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EXECUTIVE SUMMARY

INCREASING BRIDGE DECK SERVICE LIFE:
VOLUME II—ECONOMIC EVALUATION

Introduction

Deterioration of bridge decks is a primary factor limiting the lifespan

of bridges, especially in cold climates where deicing salts are commonly

used. Research has been previously performed to mitigate deterioration

by controlling deck cracking using improved design methods, such as

bar spacing and cover requirements, or by decreasing the permeability

and porosity of concrete through the use of high performance concrete.

While these methods can improve performance and extend service life,

chloride and moisture ingress, as well as cracking, cannot be eliminated.

Full-depth cracks that are caused by restrained shrinkage allow

for corrosive conditions at early ages in both the top and bottom

reinforcement mats. Therefore, corrosion of the reinforcing steel

ultimately occurs. However, the service life of the deck has the potential

of being significantly improved if corrosion resistant reinforcement

is used.

While epoxy-coated reinforcement has become standard practice to

improve corrosion resistance, this reinforcement type is not immune

to corrosion. Its performance is highly dependent on the condition of

coating. The coating can be damaged even with special care during

manufacturing, transportation, and construction. Therefore, the use of

other corrosion reinforcing materials has significant potential to

provide improved performance. The objective of this research

program was to examine the efficacy of using alternative materials

in a bridge deck from both technical and economic perspectives.

Technical criteria include bond strength, cracking performance, and

corrosion resistance, while economic criteria comprise agency and user

costs associated with construction, replacement, and rehabilitation

over the life cycle.

Findings

Volume I: Technical Evaluation

The technical evaluation was conducted in three phases and

considered a wide range of corrosion resistant reinforcing materials.

These materials included stainless steel (316LN, Duplex 2205, Duplex

2304, XM-28), MMFX II microcomposite steel, and coated steel (epoxy,

dual-coated zinc and epoxy (Z-bar), hot-dipped galvanized, and zinc-

clad).

Bond Strength

The bond strength of corrosion resistant reinforcing materials was

tested to ensure that current design procedures for the calculation of splice

and development lengths are appropriate. Stainless-steel, MMFX II

microcomposite, hot-dip galvanized, and Zbar (dual-coated) reinforcing

bars have bond strengths comparable to black bars. Coated bars other

than galvanized and dual-coated have reduced bond strengths. Epoxy-

coated bars had on average 11% less bond strength than black while un-

plated zinc-clad and tin-plated zinc-clad bar had on average 18% and

26% less bond strength thanblackbars, respectively.Modification factors

were developed for development and splice length calculationswhen other

bar types are used. The test data were also combined with other data

available in literature to construct a simple model for development and

splice length calculations that consider a wide range of corrosion resistant

bar types as well as confined and unconfined conditions.

Cracking Performance

Because the variations in the surface roughness of different corrosion-

resistant reinforcement, cracking performance was evaluated by testing

slab specimens. The effect of bar spacing and the effect of high

reinforcement stresses that can be obtained by high-strength reinforce-

ment (stainless steel or MMFX II) were evaluated. The bar types

affected the spacing and width of primary cracks. For the control of

crack widths, it is recommended that crack widths be calculated based

on black bars and multiplying modification factors. Design code

approaches can directly incorporate these factors to reduce the spacing

of corrosion-resistant bars by dividing the black bar spacing by the

modification factors. Epoxy-coated, galvanized, and MMFX II

microcomposite reinforcing bars do not need modification. Recommen-

dations are provided for the control of crack widths for the other bars

evaluated in this study. Spacing of the reinforcement affected both crack

spacing and crack widths. As the reinforcement spacing increased, the

number of primary cracks decreased and the crack spacing increased.

This trend is consistent with previous test results. Crack spacing and

crack width, however, did not increase significantly after spacing of the

reinforcement became greater than 12 in. For design purposes, the crack

spacing can be considered to be constant for bar spacing greater than

12 in. For a given stress, this results in the same crack widths for

spacings greater than 12 in. In addition, crack widths of high-strength

bars (stainless steel and MMFX II) that have a roundhouse stress-strain

curve will increase nonlinearly at high stresses (.80 ksi). However, the

crack widths of high-strength bars can be conservatively calculated

using the model for conventional black bars up to bar stresses of 80 ksi.

Corrosion Resistance

While all uncracked specimens showed relatively very low currents at

503 days of exposure, several cracked specimens demonstrated high

corrosion activity, which was electronically measured by the macrocell test

and confirmed by visual examination through an autopsy of the specimen.

Autopsy results demonstrated that the longitudinal steel (secondary

reinforcement in a bridge deck) corroded at the intersection with the

transverse steel (primary reinforcement in a bridge deck) while the

transverse reinforcement corroded over its entire length. The transverse

steel, typically located parallel to the cracks, was under direct chloride

exposure over its entire length while the longitudinal steel had direct

exposure only at the location of the cracks. When corrosion-resistant

chromium-based reinforcing steel was used in the top mat and black bars

were used in bottom mats, a galvanic couple resulted where the bottom

black steel corroded to protect the top corrosion-resistant reinforcement.

This galvanic couple occurred because the cracks in the macrocells were

formed full depth where chlorides can easily reach the bottom black bars

from the first day of testing. This condition is realistic as bridge decks have

full-depth cracks that are formed at early ages (v28 days) due to restrained

shrinkage. Both the electrical current measurements and autopsy results

demonstrated that mixing reinforcement where black bars are provided in

the bottom mat is detrimental to corrosion resistance. Specimens that were

tied with black ties indicated more corrosion than specimens with plastic

ties. In addition, tying reinforcing steel with dissimilar metallic materials

resulted in galvanic coupling. When stainless steel ties were used to connect

black reinforcement, increased damage of the black bars resulted.

In addition, black ties used to connect stainless bars resulted in crevice

corrosion and pitting of the stainless steel bar. Only similar metallic or inert

(plastic) materials should be used to tie reinforcement.

Volume II: Economic Evaluation

The study developed a systematic framework for evaluating these

alternative reinforcing materials on the basis of their life-cycle cost.

Case studies involving different scenarios of bridge and operating

characteristics were used to demonstrate the methodological frame-

work, and to develop nomograms (decision support charts) for the

material selection. On the basis of the results of the analysis and the

case studies, it is recommended that deck reinforcement material for

any future INDOT bridge deck design should be selected only after

carrying out a life-cycle cost analysis among other considerations; such



analysis should be preceded by establishment of the decision contexts

and, consequently, values of the identified input parameters for the

life-cycle cost analysis. From a general perspective, it is recommended

that INDOT considers for inclusion in its bridge design or

rehabilitation manual, the decision to support nomograms that specify

the conditions at which each material is optimal from a life-cycle

perspective.

Nevertheless, avenues exist that could be addressedor explored further

to fine-tune the selection process for appropriate deck reinforcement

material alternative for any specific bridge project. First, mathematical

models describing the time-dependent, chloride-induced corrosion

deterioration processes could be incorporated to provide more precise

estimates of the life-cycle activity profiles for each material type.

Secondly, the laboratory experiments carried out as part of this

research (see Volume I of the report) could be followed by full-scale field

studies. For this, it is recommended that a few bridge reconstruction or

deck replacement projects should be selected from INDOT’s long-range

plan or bridge program through an experimental design; for these

bridges or decks, INDOT should apply the three material types in a

controlled experimental setting. The costs (initial construction and

subsequent maintenance), work durations, and the physical condition

and service lives of the bridges or decks having each alternative material

should be closely monitored and recorded over several decades. Doing

this would validate or refine the assumptions made in this study.

The experimental design could include climatic region (northern and

southern Indiana), highway classes, traffic volume, and bridge size.

Implementation

Based on the research conducted in the technical evaluation, a

number of recommendations were developed that address the selection

and design of corrosion-resistant reinforcing bars and are appropriate

for adoption into the INDOT Bridge Design Manual. First, guidance is

provided to assist in the selection of corrosion-resistant reinforcement

based on the duration of testing completed in this study. Extended

corrosion exposure is required to provide improved estimates as well as

differentiation of the materials. It is recommended that both the top and

bottom mats of the bridge deck be constructed of the same reinforcing

material. Mixing of reinforcing material causes galvanic corrosion. It is

recommended that reinforcement be tied with only inert (plastic) ties or

ties made of the same material as the reinforcing bar to avoid galvanic

coupling between tie material and reinforcement. Second, design

recommendations are provided for the calculation of development and

splice lengths including modification factors required for the use of

corrosion-resistant reinforcement. It was found that stainless-steel,

MMFX II, hot-dipped galvanized, and Zbar perform similarly to black

bars and do not require modification. Finally, design recommendations

are provided for the control of cracking and the calculation of crack

widths. The control of cracking is also of importance, even with the use

of corrosion-resistant reinforcement, and is essential for durability of the

bridge deck.

Based on the research conducted in the economic evaluation, a

software tool, RM-LCCA, was developed that can be used by INDOT

and design consultants. The economic evaluation methodology

presented in this study provides a platform to assess the life-cycle

costs of different types of bridge deck reinforcement materials based on

their corrosion resistance as well as their economic efficiency. The

analysis outcome from the RM-LCCA electronic tool can help bridge

engineers and practitioners identify the optimal reinforcement

alternative for a given bridge on the basis of its expected service life,

schedules for rehabilitation and deck replacement, and the accompany-

ing costs to the highway agency and bridge users. The service life of a

bridge deck, even for the same reinforcement alternative, can change due

to factors such as increased loading, rapid changes in the surrounding

environment, and upcoming new policy decisions that can affect the

short-term and long-term service life of preservation treatments. For the

estimated preservation years, the user can incorporate the probability

that the treatment timings will be different from what is specified as the

average. By running the tool several times for different values of the

input variables, the user can simulate the outcome corresponding to

different combinations of the input variables. It is envisioned that as the

benefits of corrosion-resistant reinforcement alternatives are tested and

become recognized, their demand will increase, leading to higher

production and lower unit prices.
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1. INTRODUCTION

Past research has shown that the key factor in bridge deck
deterioration and subsequent deck failure is corrosion of the
embedded reinforcement elements. For bridges located in
cold-climate regions where deicing salts are applied to
control wintertime snow and ice, season, the chlorides from
these salts migrate through the concrete cover to reach the
reinforcement level and destroy the protective passive film of
the steel reinforcement. Once the passive layer is destroyed,
the corrosion process initiates and propagates through the
material, and as the corroded material builds up, it increases
in volume and thus generates high tensile stresses that
eventually lead to irreversible structural damage including
concrete cracking, delamination, and spalling.

A number of treatments aimed at to mitigate chloride
migration by reducing the porosity of concrete has been
experimented; however, these have had only very limited
success because they tend to create problems related to early
age shrinkage cracking. The other option, namely, the use of
corrosion-resistant reinforcement materials in bridge deck
design and construction has been found to potentially reduce
the rate of bridge deck deterioration and enhance bridge
deck service life. Corrosion-resistant reinforcement materials
include epoxy-coated steel, stainless steel, clad steel, fiber-
reinforced polymer bars, MMFX reinforcements, and
carbon fiber bars. These materials have different prices and
effectiveness (in terms of corrosion resistance), thus, it is
necessary to conduct life-cycle cost analysis for each of
material alternative to identify the most cost effective choice.

Against this background, this research seeks to develop a
systematic approach for reinforcement material type
selection to mitigate the pervasive and widespread problem
of bridge deck corrosion. In doing so, this study seeks to
establish the values of the selection criteria that elaborate
the conditions at which the different materials become most
cost effective. The study also examines the impact of the
probabilistic nature of input variables on the relative cost-
effectiveness of each material type. Also, a case study is used
to demonstrate the methodological framework: traditional
(epoxy-coated carbon) steel, clad stainless steel, and stainless
steel are evaluated as possible reinforcements for bridge
decks.

This study assumes that the concrete is sound and also
duly recognizes that the material service life, which
corresponds to different rehabilitation profiles, is a key
factor in bridge investment decisions and that the scheduled
rehabilitation cost, timing, and effectiveness are highly
influential in the evaluation outcome. For each material
type, the expected length of service life and the timings for
the repair or rehabilitation of a bridge deck over the service
life, are specified based on previous studies.

