  

 The value of training genomic prediction models for prediction of accession performance 

was further evaluated by using an independent set of MG II and III accessions evaluated in 

multiple environments, each with four replications, for the measured traits of oil, protein, and 

seed yield. Entry-mean heritabilities were high due to the highly replicated design, ranging from 

0.83 on average for yield to 0.91 on average for protein and oil. Genomic predictive abilities, on 

average, were 0.58-0.59 for protein and oil and 0.49 for yield (Table 2). These values are 

somewhat lower than the predictive abilities estimated for the GRIN trials, perhaps because the 

Nebraska trials included less genetic variability because accessions were pre-selected on the 

basis of agronomic performance. They were, however, similar to the predictive abilities for seed 

yield in the GRIN trials when seed yield values were adjusted for shattering and lodging. This 

result indicates that the genomic prediction models can still discriminate among relatively poor 

and good performing accessions within sets previously selected for agronomic performance. A 

comparison was made between the genomic predictive ability and correlations between the data 

available from the GRIN trials and the phenotypes collected in the highly replicated Lincoln, NE 

trials. Genomic predictive ability was consistently better than the GRIN phenotypes for protein 

and oil, although the confidence intervals did overlap (Table 2). For yield, the two methods were 

similar for three of the four Lincoln, NE trials, and genomic prediction was numerically better 

than the phenotypic data in the fourth comparison (DRY-2003; Table 2). This result suggests that 

the genomic predictions are at least as good as the phenotypic data in GRIN, and thus it may be a 
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useful tool for choosing among the non-phenotyped accessions held in the collection or newly 

collected accessions.   

 A key question when using predictions for accession selection relates to the enrichment 

of the selected set. While correlations are a good indicator of how successful genomic 

predictions could be used for this purpose, we desired to directly look at this by calculating the 

frequency of “selected” accessions observed to be better than the mean or in the bottom 10% 

based on actual field trial data. The top 10% of accessions were chosen on the basis of their 

genomic predictions using G-BLUP and Group/All as described above. Shattering and lodging 

were not adjusted for in this analysis as we assumed breeders would want select accessions with 

high machine harvestable seed yield. We found that, on average, a high percentage of accessions 

among the top 10% based on predictions were observed to be better than the trial mean. This 

value was 89% for oil, 80% for protein, and 88% for yield (Table 3). In the case of yield, 100% 

of the selected accessions were observed to be better than the population mean in five trials. 

Another key outcome would be the avoidance of poorly performing accessions. The top 10% 

based on predictions very rarely included accessions observed to be in the bottom 10%. The 

average observed frequency across trials was only 0 – 2% depending on the trait (Table 3). A 

frequency of 0% was observed for more than half the trials. This result indicates that predictions 

can very effectively eliminate the worst performing accessions. 

 

Trials 
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 The effect of combining versus separating trial data was evaluated by performing within-

trial cross validation (One/Group), between-trial cross validation (Group/All), and combining 

data across all trials (One/All) (Figure 1).  

Within-trial predictive abilities were moderate to high for all traits, being greater than 0.60 in 

most cases for oil and yield (Figure 3; Supplementary Table 1). Predictive abilities were slightly 

lower for protein. Only a very subtle improvement was observed when data across all other trials 

was added to the training set (One/All), with differences ranging from 0.04 (protein) to -0.01 

(yield) (Supplementary Table 1). While on average there was very little difference, the range 

across trials was considerable, and it appeared that there were benefits to including all data in the 

extreme cases. In the case of the 3IL84 trial, for example, it was observed that predictive ability 

could be increased from 0.31 to 0.81 for oil and 0.44 to 0.75 for protein when data was combined 

across all trials compared to a within-trial training set only. On the negative side, we observed 

that predictive ability was decreased by 0.05 for oil and 0.06 for protein, in the case of IL66 and 

IL945 trials, respectively. It appeared that for protein and oil, benefits to combining across trials 

were much more dramatic compared to any reductions in predictive ability (Figure 3; 

Supplementary Table 1). The differences between One/Group and One/All were more uniformly 

distributed in the case of yield, with a reduction of 0.06 for MN945 and a gain of 0.14 for 

2KY81.  