The analytical techniques used include probabilistic life-
cycle costing and multiple-criteria analysis, because rehabi-
litation frequencies and economic parameters such as
interest rates and fuel prices are inherently uncertain in
nature. LCCA enables a comparison of alternatives with
different service lives, costs, and rehabilitation schedules.
The Analytical Hierarchical Process (AHP) is used to
establish the weights of the agency cost to the user costs of

travel time and safety. The last part of the framework is a
demonstration of the sensitivity analysis of the input
variables in the reinforcement material type selection. The
concept of stochastic dominance is used to identify the best
alternative from a probabilistic, life-cycle perspective.
A Microsoft Excel-based software tool (RM-LCCA) is
developed during this study for bridge deck reinforcement
material type selection and for quickly investigating the effect
of varying the values of key inputs on the optimal choice. This
tool will enable INDOT to tailor its reinforcement material
choices to suit a particular bridge given its size, traffic
conditions, and other external conditions associated with the
economy (gas price, discount rate, etc.) and the prevailing
relative prices of the reinforcement materials.

2. REVIEW OF LITERATURE

To acquire insight into the various issues associated with
increasing bridge deck service life through the use of
appropriate reinforcement material, an extensive literature
review on the subject and related topics have been carried
out. This chapter synthesizes the past research on bridge
deck construction materials and their roles in deck
corrosion. The properties of reinforcement materials, the
mechanisms of reinforcement corrosion, propagation, and
the current preventive practices have also been briefly
discussed. Lastly, application of economic analysis is
reviewed within a deterministic and stochastic framework
by conducting probabilistic LCCA for the reinforcement
material alternatives.

2.1 Reinforcement Corrosion

Bridge elements reach their terminal serviceability for a
variety of reasons (e.g., deterioration, structural failure,
corrosion, and load fatigue) (Estes & Frangopol, 2001).
Corrosion is a natural phenomenon that occurs due to
interactions between a material’s properties and the
environment. Chloride attack is a common initiator of
corrosion and continues to be a major problem for
reinforced concrete structures worldwide. The presence of
chloride initiates the corrosion of bridge reinforcement,
which results in rusting, cracking, spalling, and ultimately
reduced load-carrying capacity (Liu & Weyers, 1998).
Corrosion is particularly prevalent in marine environments
or in climates where deicing chemicals are applied during the
winter months. Due to the ingress of chloride from the sea
water, the total life-cycle costs of bridges can increase as
much as 1.5 times if the appropriate treatment is delayed
(Tanaka, Kawano, Watanabe, & Nakajo, 2001). It has been
estimated that the U.S. loses $8.3 billion per year on bridges
alone due to corrosion (Koch, Brongers, & Tompson, 2002).

The effect of chloride exposure differs between steel and
reinforced concrete bridges. Steel bridges corrode visibly due
to direct chloride attack; reinforced concrete bridge
elements, on the other hand, corrode internally and such
corrosion is manifest through visible cracking and spalling
on the concrete surface. Corrosion of the steel reinforcement
occurs in two stages: the initiation (or incubation) period
during which the chloride ions from deicing chemicals or
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marine environments travel through cracks in the concrete
layer travel to the reinforcement level; and the active (or
deterioration) stage during which the steel corrosion initiates
and propagates (Fanous & Wu, 2000). The second stage, in
turn, has two phases: (i) breakdown of the passive layer on
the steel by the chloride ions (Broomfield, 2007; Gu,
Beaudoin, Zhang, & Malhotra, 2001), and (ii) carbonation
due to carbon dioxide reactions with the cement phase of the
concrete (Bertolini, Elsener, Pedeferri, & Polder, 2004).
In other words, when the chlorides diffuse to the depth of the
reinforcing steel, they begin to attack the passive corrosion
protection film on the surface of the steel reinforcement. This
will not result in a decrease in the pH level, and the passive
layer therefore will continually reestablish itself and prevent
active corrosion (Pradhan & Bhattacharjee, 2009). However,
when the concentration of the chlorides at the reinforcement
reaches a threshold level, the passive layer breaks down
and active corrosion initiates (Williamson, 2007). When
the reinforcement corrodes, it increases in volume (by a
factor of 3–6 (Ceran & Newman, 1992) and thus causes
additional tensile forces due to the limited space it occupies,
and this leads to concrete cracking, spalling and overall
degradation (Broomfield, 2007; Fuhr & Huston, 1998).

The deck can be considered as the “roof” of the bridge.
It is the element that is most exposed to rain, ice, salt, deicing
chemicals, and direct traffic load impacts. Due to the
influences of these external forces, the deck typically
experiences spalling, cracking, corrosion, and delamination,
and thus tends to have a relatively fast rate of deterioration
compared to other bridge elements.

To reduce the rate of bridge deck deterioration due to
corrosion, various techniques have been used at highway
agencies. These range from techniques at the bridge design
phase to those at the maintenance phase. For example the
design could be made to have thicker cover or concrete or
non-corrosive reinforcement, or a strict maintenance policy
consisting of regular scheduled (preventive) and corrective
preventive maintenance activities could be carried out to
arrest the deterioration spiral. In the section below, a
number of alternatives associated with the design-related
techniques have been discussed.

2.2 Reinforcement Corrosion Prevention Approaches

There are two major categories of techniques for reducing
chloride ingress into concrete bridge deck: (i) the barrier
techniques, where a barrier is constructed at the concrete
surface that inhibits or retards the rate of chloride ion ingress
through the concrete, and (ii) selection of a reinforcement of
a material type that is inert to chemical attack by the chloride
ions (El-Reedy, 2008; Kepler, Darwin, & Locke, 2000).

2.2.1 The Barrier Technique

The barrier techniques prevent or slow down the ingress
of water, oxygen, and chloride ions into the concrete and
thereby protect the reinforced concrete from corrosion
damage. Some highway agencies have modified their design
standards to include thicker cover requirements for decks
and the use of low-permeability concrete, both of which can

increase the chloride diffusion time through the concrete and
subsequently enhance the deck service life (Williamson,
2007). Corrosion inhibitors (anodic and cathodic) are the
chemical substances that can be added to concrete at the time
of mixing. They can be effective in decreasing the corrosion
rate of the reinforcement by forming a protective film
around the reinforcement without reducing the concen-
tration of the corrosive agent (Monticelli, Frignani, &
Trabanelli, 2000). Deck sealers are solvents or water-based
liquids applied to the deck surface after construction of the
deck or at any time of bridge life, to form a finite
impermeable layer that prevents the chloride penetration
into the concrete (Weyers, Prowell, Sprinkel, & Vorster,
1993). Cathodic protection is an electrochemical technique
that prevents the initiation of corrosion by cathodically
polarizing the reinforcement to increase its potential by
applying a low current. Installing a sacrificial anode (made
of zinc, for example) in the deck is also an example of
cathodic protection: in serving as an anode, zinc (a less noble
metal compared to steel or iron) creates an environment
where the steel reinforcement becomes the cathode, and thus
prevents the reinforcement from corroding (Whiting, Nagi,
& Broomfield, 1996): by applying a temporary anode and
external electric potential on the deck surface, the chlorides
are extracted from the deck. To repair carbonation-induced
corrosion, re-alkalization of a deck can be carried out
(Constantinou & Scrivener, 1997). Other barrier techniques
seclude the use of high performance concrete (HPC), a
standard technique used to slow down chloride ingress, as
the lower water/cement ratio of HPC and its typical
admixtures make it denser and superior in strength
compared to regular concrete (Neville & Aı̈tcin, 1998).

The above techniques, however, can only delay chloride
ingress into concrete and do not ensure a complete, long-
term protection of the reinforcement steel from chloride-
induced corrosion. Thus, the barrier techniques, in and of
themselves, do not present a permanent panacea of the
problem of corrosion. Concrete decks do and will crack due
to different types of loading, fatigue, and distress; and poor
workmanship and inadequate mix proportions, as well as
vehicle collisions with bridge elements, are among other
reasons for cracking in concrete decks (Cope, 2009).
Chlorides and water can and do directly access the
reinforcement through cracks wider than 0.3 mm, regardless
of the cover depth or the admixtures used in the concrete
(Koch et al., 2002). Thus, a more direct technique compared
to the barrier technique is needed to help resist corrosion.

2.2.2 The Reinforcement Material Technique

The reinforcement material technique involves the use of
chloride-resistant materials. The application of materials
such as epoxy-coated steel and stainless steel have gained
industry acceptance over the last several years in a bid to
combat the corrosion problem. Epoxy-coated steel has
often been considered a suitable alternative for carbon steel
as it is capable of serving as a thin barrier between chlorides
and the steel surfaces. In the early 1980s, epoxy-coated
reinforcement (ECR) started becoming widely used as a
corrosion prevention technique as it is found to inhibit the

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2014/17



penetration of water and prevent chlorides from contacting
the reinforcement. ECR, with its small additional expense
and substantial increase in service life, became a viable
reinforcement material option for highway agencies.
A complex fabrication process led to irregularities in
production, however, which resulted in coating “holidays”
during the fabrication process. Coating damage during
transportation and construction also accelerate the absorp-
tion of moisture that often leads to de-bonding of the coating
from the steel and subsequent pitting corrosion (Manning,
1996; Williamson, 2007). Good quality epoxy coatings and
best construction practices help prevent corrosion initiation.
However, once initiated, the corrosion in epoxy-coated bars
often progresses at a rate similar to carbon steel
reinforcements.

As explained in greater detail in Volume 1 of this report,
non-traditional materials such as stainless steel have proven
to be potentially resistant to corrosion and can be
economical for use. Stainless steel material consists of
nickel, molybdenum, and at least 10.5% chromium to
enhance the chloride-induced corrosion resistance and
mechanical properties of the steel. Austenitic and austeni-
tic-ferritic (duplex) type stainless steel is most often used as
an alternative for carbon steel (Bertolini et al., 2004). The
chromium oxide passive layer enables the corrosion rate of
stainless steel reinforcement to be at least 50 times lower than
carbon steel in a chloride-contaminated environment
(Markeset, Rostam, & Klinghoffer, 2006; Nürnberger &
Beul, 1999; Ping, Elliot, Beaudoin, & Arsenault, 1996).
However, the initial cost of stainless steel reinforcement is
several times more than that of carbon steel so the former
may generally be considered more cost-effective mostly for
bridges that tend to be affected frequent and/or extended
closures or that are located in highly corrosive marine
environments. Stainless steel clad (SSC) is a composite
material that helps reduce the reinforcement cost because
there are essentially carbon steel cores that provide the
necessary physical and mechanical strength while maintain-
ing the superior corrosion resistance properties of the
stainless steel bars. Research studies have shown that SSC
bars can be used as direct substitutes for ECR (Clemeña,
Kukreja, & Napier, 2003). The price of SSC bars is generally
lower than that of solid SS reinforcement, and the
corrosion rate of SSC is much lower than that of carbon
steel (Kepler et al., 2000). However, similar to ECR,
improper bonding between the cladding in the SSC bars
(Mietz, 1997) will lead to exposure of the mild steel in
the concrete making it vulnerable to corrosion (Darwin,
Kahrs, & Locke, 2002).

In recent years, to provide better corrosion resistance at a
comparatively lower cost, other corrosion-resistant alloys
have been used as viable alternatives for concrete
reinforcement. MMFX reinforcement, for example, exhibits
four to eight times lower corrosion resistance compared to
uncoated reinforcement, and a one-third to two-thirds lower
corrosion rate. MMFX also has a high corrosion threshold
of 5.36 lb/yd3 with a corrosion rate of 0.024 mil/year so the
first repair therefore is projected to be after approximately
52 years of service life. Some limitations of MMFX include
the reduction in its ductility at ultimate load levels and bond

strength, with further study suggested by the authors.
Overall, MMFX has higher yield strength, better corrosion
resistance, and lower life-cycle costs than ECR (Clemeña &
Virmani, 2003; Hansson, Pourasee, & Jaffer, 2007). Other
novel reinforcement materials include galvanized steel
reinforcement (GSR) and fiber-reinforced plastic (FRP)
reinforcement. However, the rapid corrosion of GSR in wet
cement makes it a less viable option, and FRP’s rapid failure
at the end of its service life is a major limitation of that
material (Cope, Bai, Samdariya, & Labi, 2011). Carbon-
fiber reinforcement is a relatively novel non-metallic
reinforcement.

2.3 Evaluation of Reinforcement Alternatives

In evaluating a new reinforcement material as an
alternative to traditional material, it is imperative to
compare their physical/mechanical and economic properties.
The physical properties include tensile strength, loading
factors, and workability; and the economic properties
include their prices ($/lb).

The physical properties of a reinforcement material
translate into (a) the time needed for placement of the
reinforcement during construction and hence the user costs
associated with the bridge downtime; (b) the longevity of the
concrete element (in this case, the bridge deck) and thus
determines the service life or the analysis period which is a
key input in any life-cycle cost analysis of the alternative
materials. Alternative reinforcement materials having
similar strength values will not significantly influence the
deck design. Therefore, in any economic analysis of these
new materials, there is no need to include any additional cost
of the bridge design man-hours.

Stainless steel or clad stainless steel are superior to
traditional carbon steel in workability and ease of
reinforcement placement. For example, ECR must be stored
away from direct sunlight, fabric or cloth straps must be used
in transportation of the reinforcement, proper instruments
must be used in cutting the reinforcement, and care must be
taken in installation so the epoxy coating is not scratched or
marred (INDOT, 2011). On the other hand, the main
precaution for installing solid or clad stainless steel
reinforcement is that the tie wires, bands, and lifts also
must be made of stainless steel to prevent galvanic corrosion
(NXI, 2008).

A number of laboratory tests have been conducted to test
the corrosion rates of alternative reinforcement materials.
In 2008, a 96-week corrosion-testing program of different
reinforcement materials in concrete slabs is conducted by
FHWA to simulate corrosive marine environments and the
application of winter deicing chemicals. The results indicated
that the slabs containing stainless steel reinforcement
exhibited no damage while both the uncoated carbon steel
and the epoxy-coated carbon steel reinforcement exhibited
pronounced cracking and rust staining. An accelerated
screening test measured the polarization resistance and
weight loss of the reinforcements due to the wet-dry cycles of
a saline solution over an 84-day period (Hartt, Powers,
Lysogorski, Liroux, & Virmani, 2007). The results confirmed
that solid stainless steel exhibited the best performance and
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traditional carbon steel performed the worst. Further, clad
reinforcement with no visible defects showed results close to
the solid stainless steel results, while the performance of clad
reinforcement with visible defects is similar to traditional
carbon steel (Hartt et al., 2007). This testing program also
confirmed that a large variability exists for clad stainless
steel reinforcement, which is dependent on proper manu-
facturing. Xi (2004) performed an evaluation of various
corrosion protection systems of bridges in Colorado. Also,
as part of the current project, Purdue University tested at
least eight different reinforcement material types for bridge
decks over a 3-year period. The results of that experiment are
presented in Volume 1 of this report.

The relatively high cost of stainless steel precludes its
widespread use as a reinforcement material. On average,
both clad and solid stainless steel cost far more than carbon
steel. But this price differential could be explained by scale
economies of material production: a relatively lower volume
of stainless steel production, due to its low-scale use, has led
to a paucity of manufacturers of stainless steel reinforce-
ment. With the current fluctuating economic conditions and
volatile steel prices, it is difficult to find a consistent price for
steel across many different sources. However, the price
differential between traditional carbon steel, clad and solid
stainless steel reinforcing has been fairly consistent. Most
sources state that solid stainless steel generally costs three to
five times more than traditional carbon steel while clad
stainless steel is two to three times costlier than traditional
carbon steel. Clad stainless steel is less expensive than solid
stainless steel; and this price differential is an important
consideration in any cost-effectiveness analysis geared
towards the identification of the optimal reinforcement
material choice. It is hypothesized here that the higher initial
cost of stainless steel is offset by its longer service life (and
concomitant benefits) relative to traditional carbon steel.

2.4 Bridge Deck Service Life

In general, the service life of a bridge deck may be divided
into three sub-phase periods (Phases I, II, and III): design
and construction, service, and post-service, respectively.
At the design phase (I), the initial investments are made in
the design, material selection, and construction of the deck.
The total cost incurred during this phase is referred to as the
initial cost of construction (Bakis et al., 2002). When a bridge
officially opens to traffic, Phase II (service) begins. The costs
in Phase II may include preventive maintenance costs, user
costs such as vehicle operating costs, safety costs, and travel-
time savings (Sinha & Labi, 2007). When a bridge becomes
structurally deficient, it enters Phase III, at which time
rehabilitation and replacement activities will occur and the
associated user costs will become the major costs (Jacobs,
1992). A bridge reaches the end of its service life when it is
permanently closed to traffic. As a result, the total costs of a
bridge over its lifetime, is the sum of the initial cost of
construction is the cost occurring during the deck’s service
life, and the cost occurring during the post-service life
duration.

Most bridges in Indiana typically have reinforced
concrete decks, which, on average, require replacement or

rehabilitation every 20 to 25 years after construction or
replacement (Labi, Rodriquez, & Sinha, 2008). The timing
and intensity of deck rehabilitation and reconstruction
activities are influenced by factors including chloride
exposure, traffic loading, climatic severity, corrosion rates
and threshold of the reinforcement, and available funding.
These parameters themselves are stochastic in nature, but
their average values could be established for specific bridge
deck designs and types.

The base timeline service life is for carbon steel (10 years).
Due to the widespread use of epoxy-coated carbon reinforce-
ment in bridge decks, the service life increases fourfold with
a service life of 40 years. FRP shows a considerable increase
in service life of 65 to 90 years (Boyd, 1997); and it has
been estimated that solid stainless steel has a service life of
75–120 years while clad stainless steel, 75–100 years.

2.5 Analysis Techniques

The analysis to select a material for bridge deck
reinforcement and thus to increase the bridge deck service
life can be carried out using either deterministic or
probabilistic approaches. A deterministic approach esti-
mates the life-cycle cost for a bridge deck using an average
value for the various input parameters. On the other hand, a
probabilistic approach incorporates the stochastic nature (a
range rather than a fixed value) of each input variable into
the estimation of the life-cycle cost for alternative
reinforcement materials. A deterministic approach to the
problem cannot address all variations and will result in a
significant difference between the theoretical computation
and the actual estimations. Thus, the current research
developed aMicrosoft Excel-based software tool (Reinforce-
ment Material-Life-Cycle Cost Analysis, RM-LCCA) which
uses Monte Carlo statistical techniques to allow the analyst
to integrate the input parameter variability into the
estimation of life-cycle cost and subsequent selection of
reinforcement alternatives.

Risk analysis is a part of every decision made by
engineers. A bridge planner/engineer constantly faces
uncertainty, ambiguity, and variability in decision-making.
The current age is one of unprecedented access to
information, nevertheless, it is impossible to predict the
future with absolute certainty. To accommodate the
practical reality of uncertainties in analyzing inputs and
hence, outputs, Monte Carlo Simulation (MCS) can be used.
Using MCS, the analyst can present all the possible
outcomes of decisions based on the input variables and
their associated uncertainties. The impact of the risks can be
assessed, thereby allowing for better decision-making under
uncertainty. MCS is a mathematical technique that allows
users to account for risks in the quantitative analysis of a
problem by generating suitable random numbers and
observing that fraction of the numbers which obeys some
property or properties (Weisstein, 2006). In this study, MCS
takes into account the stochastic nature of the input
variables by randomly selecting numerical values based upon
a known distribution. For example, the average annual daily
traffic (AADT) is often normally distributed, therefore, the
range of possible values for AADT can be defined by the
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mean and standard deviation of the AADT data. Once the
distribution has been identified, random occurrences of
AADT that ultimately and collectively follow this distri-
bution and its parameters (the mean and standard deviation)
can be generated and used as an input in the life-cycle cost
analysis of the reinforcement material alternatives.

Stochastic dominance (SD) is an intuitive analytical tool
that can be used in decision-making to show the superiority
of one cumulative distribution of the life-cycle cost (for a
given material type) over those of other material types. The
concept of stochastic dominance has been extensively used in
different disciplines including finance, operations research
(Levy, 1992), and psychology (Heathcote, Brown, Wagen-
makers, & Eidels, 2010). The SD test is non-parametric in
nature, thus eliminates the chances of model misspecification
(Heyer, 2001). Out of all nth-degree criteria, first-degree
stochastic dominance (FSD) and second-degree stochastic
dominance (SSD) are most useful in identifying reinforce-
ment alternatives. In this research, the cumulative distri-
bution functions of the EUAC of total cost are used to
develop optimal decisions for reinforcement material type
selection between alternatives Ai and Aj. Briefly, if the
cumulative probability distribution function of Ai lies below
that for Aj without intersecting, then it is called first-order
stochastic dominance (FSD). Which mean that we would
prefer alternative Aj; and the high probability and lower cost
of Aj make it more preferable. Graphically, FSD is a very
strong form of dominance, which exists when the cumulative
distribution functions of alternatives do not intersect. If they
do cross, then the second-order stochastic dominance (SSD)
will be useful. In the main report (see Appendix) the
mathematical function of stochastic dominance and its
applications have been discussed in this study.

LCCA for bridge management systems has gained more
recognition in the past decades. Popular bridge management
systems such as PONTIS, BRIDGIT, and IBMS use LCCA
in their internal algorithmic frameworks. The Intermodal
Surface Transportation Efficiency Act of 1991 (ISTEA) and
the National Highway System Designation Act of 1995
encouraged consideration of life-cycle cost in the design and
engineering of highway assets. In the context of this study,
LCCA is used to minimize the total cost associated with
bridge deck construction, rehabilitation, and replacement, as
well as user costs such as traffic delays and vehicle-operating
costs. It allows the comparison of different reinforcement
alternatives with different service lives. The differences in
service lives are resulted from the differences in reinforce-
ment material longevity and the associated frequencies,
intensities of maintenance and rehabilitation over the service
lives. Several state agencies determine a weight for the user
costs while computing LCCA. It is clear that inclusion of the
user costs (benefits to users) can result in increasing an
agency’s financial implications (Lamptey, Ahmad, Labi, &
Sinha, 2005). To avoid bias due to the different activity
profiles and hence service lives associated with the different
reinforcement materials, this study used the life-cycle EUAC
as the criterion for economic evaluation.

The Analytical Hierarchy Process (AHP) is an important
concept that can be used in decision-making involving
multiple criteria such as the decision of selecting an

appropriate bridge deck reinforcement material on the
basis of criteria including agency cost, longevity (service life),
and user cost. AHP can align multiple criteria in an ordered
hierarchy and assess the relative importance of a criterion,
compare the alternatives for each criterion, and finally
determine an overall ranking of the different alternatives
based on the criteria (Dweiri & Al-Oqla, 2006). For complex
multi-criteria decision-making (MCDM) situations, differ-
ent criteria are expressed in different dimensions or units.
Examples of such dimensions include tangible and intangible
costs and benefits. AHP provides assistance in solving this
type of problem (Triantaphyllou & Mann, 1995). Thomas
Saaty (1980; 2008) developed this widely used and popular
tool that deals with complex multiple decision criterion
problems in a logical and simple manner (Elkarmi &
Mustafa, 1993). AHP is based on expert opinion and
experience (Cheng & Li, 2001) and uses a fundamental scale
of absolute numbers that has been validated by physical
and decision problem experiments (Saaty, 1980, 2008).
It converts individual preferences into ratio scale weights
that can be combined into a linear additive weight for each
alternative. The AHP results can be used to compare and
rank alternatives and, which assists the decision-maker in
making a choice. To examine the influence of different
weights, a range of weights sets can be considered in
multiple-criteria analysis.

3. STUDY METHODOLOGY

3.1 Introduction

This chapter describes the steps for the analysis. These
steps consider the reinforcement material alternatives, their
associated service lives, the bridge deck parameters, traffic,
and other inputs and utilize deterministic and stochastic
analysis methods. There are several steps and sub-steps
necessary for the alternative evaluation methodology. This
methodology is implemented by developing a Microsoft
Excel-based software tool (RM-LCCA) to analyze the
alternatives for bridge deck LCCA in a deterministic or
stochastic manner. In the probabilistic analysis, the tool has
the capability to simulate different distribution profiles.

To perform a Monte Carlo simulation, it is necessary to
specify the probability distribution of the input variables,
from which outcomes can be generated based on the
prescribed probability distribution of the inputs. In this
research study, the uncertainties associated with each input
variable are made to follow at least one of four probability
distributions: uniform, normal, lognormal, and triangular.
In order to generate the distribution profiles of the variables
and to enable precise and quick analysis, Visual Basic
algorithms are written for the RM-LCCA tool. Random
numbers with the known probability distribution functions
(PDF) are generated from the transformation of the
standard uniformly distributed random numbers. The
cumulative distribution functions are obtained by integrat-
ing the probability distribution functions; and to generate
the distribution profiles, a minimum of two inputs are
required. For the uniform and triangular distributions, a
range of variables is required; and for the normal and
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lognormal distributions, the mean and standard deviations
are required.