 Using data from the same trial(s) in both training and validation sets creates the 

unrealistic advantage of including the trial-specific GxE effects contained in the validation data. 

Because the exact same environmental conditions specific to individual trials would not be 

observed again, a better assessment of the usefulness of these GRIN training sets for predicting 

future trial performance would be attained using the Group/All CV. The Group/All CV 
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correlations were very close, on average, to the One/Group and One/All CV correlations (Figure 

3; Supplementary Table 1), indicating that the sheer volume of data can overcome any lack of 

shared GxE effects. 

 A trial-by-trial CV (Group/Group) results in highly variable predictive abilities. In many 

cases, the predictive abilities between trials was zero, but in some cases, the predictive ability 

reached as high as 0.90 (e.g., oil, 2MN81 predict 5MN90) (Supplementary Table 3). The average 

predictive ability for the Group/Group CV was 0.49 for oil, 0.30 for protein, and 0.45 for yield, 

which is far less than the predictive abilities observed using Group/All CV. This illustrates the 

expected advantage of combining data across many trials to form a training set.  

 By ordering the trials by state, it is apparent that the northern locations of MN and IL 

predicted one another relatively well as compared to be predictive ability between MS and the 

northern locations. This pattern was more prominent for yield (Supplementary Table 3).  

States 

 Given the pattern observed when predicting between trials conducted in different states, 

we desired to look at this more closely by setting up a CV based on trial geographical location. 

The distribution of data points across states is as follows: 4,047 records from 11 IL trials; 1,339 

records from 7 MN trials; 3,258 records from 6 MS trials (Table 1). The MN trials consisted of 

only MG 0 – II accessions with the majority (72%) belonging to MG 0. The IL trials were 

predominantly comprised of accessions from MGs I – IV, with less than 1% being from MGs 0 

and V. The MS trials only consisted of accessions from MGs IV – IX.  

 As expected, a training set including data from the state being predicted (One/Group or 

One/All) performed much better than training sets not including data from the state being 
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predicted (Group/All) (Figure 4; Table 4). A key question we wanted to address with this 

analysis was whether training sets should be created by dividing data among states, or if a 

universal training set including all data – regardless of state – would perform just as well or 

better. Little to know differences were observed between these two CV schemes for any trait and 

state combination (Figure 4; Table 4). This finding suggests that predictive abilities are not 

improved by maximizing training set size by combining across states, nor are they reduced by 

including data from environments as different as MS when predicting relative performance of 

early MG accessions in MN.  A similar pattern was observed when variation for lodging and 

shattering was removed through inclusion of covariates.  

Clusters 

 The ADMIXTURE analysis suggested the presence of nine genetic clusters within the 

population of accessions used for this study (Figure S1). A visual inspection of the principal 

component analysis plot displayed in Figure 5 suggests that the diversity within clusters varies 

and structure among the clusters exists, with some clusters being more closely related than other 

clusters.  The proximity of clusters to one another can be partially explained by MG. Clusters 

four, five and eight are comprised mainly of early maturity groups (0-II), whereas early and 

medium MGs appear in Cluster 1 (Supplementary Table 4). Clusters 2, 3, 6, 7 and 9 belong to 

medium and late MGs. Most clusters include good representation of at least three MGs except 

for cluster 3, which is dominated by MG VIII.  

 In general, predictive abilities were lower for the Group/All scheme based on cluster 

compared to the One/Group and One/All schemes (Figure 6; Table 5). Without correction for 

shattering and lodging, the One/All scheme tended to produce the highest predictive abilities, 

although the difference between One/Group and One/All were very small. Correcting seed yield 
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for shattering and lodging produced a different outcome where the One/Group scheme was 

markedly better for four of the nine clusters (Figure 6; Table 5). A pattern between predictive 

ability and relationship between clusters was not readily apparent. The only consistent result was 

the poor predictive ability of cluster 3, which was expected based on its limited size and 

variation. These results combined indicate that within-cluster information is the most valuable 

information. We tested whether compiling a training set by only including related clusters 

improved predictive abilities. To do this, clusters 1, 4, 5, and 8 were grouped, and clusters 2, 3, 

6, 7, and 9 were grouped. Grouping clusters by genetic similarity did not improve predictions 

compared to the universal One/All scheme (data not shown). 