Due to the complexity of decision-making, the stochastic
nature of the inputs, and the large number of data utilized in
the simulations, it is important to choose the number of
samples/iterations required to provide a nearly accurate
solution or to increase the probability of doing so.
An increase in the sample size or the number of iterations
will result in a more accurate estimate, but this approach is
not feasible for an entire range of data. For given
distribution parameters, it has been observed that 10,000
or above iterations can provide a good estimate of the service
life prediction for a given alternative reinforcement.

3.2 Input Variables for Life-Cycle Cost Estimation

The various input parameters can be grouped as follows:
the reinforcement material type, the bridge deck features,
and the economic factors. The reinforcement material-
related parameters are based on the costs and effectiveness
(expected service life) associated with each reinforcement
type. The deck parameters are related to the physical
dimensions of the deck and the features or activities
associated with the deck, such as the traffic volume and the
treatment durations and costs. The economic criteria include
the discount rates for the various costs and the parameters
that affect the travel behavior of road users. The probability
distribution functions of these input variables are the key
pieces of information required in Monte Carlo simulations
to assess the life-cycle cost associated with each of numerous
combinations of the input variables. From another
perspective, the input variables can also be placed in two
categories: generic and material-specific variables. Material-
specific variables are directly influenced by different
reinforcement alternatives, whereas generic variables are
external factors that may influence the selection of
alternative reinforcement materials. The methodology
presented in this study uses generic variables one-by-one to
explain the impact of change for a specific bridge deck under
analysis.

The next set of input variables consists of the project
duration for construction and the preservation activities.
As discussed in the previous section, the project duration has
a direct impact on user costs. The longer the duration, the
longer the delay, resulting in higher user costs associated
with the project. The traffic volume (vehicles per day) is also
an important variable. The detours and work zones
associated with a bridge project either provide alternative
longer routes or reduce the traffic flow and speed through
the work zone, resulting in higher user travel time and delay
costs. The other input variables to compute the initial
construction cost include the bridge dimensions (e.g., length
and width). The unit price of the reinforcement alternatives
and their service lives in years are other input variables.
Changes in material prices could influence the analysis
outcomes in terms of the relative life-cycle cost-effectiveness
of the alterative materials. Economic factors also influence
the choice of deck reinforcement materials. This study
identified five main economic input variables as significant
contributors to the life-cycle cost of bridge construction and

preservation. Based on FHWA recommendations, a 4%
mean discount rate value is selected (Walls & Smith, 1998)
but for purposes of the uncertainty analysis, is varied
stochastically within a given range. Other input variables in
the user cost calculation include the vehicle occupancy,
minimum hourly wage, average fuel economy, and price of
vehicle fuel.

3.3 Estimation Approach: Life-Cycle Cost Analysis (LCCA)

In this study, LCCA is used to evaluate the competing
alternative reinforcement options for increasing bridge deck
service life. LCCA incorporates the initial and discounted
future agency costs and the user costs to identify the best
long-term value of an alternative solution (Hawk, 2003;
Walls & Smith, 1998).

3.4 Reinforcement Material Selection and Associated
Service Life

In LCCA, the first step is to establish the initial
assumptions and to select reinforcement alternatives for
analysis. This involves a determination of alternatives
worthy of consideration. Section 2.5 discussed in detail the
initial decision criteria for selecting the reinforcement
alternatives on the basis of their physical, technical, and
economic properties. In general, reinforcing materials that
exhibit similar physical properties to the traditional material
are analyzed in this study. These alternatives are more
expensive compared to traditional material but exhibit
superior resistance to chloride-induced corrosion.

While a great deal of specific reinforcement impact
analysis for bridge deck service life has been conducted in the
past, this research provides an analysis methodology and
electronic tool that can be used for deterministic and
probabilistic LCCA for currently available and future
reinforcement materials. In this study, the tool is used for
evaluating traditional epoxy-coated steel, solid stainless
steel, and clad stainless steel.

After identifying the reinforcement materials, the second
step is to determine the activity profiles for the bridges whose
decks would be reinforced using each material under
consideration. The activity profiles include all of the
treatments to the bridge over its entire life, from initial
construction to the end of the useful service life of the deck.
The occurrences of rehabilitation and the deck replacement
timings differ for these alternatives, for example, the
rehabilitation cycle for Indiana bridges for carbon steel is
generally 20 years, whereas the first rehabilitation for clad
steel occurs around 40 to 45 years of service life (Labi et al.,
2008; NXI, 2008).

The activity profile or schedule for a traditional bridge is
normally based on historical rehabilitation records of typical
bridges and. For the bridges in Indiana and this study, these
profiles are based on the Indiana Bridge Management
System (Sinha, Labi, McCullouch, Bhargava, & Bai, 2009)
and FHWA research (Yunovich, Thompson, Balvanyos, &
Lave, 2001). The service life profile is estimated based on
laboratory testing and literature sources (FHWA, 1998;
NXI, 2008). The differences in bridge preservation schedules
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across the alternatives translate into differences in the costs
incurred by the agency and users over the bridge life.

3.5 Life-Cycle Cost Estimates

Step three involved determining the life-cycle costs
associated with each reinforcement material type. Life-
cycle cost estimation can be divided into three components:
the initial (agency) construction costs, the rest-of-life
preservation (rehabilitation and deck replacement) costs
borne by the agency, and the rest-of-life user costs. The
agency costs refer to the expenditures incurred by an
agency in providing and maintaining a bridge deck, which
consist of the construction and preservation costs over the
life-cycle of a bridge deck, where the preservation costs
include the costs associated with rehabilitation or
reconstruction of the bridge decks; the initial cost of
construction includes the costs of advance planning,
preliminary engineering, final design, right-of-way acqui-
sition, and construction. Preservation costs include all of
the costs to rehabilitate and reconstruct a bridge deck
throughout its lifetime.

During bridge construction or rehabilitation, users
experience delays, lower safety, and higher vehicle mainten-
ance expenditures associated with detours or work zones,
which can be quantified in monetary terms to represent the
adverse impacts of work zones or detours. Often the
monetary costs borne by the user are important and
therefore, the inclusion of this cost category appears logical
and necessary; the weighting scheme is also necessary since
the user costs typically greatly outweigh the agency costs.
The inclusion of user cost considerations bring in a multiple-
criteria dimension to the evaluation problem, thus necessi-
tating the use of analysis tools such as multiple criteria
analysis and AHP.

In this study, the unit bridge deck replacement and
rehabilitation contract costs have been established from
historical data and calculated using the average costs ($/ft2)
of bridge decks. The historical data are the as-built costs of
past bridge contracts in Indiana where the main motivation
is deck replacement or rehabilitation; and the preservation
costs used in this study are reflective of the current
practices in Indiana. It is noted that the initial costs and
preservation costs can differ across regions due to
different climate, loading, or other factors, but the
uncertainties in costs can be overcome by using probabil-
istic analysis.

User costs are commonly due to the reduced user safety
and increased travel time caused by deficient bridges and
associated detours or work zones during construction
activities. For the purposes of this research study, it is
assumed that for a given bridge, there are no differences in
functional or structural capacity for each material alterna-
tive, thus, any difference in the user costs are delay costs only
due to the work zones associated with their different life-
cycle profiles. User costs include direct and indirect costs
such as loss of time and additional fuel if a detour or work
zone is used. The sum of the costs incurred due to additional
travel time and additional fuel consumption yielded an
estimate of the user costs due to delay. The source of the

equations used for calculating the costs of additional travel
time and fuel due to bridge work zones is Chitturi,
Benekohal, and Kaja-Mohideen (2008).

Also, it is assumed that the placement practices for
different reinforcement alternatives are similar and require a
similar project execution duration, which validates the
assumption that for a given work zone, the work zone user
cost does not vary by material alternatives. However, the
frequency of work zones differs across the material types.
Therefore, the overall user costs will differ in the case of
varied work zone frequencies over the service life, which
means that more frequent work zones lead to longer user
delays and, subsequently, higher user costs. The importance
of the user costs consideration has been highlighted by
various state agencies and organizations.

In life-cycle cost estimation, the user costs usually far
exceed the agency costs, and identifying the relative weight
of the agency costs to the user costs always remains a critical
issue. There is no consensus in the literature regarding the
relative weight between agency cost and user cost, and the
weighting approach therefore is often based on expert
opinion. Weighting is influenced by various circumstances,
such as different work scenarios, locations, and past
experiences. As such, in various past studies, researchers
are unable to address the relative weight issue. With this in
mind, the present research uses stochastic variation in the
agency to user cost weights to determine the impact on
alternative selection. These weights in practice are outcomes
of either surveys or expert opinion. Therefore, AHP is
adopted to address this situation. Since no fixed quantitative
weights are available for agency to user costs, AHP allows
highway agencies and decision-makers to identify the
weights with minimal life-cycle cost estimation for alterna-
tive evaluation.

After establishing the activity profiles, other input
variables and the associated uncertainties, as probability
distribution functions, are determined in order to estimate
the associated costs. This study proceeds to conduct LCCA
with EUAC using Monte Carlo simulation to generate the
cumulative distribution functions of the EUAC for the
alternative reinforcement materials. The NPV evaluation
reflects the value of the project (all present and future cash
flows and discount amounts) at the time of the base year of
the analysis, which may be consider as the year of decision-
making. Periodic routine maintenance is considered inde-
pendent of the bridge reinforcement material so it is assumed
that it would not affect the reinforcement selection; thus, the
routine maintenance costs are therefore not considered in the
NPV calculations. The same is with salvage cost, which is not
included in the case study. The NPV equation provided some
initial indication of the amount of capital needed for the
lifetime of the bridge.

Monte Carlo simulation allows for the probabilistic
description of EUAC on the basis of several different
random combinations of input variables that have individual
probability distributions. In the case study, the uncertainty
of the input variables is governed by normal distributions,
and the final EUAC computation is generated on the
cumulative distribution profiles for the alternative rein-
forcement materials. The methodology presented in this
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study uses AHP to determine the weights for the agency and
user costs.

3.6 Stochastic Dominance for Alternative Selection

To evaluate the alternative reinforcement materials over
the life cycle and against the background of uncertainty in
the input variables, the theory of stochastic dominance is
used. For a given project, in the case study, the levels of the
input attributes are varied with a given range of variance to
calculate the “simulated” life-cycle cost. The output for this
analysis generated the cumulative distribution functions of
the agency, user, and total costs for each reinforcement
material type. The stochastic dominance concept can help
the decision-maker assess, in a more robust fashion, the
relative superiority of alternative reinforcement material
types on the basis of the cumulative distribution of their
simulated life-cycle costs.

4. CASE STUDY AND DATA ANALYSIS

The methodology presented in this study enables a
reinforcement material selection decision to be made in
uncertainty situations where the input variables are
probabilistic. This chapter examines the impacts of the
considered reinforcement alternatives on the probabilistic
lifetime cost savings for a give individual project of known
characteristics. This analysis is conducted for new construc-
tion projects, however, it is noted that the rest-of-life cost
analysis can also be carried out for existing bridges using the
same framework.

The RM-LCCA tool is capable of evaluating more than
two material options and considers the initial bridge
construction costs and subsequent preservation activities.
In this study, three different reinforcement alternatives are
analyzed: traditional or epoxy-coated carbon steel (CS), clad
stainless steel (CSS), and solid stainless steel (SS). The
stochastic analysis results are presented in the Appendix to
compare the life-cycle cost of alternative deck reinforcement
types.

4.1 Deterministic Scenario

For the case study, two bridges are identified to
demonstrate the utility of the methodology and the impact
of alternative reinforcement materials on their service lives
and budgets: (i) a large bridge with high traffic volume and
(ii) a small bridge with low traffic volume. These bridges are
assumed to be built using traditional steel as their deck
reinforcement material. Bridges under construction can
either have specified detour routes or require its users to
travel through the work zone at a reduced speed; the two
bridges in this case study involved detours.

Using the input data, the life-cycle agency and user costs
are determined and the EUAC calculated for each bridge.
For the deterministic (certainty) scenario, the analysis
results suggest that the EUAC is the lowest for bridge with
solid stainless steel deck reinforcement, followed by clad
stainless steel, and highest for traditional carbon steel. Equal
weights of agency cost to user cost are considered for this

probabilistic analysis. The results include plots of the
cumulative distributions of the EUAC of the agency costs,
user costs, and total costs for each of the two bridges, which
demonstrate the importance of the life-cycle agency cost over
the user cost for small-scale bridge projects. Also, the results
show that it is critical to consider these relative weights in the
evaluation of the total life-cycle cost for the reinforcement
material selection. It is suggested that the agency costs can be
an effective measure to evaluate alternative reinforcement
for small-scale projects only, whereas both agency and user
costs become important to evaluate larger projects as one
such project can impose costs on a large group of users.

4.2 Stochastic Scenario

As discussed in the previous chapters, the input variables
for estimating bridge life-cycle costs are typically determi-
nistic but usually occur within certain ranges and may follow
some probability distributions. There are a large number of
possible influential input variables. For all of these input
variables, it is assumed, based on the certainty value, that the
variance in the normal distribution is 10% of the mean value.
The software tool has the capability to choose a specific
variance with the input parameters. The unit cost for bridge
rehabilitation and deck replacement is based on the
literature review (Yunovich et al., 2001); and these numbers
were generated randomly according to the assumed
distribution. The concept of stochastic dominance is used
to identify and assess the extent of the superiority of one
alternative over others. The concept involves a comparison
of the probability distributions of the costs or benefits of two
alternatives (Clemen, 1996). For instance, if an alternative A
stochastically dominates another alternative B, then, even
though not all of the possible values of A are better than any
value of B, for a certain given level, the probability that A is
better than the given level is equal or greater than the
probability that B is greater than the given level. Then,
obviously, A is better than B. In the context of this research,
the cumulative probability distribution for EUAC is used to
assess the stochastic dominance across the alternatives. It is
seen that, for a given EUAC, the probability exists that
stainless steel achieves an EUAC equal to or greater than
that for clad stainless steel and traditional steel. These results
suggest that, at each EUAC level, the probability that the
cost is less than a given value for the stainless steel alternative
is equal to or greater than that for clad stainless steel and
traditional steel alternatives. Thus, from the perspective of
superiority in terms of the EUAC, the stainless steel
alternative stochastically dominates the other two alterna-
tives. In the cases where clear dominance is not obviously
visual, then the area bounded by the cumulative distribution
functions can be used to measure the superiority of the
reinforcement alternatives. The trapezoidal rule is applied to
measure the area bounded by the two curves. For the given
two bridge cases, the superiority of both clad stainless and
stainless steel reinforcement over traditional steel for bridges
#1 and #2, are observed.

The concept of first-order stochastic dominance is then
used to evaluate the superiority of stainless steel over clad
stainless steel and traditional steel for bridge #1. The graphs
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developed in this research that show second-order stochastic
dominance (computing area bounded by functions), suggest
that the clad stainless and stainless steel is superior to the
traditional steel. It is observed that for a certain range of
input variables, the traditional steel becomes a superior
choice compared to stainless steel, particularly when the
weight of agency cost dollar far exceeds that of the user cost.
The analysis results also suggest that within the range of
input data used, clad stainless steel is always a preferable
choice to traditional steel, irrespective of the relative weights
between agency cost and user costs; also, for a certain limit
of EUAC, clad stainless steel is a superior alternative to
stainless steel. However, from the second-order stochastic
dominance view, it is clear that stainless steel is a preferable
choice to clad stainless steel, albeit with a margin that is
small compared to the superiority of stainless steel over
traditional steel.

From the EUAC analysis results, it is observed that for
bridge #1(small bridge and low traffic volume), the agency
cost far exceeded the user cost. The opposite is observed for
bridge #2 (large bridge and high traffic volume). Thus, for
bridge #1, the agency cost alone could be used to determine
the relative feasibility of the alternative reinforcement
materials, a clear first order dominance is exhibited by
bridge #1. However, the concept of agency to user weights
becomes important for large high-volume bridges such as
bridge #2. The total EUAC analysis results are presented for
the weighted user costs for bridges #1 and #2.

4.3 Sensitivity Analysis

Sensitivity analysis with weighted user costs and discount
rates is carried out to determine how these variables
influence the alternative reinforcement selection. First,
agencies do not follow any clear-cut policy or guideline
regarding the relative weights of user cost and agency cost,
stochastic as well as different fixed weights for user cost are
analyzed in order to examine the outcomes of these weights.
Second, the discount rates influence decision-making in life-
cycle costing which hinges on the time value of money. The
user costs directly reflect the inconvenience experienced by
road users due to repeated bridge rehabilitation and
construction. Past research has established that work zones
are the second largest contributor to non-recurring delay on
freeways and principal arterials (Yunovich et al., 2001). This
study focuses on the agency and the user cost estimation to
assess the feasibility of alternative reinforcement. The user
costs are further classified into the cost for additional travel
time (TC) and the vehicle operating cost (VOC). AHP is used
to assess the weights for deterministic scenarios for these two
costs to give a final total life-cycle cost value.

Due to the uncertainty associated with the discount rate,
it is useful to study the impact of varying the discount rate on
the analysis outcome. Thus, the sensitivity of the EUAC to
different levels of the discount rate ranging from 2% to 10%
is analyzed. The stochastic EUAC results are calculated with
only the agency cost in consideration for both bridges #1
and #2. The resulting stochastic dominance charts suggest
that for each of the discount rates considered, stainless steel
is a preferable option to clad stainless steel and traditional

steel. Nevertheless, the band of cumulative distribution of
the EUAC of the total costs for clad stainless steel shrinks
with an increase in the discount rate. In other words, for
higher discount rates, the relative attractiveness of clad
stainless steel decreases, whereas stainless steel still remains
an attractive choice.

5. SUMMARY, DISCUSSION, AND
RECOMMENDATIONS

Many state highway agencies are investing a significant
portion of funds in bridge infrastructure preservation in
response to the deterioration of the bridge deck and other
bridge elements. Such deterioration has increased drastically
in the last decade as many bridges in U.S. are approaching
the end of their service lives. Bridge decks deteriorate due to
the loadings and a corrosive climate. Every year, billions of
dollars are spent to address bridge deck cracking, delamina-
tion, and scaling. Deck repair or replacement becomes
necessary in addition to strengthening the bridge structure in
the case of severe cracking (Minor, White, & Busch, 1988).
The literature review of this study concludes that preventive
measures are more cost-effective than repair/restoration
measures. For example, repairing a damaged bridge deck
will cost five to ten times more than installing some form of
preventive measure (Rostam, 1991). As mid-service life
preventive treatment has been proven to be cost-effective in
reducing corrosion-induced damage, bridge planners and
designers can enhance their tasks by assessing the life-cycle
cost of corrosion-reducing reinforcement alternatives for
new bridges.

Several studies have been conducted to assess the life-
cycle cost of individual reinforcement alternatives from both
the material and the economic evaluation perspective and
have demonstrated the associated benefits and costs.
To further extend the service life of infrastructure, several
novel reinforcing material types have been adopted (or at
least are undergoing experimentation) by individual highway
agencies.

The methodology presented in this study provides a
platform to assess the life-cycle costs of different types of
bridge deck reinforcement materials based on their corrosion
resistance as well as their economic efficiency. The analysis
outcome from the RM-LCCA electronic tool developed in
this study can help bridge engineers and practitioners
identify the optimal reinforcement alternative for a given
bridge on the basis of its expected service life, schedules for
rehabilitation and deck replacement, and the accompanying
costs to the highway agency and bridge users. The service life
of bridge deck, even for the same reinforcement alternative,
can change due to factors such as increased loading, rapid
changes in the surrounding environment, and upcoming new
policy decisions that can affect the short-term and long-term
service life of preservation treatments. For the estimated
preservation years, the tool incorporates the probability that
the treatment timings will be different than what is specified
as the average. By running the tool several times for different
values of the input variables, the user can carry out Monte
Carlo simulation of different combinations of the input
variables.
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In sum, this study compares the costs, benefits, and cost-
effectiveness of different reinforcement material types using
the concept of first-order and second-order stochastic
dominance. Two bridges from Indiana (one small in size,
low-volume and the other large in size, high-volume) are
used for the case study to assess the relative stochastic
superiority of stainless steel, clad stainless steel, or
traditional steel using a multi-criteria approach. Based on
all of the analysis, it is determined that solid stainless steel is
a superior alternative to clad stainless steel and traditional
carbon steel for two extreme bridge cases. The case study is
presented to showcase the methodology.

New and more efficient materials are becoming available
for bridge construction. Even though they have higher initial
costs, they often lead to drastic reductions in life-cycle cost,
particularly when user costs are considered in the analysis.
Where the agency cost only is considered for LCCA analysis,
the projected costs of these materials are exceptionally high
due to low production and adaptability in the market at the
early stages and, consequently, low economy of scale. It is
envisioned that as the benefits of the newer reinforcement
alternatives are tested and become recognized, their demand
will increase, leading to higher production and lower unit
prices as a result.

There is a number of software tools that carry out life-
cycle cost estimation for bridge projects. Such tools address
issues of corrosion initiation, propagation, and subsequent
cracking based on chloride-induced corrosion. Examples of
such software tools are STADIUM concrete analysis and
Life-365. These tools are basically built for decision support
regarding concrete treatments such as installing a barrier or
a water membrane. On the basis of the chloride diffusion
principle, most of these tools tend to predict service life very
well but are less successful in carrying out detailed economic
analysis of the use of reinforcement materials. RM-LCCA,
which is developed in this study, provides a platform where
different alternative reinforcement materials can be evalu-
ated for their life-cycle costs and benefits.

The methodology, software tool, and case study devel-
oped in this study yield intuitive and interesting results.
However, there are areas that should be addressed to make
the evaluation even more comprehensive. Mathematical
models describing the time-dependent chloride-induced
corrosion deterioration processes could be incorporated in
the tool. These models would enable designers to be more
confident about assumptions of the timings of rehabilitation
actions and the overall life cycle of the bridge deck and the
bridge itself. The capability of including specific models
involving the initiation and progression of corrosion,
cracking, and spalling could greatly enhance the reliability
of the prescribed activity profiles for each reinforcement
material type.
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1. INTRODUCTION

1.1 Background and Problem Statement

At the current time, highway agencies are grapplingwith the
ever-increasing rates at which bridge elements approach their
design lives vis-à-vis limited funding formaintenance. This is a
critical issue for agencies, particularly in the face of higher user
expectations, greater traffic loads, and limited staff. As such,
agencies are seeking to construct highway infrastructure that
are expected to last longer with minimal frequency and
intensity of rehabilitation and maintenance during their
service lives. Opportunities for doing this exist for bridges, a
critical part of overall highway infrastructure system. As of
2009 in the U.S., the average bridge age is 43 years; 42% of
bridges have reached their average life expectancy, and
another 35%will reach this age within the next 20 years; also,
only 23% of existing bridges are relatively younger in age
(FHWA, 2009; see Figure 1.1). Every year, billions of dollars’
worth of work is carried out to address bridge deck cracking,
delamination, and scaling; and deck repair or replacement
becomes necessary in addition to strengthening the bridge
structure in the case of severe cracking (Minor, White, &
Busch, 1988). Also, significant amounts are expended on
preventive measures (Rostam, 1991).

In recent years, numerous strategies have been proposed or
adopted to enhance bridge deck service life in a cost-effective
manner. A number of bridge management systems have been
developed for supporting cost-effective decisions for con-
struction, maintenance, rehabilitation, and replacement
work (Hawk&Small, 1998;Lauridsen,Bjerrum,Andersen,&
Lassen, 1998; Thompson et al., 1998). These investment
decision frameworks are based on life-cycle costing, and the
prime objective is to identify and implement the best possible
strategy that ensures an adequate level of service for the
lowest possible life-cycle cost to achieve a certain minimum
level of performance or maximum life-cycle benefits to be
earned for a given budget level (Frangopol & Furuta, 2001;
Thoft-Christensen, 1995). Life-cycle cost analysis (LCCA) is
defined by the Federal Highway Administration (FHWA) as
a process for evaluating the total economic worth of a usable
project by analyzing the initial costs and discounted future
costs, such as maintenance, reconstruction, rehabilitation,
restoring, and resurfacing costs as well as user costs, over the
life of the project (FHWA, 1998). It is worth noting that the
timings, costs, and effectiveness of the maintenance,
rehabilitation, or replacement of a specific bridge deck are
characterized by a large degree of variability and hence,
uncertainty, because they depend on a variety of factors
including the type of material used and the environmental
conditions. Therefore, the concept of uncertainty needs to be
considered in the life-cycle cost analysis.