Prediction of non-phenotyped accessions 

 A total of 8,771 accessions housed in the Collection have been phenotyped at least once 

in the 26 trials (Supplementary Table 4), but no phenotypic data was available for 7,608 

accessions from GRIN when this study was designed. Genomic predictions were calculated for 

the non-phenotyped accessions using the full training set (i.e., all clusters, all environments) in 

order to assess differences in distributions between phenotyped and non-phenotyped accessions. 

Phenotyped accessions were predicted with the One/All cross-validation scheme. More 

specifically, we wanted to know if any non-phenotyped accessions would be predicted to be 

superior to the phenotyped accessions. Substantial differences were not observed with the 

predictions of the non-phenotyped accessions falling within the range of the phenotyped 

accessions (Figure 7). Nevertheless, using information in the form of genomic predictions will 

help breeders choose amongst those accessions that have no accompanying information, opting 

for those that would be expected to be above average for yield, protein, and oil and thus avoiding 
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those accessions predicted to be inferior for these traits.  Supplementary Tables 5 and 6 contain 

genomic predictions for the phenotyped and non-phenotyped accessions. 

 

DISCUSSION 

 Crop germplasm collections hold valuable genetic diversity to help protect society 

against the genetic erosion of agriculturally important species for which only a limited number of 

genotypes are actually cultivated at any given time. It is imperative that these collections exist as 

dynamic, utilized sources of variation rather than as “gene morgues” as they are sometimes 

referred to (Hoisington et al. 1999). One obstacle to utilization is reliable phenotypic 

characterization of collections as phenotyping collections consisting of tens of thousands of 

accessions can be difficult and expensive. High density genotyping of entire germplasm 

collections, however, has become more feasible than thorough phenotyping even with the advent 

of phenomics platforms. This study demonstrated that historical data on accessions held in 

collections, when combined with high density SNP data, can be used to develop predictive 

models for important and complex traits of soybean. Genomic prediction models explained an 

appreciable amount of the variation in accession performance in independent trials, with 

correlations between predictions and observations reaching up to 0.92 for oil and protein and 

0.79 for machine-harvestable seed yield. Predictive abilities for seed yield were reduced when 

variation for lodging and shattering was accounted for. Nevertheless, estimates of prediction 

accuracy calculated using data from a highly replicated, independent trial of only accessions with 

previously determined acceptable performance (i.e., minimal shattering and lodging) also gave 

an optimistic outcome for using predictions to assist in the selection of superior accessions. 

Based on a comparison of predictions and observed field performance in each trial, a soybean 
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breeder could select the top 10% of accessions based on genomic prediction of yield and expect 

88% of the selected accessions to be better than average for yield. This example demonstrated 

that genomic predictions can be used to enrich field trials of accessions with accessions that 

perform better than a randomly selected set. Looking at the extremes, we found that the top 10% 

for each trait rarely contained accessions that performed in the bottom 10% according to actual 

trial data, indicating that using predictions very effectively eliminates the accessions that hold 

little promise, ultimately saving field resources to evaluate more of those that do hold promise.  

  Compiling historical data on accession evaluations conducted across four states going 

back to 1963 provided us a very large training dataset consisting of over 9,000 accessions. 

Soybeans adapted to different latitudes belong to different MGs. The trials used as a source of 

data ranged from trials conducted on early MGs in Minnesota to late MGs conducted in MS.  We 

explored the optimal use of such a large and diverse training set for calibrating genomic 

prediction models. Our results can be summarized by two basic findings. First of all, the 

population and target environment being predicted should be well represented in the training set. 

The poorest predictive abilities were observed when we attempted to predict between states or 

between genetic clusters. Secondly, genomic prediction training sets appear to be very forgiving 

to the presence of data from diverse geographical locations and genetic clusters. It was surprising 

to observe that adding data from very different geographical locations had no effect on predictive 

ability. For example, the prediction of performance in MN environments was not affected by the 

presence of training data collected in MS on MG VII – IX accessions. This may partially be an 

artifact stemming from the tendency of accessions from similar MGs to genetically cluster, and 

the partitioning of MGs across the states used for evaluation. In BLUP, information from closer 

relatives is weighted more heavily, while less weight is given to information from distant 
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relatives (de Los Campos et al., 2013), meaning data from MS was probably weighted less 

heavily in the prediction of early MG accession performance in MN.  

 Building a training set by adding accessions from different and diverse genetic clusters 

did not improve nor harm predictive ability when the goal was to predict accession performance 

within a single cluster. One exception included the prediction of yield corrected for shattering 

and lodging across diverse clusters. Our general results are not consistent with results from 

barley that suggested that the addition of unrelated individuals to a training set can potentially 

reduce predictive ability (Lorenz and Smith 2015), but they are consistent with results in maize 

where training sets were formed by combining data across heterotic groups (Technow et al. 

2013). The underlying reasons for the neutral effect of adding genetically distant individuals to 

the soybean accession training sets could relate to the flow of information from historical LD and 

pedigree relationships to prediction accuracy (Habier et al. 2013). In the barley case (Lorenz and 

Smith 2015), where there is substantive family structure and a high degree of relatedness among 

lines from the same breeding program, it is likely that pedigree relationships, captured by G, are 

the predominant source of accuracy. The addition of less related individuals can reduce the 

accuracy provided by this source of information (Habier et al. 2013). In the case of the soybean 

germplasm collection, where many individuals do not share close pedigree relationships and 

where common ancestors likely go back many generations, the predominant source of accuracy 

is likely historical LD. The large training populations and high marker densities may have 

allowed the capturing of this information (Habier et al. 2013; Hickey et al. 2014), offsetting any 

possible detrimental effect on the genetic relationships source of information.  

 In conclusion, this study demonstrates that historical data collected as part of plant 

germplasm collection characterizations can be used to develop predictive models to help 



25 
 

breeders select accessions for introgressing useful genetic variation. We found that in the case of 

the soybean germplasm collection, these models are robust to the inclusion of diverse sources of 

data, but training sets should include data from populations and environments representative of 

the target populations and environments. This data has already been collected and made freely 

available, and therefore nothing is preventing the use of these models for enhancing utilization of 

this genetic resource. Genomic predictions might also be used to develop trait-specific “core 

collections” that could be used for deeper phenotyping for detailed studies on physiological 

mechanisms and high-resolution QTL mapping. It is anticipated that the genomics revolution 

will create similar data resources for germplasm collections of other agriculturally important 

species and that genomic prediction will serve as a key tool for making practical use of the 

genomic data.  
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Figure Legends 

Figure 1. A diagram of the four cross validation schemes used to validation genomic predictions. 
Each of the colors represents a different group. Groups are comprised of trials, states, or genetic 
clusters (see Methods section). Arrows point from the training set to the validation set. 

Figure 2. Predictive abilities for oil, protein, and seed yield for each of the 25 trials. Predictions 
were made using the Group/All cross validation scheme and three different models: genomic best 
linear unbiased prediction (G-BLUP), Bayes B, and Bayesian LASSO. The black bars display 
the 95 percent confidence intervals. 

Figure 3. Predictive abilities for oil, protein, and seed yield for each of the 25 trials. Predictions 
were made using the One/Group, One/All, and Group/All cross validation schemes. The black 
bars display the 95 percent confidence intervals.  

Figure 4. Predictive abilities for oil, protein, and seed yield for each of the three states. 
Predictions were made using the One/Group, One/All, and Group/All cross validation schemes. 
The black bars display the 95 percent confidence intervals.  

Figure 5. A three dimensional plot of accession values for principal components one, two, and 
three. The centroid of each cluster is indicated by an empty sphere. The spheres containing 
numbers label each centroid by its corresponding cluster designation. 

Figure 6. Predictive abilities for oil, protein, and seed yield for each of the nine genetic clusters 
(CL). Predictions were made using the One/Group, One/All, and Group/All cross validation 
schemes. The black bars display the 95 percent confidence intervals.  