Past research has shown that the key factor in bridge deck
deterioration and subsequent deck failure is corrosion of the
embedded reinforcement elements. In cold-climate regions,
deicing salts are applied to control snow and ice during the
winter season. The chlorides from these salts migrate
through the concrete cover to reach the reinforcement level
and destroy the protective passive film of the steel
reinforcement. Once the passive layer is destroyed, the
corrosion process initiates and propagates. As the corrosion

products accumulate, they generate high tensile stresses
which eventually lead to irreversible structural damage
including concrete cracking, delamination, and spalling
(Hartt, Powers, Lysogorski, Liroux, & Virmani, 2007;
Yunovich, Thompson, Balvanyos, & Lave, 2001).

Various treatments aimed at arresting corrosion by
reducing the porosity of concrete to mitigate chloride
migration have only very limited success because such
treatments create problems related to early age shrinkage
cracking. The use of corrosion-resistant reinforcement
materials in bridge design can potentially reduce the rate
of bridge deterioration and enhance bridge deck service life.
There are numerous materials for this purpose, such as
epoxy-coated steel, stainless steel, clad steel, fiber-reinforced
polymer bars, MMFX rebars, and carbon fiber bars. These
materials have different costs and effectiveness and therefore
need to be evaluated by analyzing all their respective agency
and user costs over their respective service lives.

1.2 Research Objective

The main objective of this research is to develop a
systematic framework for reinforcement material type
selection for a given bridge under prevailing conditions of
traffic volume, bridge size, and other features associated with
the bridge, the natural environment, and the economy.
Indoing so, this studyexamines the impactof theprobabilistic
nature of input variables on the relative cost-effectiveness of
each material type. The framework is intended to facilitate
identification of the conditions at which eachmaterial is most
cost-effective. Another objective is to demonstrate the study
methodology using a case study involving epoxy-coated steel,
clad stainless steel, and stainless steel as alternative
reinforcement materials for the bridge deck.

1.3 Overview of This Technical Report

This report first identifies the materials for bridge deck
construction, discusses the common problems and treat-
ments associated with these materials, and finally, focuses in

Figure 1.1 Deterioration rates and preservation needs by age
group (FHWA, 2009).
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detail on one specific category of these materials: deck
reinforcement, on the basis of the assumption that the
concrete is sound. It is recognized duly that the material
service life, which corresponds to different rehabilitation
profiles, is a key factor in bridge investment decisions and
that the scheduled rehabilitation cost, timing, and effective-
ness are probabilistic. The average timings for the repair or
rehabilitation of bridge decks are specified using information
from past studies. A large number of timing scenarios were
evaluated in order to identify the cost-effective scenario that
best reduces spending by reducing rehabilitation frequency,
increasing bridge deck service life, and lowering life-cycle
costs.

The analytical techniques used in the study include
probabilistic life-cycle costing and multiple-criteria analysis
(e.g., Analytical Hierarchical Process (AHP)). Since rehabi-
litation frequencies and economic parameters such as
interest rates and fuel prices are inherently uncertain in
nature, the LCCA is carried out while accommodating the
stochastic behavior of the inputs. The output results are
compared in term of the stochastic dominance of the
cumulative distribution functions associated with different
material alternatives. The LCCA enables a comparison of
alternatives with different service lives, costs, and rehabilita-
tion schedules. The AHP is used to evaluate the relative
weights across the multiple criteria (agency and user costs).
The last part of the framework is a demonstration of the
sensitivity of the outcome (choice of the reinforcement
material type) to different levels of the input variables.

A Microsoft Excel-based software tool (RM-LCCA) was
developed as part of this study to serve as a decision support
tool for INDOT for purposes of identifying the optimal type
of bridge deck reinforcement material and for quick
investigation of the effect of varying the levels of key inputs
on the optimal choice. This tool will enable agencies to tailor
their reinforcement material choices to suit any individual
bridge at a specific location under specific traffic and other
external conditions.

2. LITERATURE REVIEW

2.1 Introduction

To acquire insight into the various issues associated with
increasing the service lives of bridge decks by appropriate
selection of reinforcement material, an extensive literature
review on the subject was carried out. This chapter
synthesizes the past research on the main materials for
bridge deck construction and their roles in deck corrosion; it
also discusses the properties of reinforcement materials, the
mechanisms of reinforcement corrosion, propagation, and
the current preventive practices. Lastly, relevant past work
on application of relevant analytical techniques including
LCCA, AHP, and stochastic dominance, is reviewed.

Bridge superstructure and substructure (see Figure 2.1)
are designed to carry and transmit loads. The beams and
girders are intermediate members that transfer the live and
dead loads of the superstructure to the sub-structural
elements. As the “roof” of the bridge, the deck is the element
that is most exposed to rain, ice, salt from the sea, spray or

deicing chemicals, and traffic loading impacts. Under the
influence of external forces such as salt and loading, bridge
elements deteriorate continually. For example, a typical
reinforced concrete bridge deck experiences spalling
(Xanthakos, 1996), cracking (MacGregor & Bartlett,
2000), corrosion (Clear & Hay, 1973), and delamination.
In certain cases, the timing decisions for bridge repair are
aided by bridge instrumentation: sensors installed at
strategic locations on the bridge provide tell-tales of
defective conditions and thus alert the agency when there
is a need for corrective maintenance, rehabilitation, or
replacement (Benmokrane, El-Salakawy, El-Ragaby, &
El-Gamal, 2007; Schmitt et al., 2009).

2.2 Reinforcement Corrosion and Preventive Measures

Bridge elements reach their terminal serviceability for a
variety of reasons that include deterioration, structural
failure, and load fatigue (Estes & Frangopol, 2001).
Corrosion occurs due to interaction between a metallic
material and the environment. The presence of chloride
initiates the corrosion of bridge reinforcement material,
resulting in rusting, cracking, spalling, andultimately reduced
load-carrying capacity of the deck (Liu & Weyers, 1998).
Thus, as stated in Chapter 1 of this appendix, chloride attack
is a key deterioration factor and continues to be a major
problem for concrete structures worldwide, particularly in
marine environments or in climates where deicing chemicals
are applied during the wintermonths. At coastal areas, due to
the ingress of chloride from the saline environment, the total
life-cycle cost of a bridge canbe asmuch as 1.5 times that of its
non-coastal counterpart, particularly if the appropriate
treatment is delayed (Tanaka, Kawano, Watanabe, &
Nakajo, 2001). It has been estimated that overall, the U.S.
loses $8.3 billion per year on bridges alone due to corrosion
(Koch, Brongers, & Tompson, 2002).

2.2.1 Reinforcement Corrosion

The effect of chloride exposure differs between steel and
reinforced concrete bridges. Steel bridges visibly corrode due
to direct chloride attack; on the other hand, reinforced
concrete bridges corrode internally which is then manifest

Figure 2.1 Structural elements of a typical highway bridge
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outwardly in the form of cracking and spalling. The
corrosion of steel reinforcement takes places in two stages:
the initiation or incubation period in which chloride ions
travel to the rebar level and the active or deterioration stage
in which corrosion of the steel initiates and then propagates
(Fanous &Wu, 2000). The corrosion of steel occurs through
the following mechanisms: (i) breakdown of the passive layer
on the steel by the chloride ions (Broomfield, 2007; Gu,
Beaudoin, Zhang, & Malhotra, 2001), and (ii) carbonation
due to carbon dioxide reactions with the cement phase of the
concrete (Bertolini, Elsener, Pedeferri, & Polder, 2004).

When the chlorides diffuse to the depth of the reinforcing
steel, they begin to attack the passive film of the corrosion
protection products present on the surface of the steel. This
will not result in a decrease in the pH level, and the passive
layer therefore will continually reestablish itself and prevent
active corrosion (Pradhan & Bhattacharjee, 2009). However,
when the concentration of the chlorides at the reinforcement
reaches a threshold level, the passive layer on the steel
reinforcement surface breaks down and active corrosion
initiates (Williamson, 2007). The corrosion of the reinforce-
ment in turn causes concrete degradation due to additional
tensile forces exerted by the corroding steel; and as steel

corrodes, the volume expands by a factor of 3–6 (Ceran &
Newman, 1992), and these forces cause concrete cracking
and, eventually, spalling (Broomfield, 2007; Fuhr & Huston,
1998). Figure 2.2 illustrates the stages of this mechanism:
chloride ingress, stress development, and concrete cracking
and spalling.

There are two major strategies for bridge decks to arrest or
retard corrosion: (i) the barrier method: construction of a
barrier at the concrete surface that stops or slows down the
travel of chloride ions through the concrete (Type 1), and (ii)
selection of a reinforcement material that is inert to chemi-
cal attack by the chloride ions (Type 2) (El-Reedy, 2008;
Kepler & Locke, 2000). We discuss these in the next sec-
tion. Figure 2.3 shows the treatments currently available that
can be applied to prevent or mitigate bridge deck corrosion.

2.3 Corrosion Protection Systems Type I

The first type of corrosion protection is to establish a
barrier that prevents the chloride ions from reaching the
reinforcement. For doing this, depending on the condition of
the concrete or steel, an agency may increase the cover-depth
requirements for decks or use low-permeability concrete,

Figure 2.2 Corrosion propagation in steel rebar and concrete spalling (source: http://www.frpdistributors.com/).
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Figure 2.3 Bridge deck corrosion treatment strategies (Olek, 2010).
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both of which increase the chloride diffusion time through
the concrete and subsequently enhance the deck service life
(Williamson, 2007).

Barrier methods prevent the ingress of water, oxygen, and
chloride ions into the concrete and protect reinforced
concrete from corrosion damage. These treatments are for
direct application to bridge decks or concrete. Deck sealers
are either solvents or water-based liquids applied to the deck
surface that create a finite impermeable layer to prevent the
penetration of chloride into the concrete (Weyers, Prowell,
Sprinkel, & Vorster, 1993). Corrosion inhibitors are
chemicals added to the concrete mixture during construction
of the deck to ensure a sufficient concentration of the
inhibitor at the depth of the reinforcement (Williamson,
2007). They decrease the corrosion rate of the rebar by
forming a protective film around the rebar without reducing
the concentration of the corrosive agent (Monticelli,
Frignani, & Trabanelli, 2000). In the electrochemical
method, cathodic protection is widely used. Cathodic
protection prevents the initiation of corrosion by cathodi-
cally polarizing the reinforcement to increase its potential by
applying a low current. Installing a sacrificial anode such as
zinc in the deck is also an example of cathodic protection.
Zinc, a metal less inert compared to steel or iron, will act as
the anode thereby making the steel reinforcement act as the
cathode, thereby not allowing the reinforcement to corrode
(Whiting, Nagi, & Broomfield, 1996). By applying a
temporary anode and external electric potential on the
deck surface, the chlorides are extracted from the deck.
To repair carbonation-induced corrosion, re-alkalization of
a deck can be carried out (Constantinou & Scrivener, 1997).
To reduce the rate of chloride ingress, the use of high
performance concrete (HPC) is the standard technique;
HPC’s lower water/cement (w/c) ratio and admixtures make
it denser and superior in strength (Neville & Aı̈tcin, 1998).

The above-describe barrier techniques can only delay
chloride ingress into concrete and do not ensure the
protection of the reinforcement steel from chloride-induced
corrosion. The practical reality is that concrete deck cracks
due occur due to a variety of reasons that include loading,
fatigue, distress, poor workmanship, inadequate mix
proportions, vehicle collision with bridge elements, among
others (Cope, 2009). Thus, no matter how extensive barrier
techniques are used, chlorides and water will ultimately
access the reinforcement through cracks, particularly those
wider than 0.3 mm (Koch et al., 2002). Thus, an alternative
or a complement to the barrier techniques is the use of inert
material for the reinforcement. We discuss this in the next
section.

2.4 Corrosion Protection Systems Type II

Reinforcement materials such as epoxy-coated steel and
stainless steel have gained industry acceptance over the last
several years to combat the corrosion problem. Epoxy-
coated steel has long been considered a viable alternative for
carbon steel as the epoxy had successfully extended the
element lives by serving as a barrier between the attacking
chlorides and the steel surfaces. To achieve a very long
service life, materials that are inherently immune to chloride

attack are needed. Thus, materials such as stainless steel
became promising options. Some other alloy materials, such
as MMFX rebars, have shown themselves to be potentially
very resistant to corrosion and can be economical for use.
The next sub-section discusses different reinforcement
materials in use and their associated benefits and limitations.