Figure 7. Scatter plot of genomic predictions for grain yield versus the sum of oil and protein. 
The intercept of each trait included in the prediction to place values back on the original trait 
measurement scale. Phenotyped accessions are represented by the blue density cloud, and non-
phenotyped accessions are represented by the red circles. 

Supplementary Figure 1. Exploration of the optimal number of genetic subpopulations (K) 
within the set of soybean accessions included in this study. A difference in cross-validation error 
between levels of K was used as a criteria. A plateau in Δ cross-validation error at K=9 was used 
to infer K. 

 

 



Table 1. List of trials including accessions from the USDA Soybean Germplasm Collection, location of trial, year of trial, number of accession 
entries in each trial, number of maturity groups (MGs) in each trial, and distribution of accessions among MGs in each trial. 

          No. per MG per trial 
Trial Location Year(s) Trial entries Trial MGs 0 I II III IV V VI VII VIII IX 

SOYBEAN.EVALUATION.1MN63 St. Paul, MN 1963 170 1 170          
SOYBEAN.EVALUATION.2MN81 St. Paul, MN 1980-81 260 1 260          
SOYBEAN.EVALUATION.3MN83.1 St. Paul, MN 1982-83 136 1 136          
SOYBEAN.EVALUATION.4MN87 St. Paul, MN 1986-87 63 2 61 2         
SOYBEAN.EVALUATION.5MN90 St. Paul, MN 1989-90 31 1 31          
SOYBEAN.EVALUATION.MN945 St. Paul, MN 1994-95 257 3 136 109 12        
SOYBEAN.EVALUATION.MN0102 St. Paul, MN 2001-02 422 3 176 241 5        
SOYBEAN.EVALUATION.1IL64 Urbana, IL 1964 125 3 1 76 48        
SOYBEAN.EVALUATION.1IL66 Urbana, IL 1965-66 248 3   1 88 159      
SOYBEAN.EVALUATION.2IL81.1 Urbana, IL 1980-81 570 4 9 175 174 212 0      
SOYBEAN.EVALUATION.2IL81.2 Urbana, IL 1980-81 519 2    24 495      
SOYBEAN.EVALUATION.3IL83.1 Urbana, IL 1982-83 433 2 1 432         
SOYBEAN.EVALUATION.3IL83.2 Urbana, IL 1982-83 153 3   2 86 65      
SOYBEAN.EVALUATION.3IL84 Urbana, IL 1983-84 44 2   38 6 0      
SOYBEAN.EVALUATION.4IL87 Urbana, IL 1986-87 367 5 1 65 91 59 151      
SOYBEAN.EVALUATION.5IL90 Urbana, IL 1989-90 379 5 2 12 51 89 225      
SOYBEAN.EVALUATION.IL945 Urbana, IL 1994-95 811 5 2 86 149 186 388      
SOYBEAN.EVALUATION.IL0102 Urbana, IL 2001-02 398 6 7 204 22 36 122 7     
SOYBEAN.EVALUATION.MS923 Stoneville, MS 1992-93 598 3      4 587 7   
SOYBEAN.EVALUATION.MS945 Stoneville, MS 1994-95 653 5      1 5 318 328 1 
SOYBEAN.EVALUATION.MS967 Stoneville, MS 1996-97 974 6     45 233 243 208 236 9 
SOYBEAN.EVALUATION.MS989 Stoneville, MS 1998-99 307 6     9 102 80 69 46 1 
SOYBEAN.EVALUATION.MS2000_02 Stoneville, MS 2000, 2002 564 3      485 76 3   
SOYBEAN.EVALUATION.MS2001_03 Stoneville, MS 2001, 2003 162 5     10 22 47 28 55  
SOYBEAN.EVALUATION.2KY81 Lexington, KY 1980-81 527 1         527           

Total     9171   993 1402 593 786 2196 854 1038 633 665 11 

 



Table 2. Genomic predictive abilities using the Lincoln, NE data as validation data, and correlations between the phenotypic data available in 
GRIN and the Lincoln, NE data. Each year two trials were conducted with two water regimes, dryland (DRY) and irrigated (IRR). Results for oil, 
protein, and yield are displayed.  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

    Genomic predictive ability   Correlation: GRIN data vs NE trials 

  Oil  Protein  Yield  Oil   Protein   Yield 

DRY-2003  0.47[0.30; 0.63]  0.52[0.37; 0.65]  0.42[0.16; 0.64]  0.46[0.31; 0.60]  0.43[0.29; 0.56]  0.27[0.06; 0.41] 
DRY-2004  0.62[0.49; 0.73]  0.63[0.51; 0.73]  0.50[0.35; 0.65]  0.46[0.30; 0.59]  0.45[0.30; 0.58]  0.49[0.33; 0.64] 
IRR-2003  0.63[0.50; 0.75]  0.58[0.47; 0.67]  0.52[0.38; 0.66]  0.51[0.38; 0.63]  0.41[0.23; 0.55]  0.53[0.38; 0.67] 
IRR-2004  0.64[0.51; 0.74]  0.59[0.46; 0.71]  0.53[0.38; 0.70]  0.53[0.42; 0.64]  0.46[0.32; 0.58]  0.52[0.36; 0.65] 



Table 3. Tabled values are percentages of accessions among the top 10% of accessions based on predictions that were observed to be in the bottom 
10% or greater than the mean based on phenotypic data from each listed trial. Data for both the USDA Soybean Germplasm Collection evaluations 
and J.E. Specht trials conducted in Lincoln, NE are presented. 

  Bottom 10%   Greater than mean 

  Oil Protein Yield   Oil Protein Yield 

USDA Evaluations        
1MN63 0 0 0  100 76.5 94.4 
2MN81 0 0 3.8  83.3 92.3 73.1 
3MN83.1 0 0 0  93.3 73.7 86.7 
4MN87 0 0 0  85.7 100 100 
5MN90 0 0 0  75 100 100 
MN945 0 0 3.8  85.2 81.5 88.5 
MN0102 0 0 0  90.9 93 88.6 
1IL64 0 7.7 0  92.3 69.2 84.6 
1IL66 0 0 0  96 92 100 
2IL81.1 0 0 0  100 82.5 96.5 
2IL81.2 1.7 0 3.8  76.7 88.7 79.2 
3IL83.1 0 0 2.2  85.4 88.6 68.9 
3IL83.2 0 0 0  100 82.4 100 
3IL84 0 0 0  100 80 100 
4IL87 0 0 0  86.8 75 92.1 
5IL90 0 0 0  94.7 78.9 87.2 
IL945 2.4 9.9 0  85.4 72.8 96.3 
IL0102 0 2.5 5.3  92.5 77.5 94.7 
MS923 1.5 0 0  80.6 98.3 77.4 
MS945 1.4 1.5 0  88.6 64.2 93.8 
MS967 2 2.1 1  83.2 79.4 88.8 
MS989 0 6.3 6.3  93.5 59.4 87.5 
MS2000_02 0 0 3.4  87.7 75.8 76.3 
MS2001_03 0 0 5.9  94.1 52.9 82.4 
2KY81 0 4.7 5.6  78.3 64.1 61.1 



Mean 0.4 1.4 1.6  89.2 79.9 87.9 
        

Lincoln, NE Trials        
2003-DRY 0 0 9.1  72.8 90.9 63.7 
2003-IRR 0 0 9.1  91 81.8 72.8 
2004-DRY 0 9.1 9.1  81.8 72.8 81.8 
2004-IRR 0 0 9.1  81.9 63.7 72.8 
Mean 0 2.3 9.1   81.9 77.3 72.8 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Predictive abilities for oil, protein, and yield estimated using State as the grouping factor. One/Group estimates are on the diagonal and 
Group/Group estimates are on the off-diagonal.  
 
Oil     

    MN IL MS 
MN  0.80 0.71 0.53 
IL  0.56 0.68 0.52 
MS  0.43 0.51 0.62 
     
Protein     

  MN IL MS 
MN  0.70 0.43 0.42 
IL  0.31 0.55 0.39 
MS  0.21 0.37 0.52 
     
Yield     

  MN IL MS 
MN  0.69 0.59 0.44 
IL  0.51 0.68 0.43 
MS   0.40 0.45 0.66 

  
 
 

 

 

 



Table 5. Predictive ability from LOAWG, LOGO, and LOAAG cross validation schemes for oil, protein, and yield using trial data grouped by 
genetic cluster. 