2.4.1 Epoxy-Coated Rebar

In the early 1980s, epoxy-coated rebar (ECR) started
becoming widely used as a corrosion prevention method as it
was found to inhibit the penetration of water and prevent
chlorides from contacting the rebar. ECR, with its relatively
little additional expense and observed substantial increase in
service life, became a viable reinforcement material option
for highway agencies. However, it became increasingly clear
that its complex fabrication process led to irregularities in
production, resulting in “coating holidays” that developed
during the fabrication process. Also, damage to the coating
during transportation and construction leads to absorption
of moisture that in turn causes de-bonding of the coating
from the steel and subsequent pitting corrosion (Manning,
1996; Williamson, 2007). Good quality epoxy coatings and
best construction practices help prevent corrosion initiation;
however, once initiated due to any of the above-mentioned
reasons, the corrosion in epoxy-coated bars often progresses
at a rate similar to carbon steel rebars.

2.4.2 Stainless Steel Rebar

Stainless steel rebar is composed of nickel, molybdenum,
and at least 10.5% chromium to enhance the steel’s
mechanical properties and its resistance to chloride-induced
corrosion. Austenitic and austenitic-ferritic (duplex) type
stainless steel is most often used as an alternative for carbon
steel (Bertolini et al., 2004). Due to the passive chromium
oxide layer, the corrosion rate of stainless steel rebar is at least
50 times lower than that of carbon steel in a chloride-
contaminated environment (Markeset, Rostam, &Klinghof-
fer, 2006;Nürnberger&Beul, 1999;Ping,Elliott, Beaudoin,&
Arsenault, 1996). On the other hand, the initial cost of
stainless steel rebar is several times more than that of carbon
steel so it is typically considered more cost-effective only at
severely corrosive marine environments or where it is sought
to drastically minimize bridge downtime (and hence, the
associated user costs) where traffic volumes are very high.

2.4.3 Stainless Steel Clad Rebar

Stainless steel clad (SSC) bars are stainless steel tubes with
a carbon steel core. This composite material helps reduce the
cost of the reinforcement by mostly using the relatively less
expensive carbon steel that provide the necessary physical
and mechanical strength while maintaining the superior
corrosion resistance properties of the stainless steel material
on its outer layer. Research studies have shown that SSC
bars can be used as direct substitutes for ECR (Clemeña,
Kukreja, & Napier, 2003). It has been stated in the literature
that the cost for SSC bars is lower than that of solid SS rebar
and their corrosion rate is twofold lower than that of carbon
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steel (Kepler & Locke, 2000). However, similar to ECR,
improper bonding between the cladding in the SSC bars
(Mietz, 1997) will lead to exposing the mild steel in the
concrete and subsequent corrosion will progress (Darwin,
Kahrs, & Locke, 2002).

2.4.4 Alloy Reinforcement (MMFX)

In recent years, corrosion-resistant alloys have been used
as viable alternatives for concrete reinforcement in a bid to
provide superior corrosion resistance at a relatively lower
cost. Table 2.1 provides details on some of these materials.
MMFX rebar, for example, exhibits four to eight times lower
corrosion resistance compared to uncoated rebar, and a one-
third to two-thirds lower corrosion rate. MMFX also has a
high corrosion threshold of 5.36 lb/yd3 with a corrosion rate
of 0.024 mil/year so the first repair therefore is projected to
be after approximately 52 years of service life. Some
limitations of MMFX include the reduction in its ductility
at ultimate load levels and bond strength, with further study
suggested by the authors. Overall, MMFX has higher yield
strength, better corrosion resistance, and lower life-cycle
costs than ECR (Clemeña & Virmani, 2003; Hansson,
Pourasee, & Jaffer, 2007).

Other relatively novel reinforcement materials include
galvanized steel rebar (GSR) and fiber-reinforced plastic
(FRP) rebar. However, the rapid corrosion of GSR in wet
cement makes it a less viable option, and FRP’s rapid failure
at the end of its service life is a major limitation of that
material (Cope, Bai, Samdariya, & Labi, 2011). Carbon-
fiber reinforcement is a relatively new non-metallic material
for reinforcement.

2.5 Evaluation of Reinforcement Alternatives

In evaluating a new reinforcement material as an
alternative to traditional epoxy-coated carbon steel, a
comparison of the physical/mechanical and economic
properties of the reinforcement material is imperative. The
physical properties include tensile strength, loading factors,
and workability; and the economic properties include price.

Stainless steel and clad stainless steel are generally
considered superior to traditional (epoxy-coated carbon)
steel in workability and ease of reinforcement placement.
For example, ECRmust be stored away from direct sunlight,
fabric or cloth straps must be used in transportation of the

reinforcement, proper instruments must be used in cutting
the rebar, and care must be taken in installation so the epoxy
coating is not scratched or marred (INDOT, 2011). For solid
or clad stainless steel reinforcement, the main precaution
during installation is that the tie wires, bands, and lifts also
must be made of stainless steel to prevent galvanic corrosion
(NXI, 2008).

A number of laboratory tests have been conducted to test
the corrosion of alternative reinforcements. A 96-week
corrosion-testing program of different rebar materials in
concrete slabs was conducted by FHWA in 2008 to simulate
corrosive marine environments and the application of winter
deicing chemicals. The results indicated that the slabs
containing stainless steel rebar exhibited no damage while
both the uncoated carbon steel and the epoxy-coated carbon
steel rebar exhibited pronounced cracking and rust staining.
An accelerated screening test measured the polarization
resistance and weight loss of the reinforcements due to the
wet-dry cycles of a NaCl solution over an 84-day period
(Hartt et al., 2007). The results confirmed that solid stainless
steel performed the best and traditional carbon steel
performed the worst. Further, clad rebar with no visible
defects showed results that were similar to that found for
solid stainless steel, while the performance of clad rebar with
visible defects was similar to that of the traditional carbon
steel (Hartt et al., 2007). This testing program also confirmed
that there is a large variability regarding the effectiveness of
clad stainless steel reinforcement due to the large influence of
the quality of its manufacture. Xi (2004) performed an
evaluation of various corrosion protection systems of
bridges in Colorado. Also, as part of the current project, at
least eight different reinforcement material types for bridge
decks over a 3-year period were tested at Purdue University’s
Bowen Laboratory. The results of that experiment are
presented in the main volume of this report.

The relatively high cost of stainless steel precludes its
widespread use as a reinforcement material. On average,
both clad and solid stainless steel cost far more than carbon
steel. However, the issue of scale economies is worthy of
consideration. A relatively lower volume of stainless steel
production, due to its low-scale use, has led to a paucity of
manufacturers of stainless steel reinforcement. With the
current fluctuating economic conditions and volatile steel
prices, it is difficult to find a consistent price for steel across
many different sources. However, the price differential
between traditional carbon steel and clad and solid stainless

TABLE 2.1
Performance details of two alloy-based reinforcement materials

Alloy Type Composition

Corrosion Initiation

Time Ratio*

Cost

Ratio*

MMFX-2 (ASTM A615 Grade 75) Low carbon, low chromium

micro-composite steel

2 2–4 times

2101LDX (ASTM A955-98) 1.5% Ni, 21% Cr 7

3Cr12 3% Ni, 12% Cr 1.6

Source: Hansson et al. (2007).
* Compared to traditional (carbon) steel.
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steel reinforcing has been fairly consistent. Most sources
state that solid stainless steel generally costs several times
more than carbon steel while clad stainless steel is more
costly than traditional carbon steel. These price differentials
are important considerations in any cost-effectiveness
analysis that seeks to identify the optimal reinforcement
material. It is hypothesized here that the higher initial cost of
stainless steel is offset by its longer service life (and
concomitant benefits) relative to traditional carbon steel.
It has been suggested in the literature that the service life of a
two-layer, solid and clad stainless steel rebar potentially can
be twice that of traditional epoxy-coated carbon steel.

2.5.1 Bridge Deck Service Life

In general, the service life of a bridge deck may be divided
into three phases: design and construction, service, and post-
service. At the design phase (I), the initial investments are
made in the design, material selection, and construction of
the deck. The total cost incurred during this phase is referred
to as the initial cost of construction,CINT (Bakis et al., 2002).
When a bridge officially opens to traffic, Phase II (service)
begins. The costs (CSL) in Phase II may include preventive
maintenance costs, user costs such as vehicle operating costs,
safety costs, and travel-time savings (Sinha & Labi, 2007).
When a bridge becomes structurally deficient, it enters Phase
III, at which time rehabilitation and replacement activities
will occur and the associated user costs will become the
major costs,CPSL (Jacobs, 1992). A bridge reaches the end of
its service life when it is permanently closed to traffic. Thus,
the total costs of a bridge over its lifetime, CT can be
expressed as:

CT ¼ CINT þ CSL þ CPSL ð2:1Þ

whereCT represents the total cost over the bridge deck life-cycle,
CINT is the initial cost of construction, CSL is the cost occurring
during the deck’s service life, and CPSL is the cost occurring
during the post-service life duration.

Table 2.2 presents the three sub-phase periods and the
associated costs of a bridge deck during its service life, as well
as possible causes of bridge deck failure or structural
deficiency.

Most bridges in Indiana typically have reinforced concrete
decks that, on average, require replacement or rehabilitation

every 20–25 years after construction or replacement (Labi,
Rodriguez, & Sinha, 2008). Figures 2.4 and 2.5 illustrate a
typical chloride-based bridge deck service life profile and
a treatment profile during a deck life cycle, respectively.
The frequency and intensity of deck rehabilitation and
reconstruction activities depend on factors such as the
chloride exposure, traffic loading, corrosion threshold of
reinforcement, and available funding). These parameters
themselves are stochastic in nature, but an average value can
be defined for specific bridge deck types. Table 2.3 shows the
mean estimated service life for different rebar selections.

As the table indicates, the base timeline service life is for
uncoated carbon steel (10 years). Due to the widespread use
of epoxy-coated carbon reinforcement in bridge decks, the
service life increases fourfold with a service life of 40 years.
FRP shows a considerable increase in service life of
65–90 years (Boyd, 1997); and solid stainless steel has an
estimated service life of 75–120 years while clad stainless
steel has an estimated service life of 75–100 years.

2.6 Analysis Techniques

The process for selecting the deck reinforcement material
can be carried out on the basis of conditions that are either
deterministic or probabilistic. A deterministic approach

Figure 2.4 Bridge deck corrosion with service life.

TABLE 2.2
Bridge deck phases, failure causes, and associated costs

Cost (CT) CINT CSL CPSL

Phase Design and Construction Service Post-service

Possible causes

for bridge deck

deterioration

Budget

constraints,

economical and

political (non-

tech) issues and

policy change

Budget

constraints,

economical and

political (non-

tech) issues and

policy change

Budget

constraints,

economical and

political (non-

tech) issues and

policy change

Estimation and

construction

error

Traffic growth

Environmental

corrosion

Traffic growth

Environmental

corrosion
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estimates the life-cycle cost for a bridge deck using an average
value for the various input parameters. A probabilistic
approach, on the other hand, incorporates the stochastic
nature of the input variables into the estimation of the life-
cycle cost. A deterministic approach to the problem cannot
address all variations and will typically result in a significant
difference between the theoretical computation and the
actual output. Thus, the current research developed a
Microsoft Excel-based software tool (Reinforcement
Material-Life-Cycle Cost Analysis, RM-LCCA) which uses
techniques that allow for the integration of input parameter
variability into the estimation of life-cycle cost and
subsequent selection of reinforcement alternatives.

2.6.1 Monte Carlo Simulation Method

Bridge planners and engineers constantly face uncertainty,
ambiguity, or risk (variability) in decision-making. Monte
Carlo Simulation (MCS) is a mathematical technique that
helps account for risk in the quantitative analysis of a
problem. This is often done by generating suitable random
numbers and observing that fraction of the numbers that
obeys some property or properties (Weisstein, 2006). Using
MCS, the probability of each possible outcome can be
ascertained, and the best reinforcement material in terms of
the life-cycle cost, under the most likely conditions, can be
determined. Such a quantitative statement of the uncertainty
can help the agency assess the risks associated with the
decision problem and thus facilitates more informed and
more robust decision-making. In this study, MCS takes into

account the stochastic nature of the input variables by
randomly selecting numerical values based upon a known
distribution. For example, the average annual daily traffic
(AADT) is normally distributed; therefore, the range of
possible values for AADT can be defined by the mean and
standard deviation of the AADT data set. After the
probability distribution for each input variable has been
identified, randomly generated values for each variable canbe
obtained; the developed distribution, rather than the average
or default single value, then serves as the input for the life-
cycle cost analysis; the outcome is the relative attractiveness
of the alternative materials in terms of the probability
distribution of their life-cycle costs.