  Oil   Protein   Yield 

Cluster LOAWG LOGO LOAAG  LOAWG LOGO LOAAG  LOAWG LOGO LOAAG 

 
Est.  95 % CIa Est.  95 % CIa Est.  95 % CIa 

 
Est.  95 % CIa Est.  95 % CIa Est.  95 % CIa 

 
Est.  95 % CIa Est.  95 % CIa Est.  95 % CIa 

1 0.34 [0.25; 0.42] 0.48 [0.40; 0.56] 0.52 [0.44; 0.58]  0.40 [0.32; 0.48] 0.51 [0.44; 0.57] 0.55 [0.49; 0.61]  0.35 [0.25; 0.46] 0.43 [0.30; 0.54] 0.47 [0.36; 0.57] 
2 0.54 [0.51; 0.56] 0.44 [0.41; 0.47] 0.54 [0.51; 0.57]  0.50 [0.47; 0.53] 0.36 [0.32; 0.40] 0.50 [0.47; 0.53]  0.57 [0.53; 0.60] 0.50 [0.45; 0.55] 0.58 [0.54; 0.62] 
3 0.13 [0.00; 0.30] 0.32 [0.11; 0.51] 0.35 [0.12; 0.54]  0.32 [0.17; 0.46] 0.28 [0.10; 0.45] 0.27 [0.09; 0.44]  0.18 [0.01; 0.35] 0.27 [0.11; 0.43] 0.25 [0.08; 0.41] 
4 0.41 [0.30; 0.51] 0.39 [0.28; 0.50] 0.45 [0.35; 0.55]  0.34 [0.24; 0.43] 0.32 [0.21; 0.41] 0.45 [0.35; 0.53]  0.44 [0.33; 0.54] 0.35 [0.25; 0.45] 0.41 [0.31; 0.51] 
5 0.42 [0.37; 0.47] 0.42 [0.37; 0.46] 0.48 [0.43; 0.52]  0.46 [0.40; 0.52] 0.40 [0.35; 0.44] 0.51 [0.46; 0.55]  0.32 [0.26; 0.39] 0.38 [0.31; 0.45] 0.44 [0.37; 0.50] 
6 0.52 [0.49; 0.55] 0.38 [0.34; 0.42] 0.53 [0.49; 0.55]  0.48 [0.45; 0.51] 0.30 [0.27; 0.34] 0.50 [0.46; 0.52]  0.44 [0.40; 0.48] 0.35 [0.31; 0.39] 0.45 [0.42; 0.49] 
7 0.45 [0.38; 0.51] 0.4 [0.34; 0.45] 0.46 [0.39; 0.52]  0.40 [0.34; 0.46] 0.22 [0.14; 0.29] 0.37 [0.30; 0.44]  0.43 [0.37; 0.49] 0.40 [0.34; 0.45] 0.44 [0.38; 0.49] 
8 0.55 [0.50; 0.59] 0.52 [0.48; 0.57] 0.58 [0.53; 0.62]  0.48 [0.44; 0.52] 0.41 [0.38; 0.45] 0.52 [0.48; 0.55]  0.45 [0.39; 0.51] 0.44 [0.38; 0.49] 0.49 [0.43; 0.54] 

9 0.52 [0.48; 0.56] 0.38 [0.32; 0.43] 0.53 [0.49; 0.56]  0.44 [0.40; 0.48] 0.24 [0.19; 0.30] 0.46 [0.42; 0.50]  0.34 [0.29; 0.39] 0.22 [0.15; 0.28] 0.34 [0.28; 0.39] 

Mean 0.43   0.42   0.50     0.42   0.34   0.46     0.39   0.37   0.43   

 a Obtained by Bootstrapping 10,000 the adjusted phenotypes and predicted values. 
 
 

 



 

 

Figure S1. Exploration of the optimal number of genetic subpopulations (K) within the set of 

soybean accessions included in this study. A difference in cross-validation error between levels 

of K was used as a criteria. A plateau in Δ cross-validation error at K=9 was used to infer K. 
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