2.6.2 Stochastic Dominance

Stochasticdominance (SD) isan intuitiveanalytical tool that
canbeused indecision-making that can show the superiorityof
one cumulative distribution (developed from the MCS
probability distributions) compared to the cumulative distri-
butions of other alternatives. The concept of stochastic
dominance has been used extensively in disciplines including
finance, operations research (Levy, 1992), and psychology
(Heathcote, Brown, Wagenmakers, & Eidels, 2010). The SD
test is non-parametric innature, thus eliminating the chancesof
model misspecification (Heyer, 2001). Out of all nth degree
criteria, first-degree stochastic dominance (FSD) and second-
degree stochastic dominance (SSD) are most useful in
identifying reinforcement alternatives.

In this research, the cumulative distribution functions of
the EUAC of total cost are used to develop optimal decisions
for reinforcement material type selection between any two
alternatives, say Ai and Aj. Briefly, if the cumulative
probability distribution function of Ai lies below that for Aj

without intersecting, then it is called first-order stochastic
dominance (FSD). We will be measuring costs so Ai . Aj

would mean that we would prefer alternative Aj; and lower
cost of Aj and its higher probability make it more preferable.
Graphically, FSD is a very strong form of dominance, which
exists when the cumulative distribution functions of
alternatives do not intersect. If they do cross, then the
second-order stochastic dominance (SSD) will be useful.
Chapter 3 of this Appendix discusses the mathematical

Figure 2.5 Typical bridge deck service life profile (Cope, 2009).

TABLE 2.3
Bridge deck mean service life for different reinforcement material types

Reinforcement Material

Estimated Mean

Service Life (Years)

Carbon steel rebar 10

Epoxy-coated rebar 40

Fiber-reinforced plastic bars 65–90

Solid stainless steel rebar 75–120

Clad stainless steel rebar 75–100

Sources: Ceran & Newman (1992), NXI (2008), Yunovich et al. (2001).
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function of stochastic dominance and its adoption in the
current study.

2.6.3 Life-Cycle Cost Analysis (LCCA)

LCCA for bridge management systems has gained more
recognition in the past decades; and popular bridge
management systems (BMS) such as PONTIS, BRIDGIT,
and the Indiana Bridge Management System (IBMS) use
LCCA in their analyses and decision-making processes. The
Intermodal Surface Transportation Efficiency Act of 1991
(ISTEA) and the National Highway SystemDesignation Act
of 1995 encouraged consideration of life-cycle cost in the
design and engineering of highway assets.

In this study, LCCA was used to minimize the total cost
associated with bridge deck construction, rehabilitation, and
replacement, as well as the user costs associated with traffic
delays and vehicle-operating costs. It allows for the
comparison of different reinforcement alternatives with
different longevities (and hence, service lives) and different
activity profiles (maintenance/rehabilitation frequencies and
intensities). In computing LCCA, some state agencies or
research efforts explicitly or implicitly specify a weight for the
user cost (Lamptey, Ahmad, Labi, & Sinha, 2005). LCCA
can be measured in terms of net present value (NPV), internal
rate of return (IRR), or equivalent uniform annual cost
(EUAC). In this study, we use EUAC to express the life-cycle
cost due to the different service lives of each material type.

2.6.4 Analytical Hierarchical Process (AHP)

AHP is an important concept that can be used in decision
problems that involve multiple (two or more) criteria. AHP
can align multiple criteria in an ordered hierarchy and assess
the relative importance of a criterion, compare the
alternatives for each criterion, and finally determine an
overall ranking of the different alternatives based on the
criteria (Dweiri & Al-Oqla, 2006; Triantaphyllou & Mann,
1995). AHP is based on expert opinion and experience
(Cheng & Li, 2001) and uses a fundamental scale of absolute
numbers that has been proven in practice and validated by
physical and decision problem experiments (Saaty, 1980).
Thomas Saaty developed this widely used and popular tool
that deals with complex multiple decision criterion problems
in a logical and simple manner (Elkarmi & Mustafa, 1993).
AHP converts individual preferences into ratio scale weights
that can be combined into a linear additive weight w(a) for

each alternative a. Table 2.4 shows the AHP scale for
pairwise comparison. The results can be used to compare
and rank alternatives and, hence, can assist the decision
maker in making a choice. To examine the influence of
different weights, stochastic weights can be considered in
multiple-criteria analysis.

2.7 Chapter Summary

This chapter provided a review of the literature on
reinforcement corrosion and prevention and the mitigation
strategies used by various agencies, and the various
analytical methodologies that can be used in identifying
the most cost-effective material reinforcement option.

3. STUDY METHODOLOGY

3.1 Introduction

This chapter describes the steps for the analysis
(Figure 3.1). These steps consider the reinforcement
alternatives, associated service lives, deck parameters,
traffic, etc. and utilize deterministic and stochastic analysis
methods. First, an overall life-cycle cost methodology was
established to assess each material type. The relative weights
of the multiple criteria (user and agency costs) were
established using AHP. This methodology was implemented
by developing a Microsoft Excel-based electronic tool (RM-
LCCA). Then, recognizing that each input factor in the
LCCA is inherently probabilistic, the LCCA was made more
robust by carrying outMonte Carlo simulation of the LCCA
using the probability distributions of the input factors. The
concept of stochastic dominance was then used to interpret
the resulting cumulative distributions of the life-cycle cost.

3.2 Life-Cycle Cost Analysis (LCCA)

In this study, LCCA was used to evaluate the competing
reinforcement options for increasing bridge deck service life.
LCCA incorporates the initial and discounted future agency
costs and the user costs to identify the best long-term value
of an alternative solution (Walls & Smith, 1998). (Table 3.5
presents the LCCA inputs.)

3.2.1 Reinforcement Selection and Associated Service Life

In LCCA, the first step is to establish the initial
assumptions and to identify the alternatives for the analysis.

TABLE 2.4
AHP scale for pair-wise comparison

Intensity of Importance Definition Explanation

1 Equal importance Two factors contribute equally to the objective

3 Somewhat more important Experience and judgment slightly favor one over the other

5 Much more important Experience and judgment strongly favor one over the other

7 Very much more important Experience and judgment very strongly favor one over the other

9 Absolutely more important The evidence favoring one over the other is of the highest possible validity

2, 4, 6, 8 Intermediate values When compromise between any two choices is needed

Source: Saaty (2008).
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Section 2.5 discussed in detail the initial selection criteria for
the reinforcement materials for the analysis, and these are
based on their physical properties and economic character-
istics. In general, the reinforcement materials that were
considered in this study exhibit very different prices and
longevities but otherwise similar physical properties (for
example, strengths) and technical features (for example, site
preparations).

After identifying the reinforcement materials, the second
step was to establish the activity profiles for the bridges with
the different materials for their deck reinforcement. The
activity profiles included all of the treatments to the bridge
over its entire life, from initial construction to the end of the
useful service life. Table 3.1 presents the rehabilitation and
deck replacement schedules for bridges with specific types of
reinforcement material. The timings of rehabilitation and the
deck replacement differ across these alternatives; for example,
the rehabilitation cycle for Indiana bridges for carbon steel
decks is generally 20 years (Sinha, Labi, McCullouch,
Bhargava, & Bai, 2009), whereas the first rehabilitation for
clad steel is estimated to occur at approximately 40–45 years
of service life (NXI, 2008).

The activity profile or repair schedule for a traditional bridge
is typically established by expert opinion or historical
rehabilitation records. For Indiana and this study, these
profiles were based on information from the Indiana Bridge
Management System (Sinha et al., 2009) and FHWA research
(Yunovich et al., 2001); and the service life profile was
estimated based on laboratory testing and literature sources
(FHWA, 1998; NXI, 2008). The differences in bridge

preservation activity profiles or schedules across the material
alternatives translate into differences in the overall life-cycle
costs incurred by the agency and users over the bridge life.

A typical probabilistic activity profile for a bridge in its
service life is shown in Figure 3.2, where distribution
represents the probability of occurrence of rehabilitation,
and replacement and the arrow represent the mean time in
years found in the literature.

3.2.2 Cost Estimates

Step three involved determining the costs associated with
the various alternatives. Cost estimation can be divided into
three components: initial construction costs (which are
borne by the agency), preservation (rehabilitation and deck
replacement) costs that are borne by the agency, and user
costs. Thus, the agency costs consist of the construction and
preservation costs over the life-cycle of a bridge deck; and
the preservation costs include the costs associated with
rehabilitation or reconstruction of the bridge deck. During
bridge construction or rehabilitation, users experience
delays, lower safety, and higher vehicle maintenance
expenditures associated with detours or work zones, which
can be quantified in monetary terms to represent the adverse
impacts of work zones or detours. The inclusion of user cost
considerations infuses a multiple-criteria dimension to the
evaluation problem. Often, the overall monetary value of the
user costs greatly outweighs that of the agency costs;
therefore, application of some relative weighting is often
needed to avoid bias generated by the excessive level of user
costs.

3.2.3 Agency Costs

Agency cost, in the problem context, refers to the
expenditures incurred by an agency in providing and
maintaining a bridge deck. The initial cost of construction
includes the costs of advance planning, preliminary
engineering, final design, right-of-way acquisition, and

Figure 3.1 Study framework flow diagram.

TABLE 3.1
Mean activity profile for bridge life-cycle after construction

Alternative

Reinforcement

Activity

Epoxy-Coated

Steel

Clad

Stainless

Steel

Stainless

Steel

First rehabilitation 20 45 45

First deck replacement 45 75 –

Second rehabilitation 60 – 75

Estimated service life (year) 75 100 100

Source: Cope (2009).

(a) Normal

(b) Uniform

(c) Log-normal

Rehabilitation
Deck Replacement

Rehabilitation

End of service life
Initial Construction

Typical bridge service life

Year
0 t1 t2 t3 tsl

Figure 3.2 Illustration of probabilistic variation in bridge
preservation activity profile.
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construction. Most of these costs are common across the
alternatives and thus may not need to be included in the
analysis. The preservation costs include all of the costs to
rehabilitate and reconstruct a bridge deck throughout its
lifetime. The statistical model developed by Saito, Sinha, and
Anderson (1990), which can be used for aggregate estimation
of the bridge replacement cost, is as follows:

BRTC ¼ 1:1556BL 0:9036DW 0:964 ð3:1Þ
Where, BRTC is the total bridge construction cost in thousands
of dollars for all bridge types (1985 constant dollars); BL is the
bridge structure length in ft.; and DW is the out-to-out bridge
deck width in ft. A factor of 2.12 was used to convert 1985
constant dollars into 2012 constant dollars (FHWA, 2012).

For a bridge using a material for deck reinforcement other
than traditional steel, the additional cost of the bridge due to
the use of more expensive material (relative to traditional
steel) is given by (PAlt (PT) 6 WD. Thus, the initial con-
struction costs for a bridge using a given reinforcement
material type is given by:

ACAlt
initial ¼ BRTC þ ðPAlt � PT Þ6WD ð3:2Þ

Where, ACAlt
initial is the bridge construction/replacement cost for a

given deck reinforcement material type; PT is the unit price of
traditional steel ($/lb); PAlt is the unit price of given
reinforcement material type; and WD is the weight (in lbs) of
the bridge deck reinforcement.

In this study, the unit bridge deck replacement and
rehabilitation contract cost values were established from
historical data and calculated using the average costs ($/ft2) of
bridge decks. Average costs were used because most of the
statistical models produced to date do not segregate projects
for which corrosion of the bridge decks is the main incentive
for reconstruction. By using the average cost values, one can
be more certain that other costs due to structural insufficiency
or other construction problems are not included. Equations
3.1 through 3.5 were used to compute the agency costs for the
reinforcement materials.

ACT
Deck replacement ¼ BL £DW £ CDP ð3:3Þ

ACAlt
Deck replacement ¼ BL £DW £ CDP þ PAlt 2 PTð Þ £WD

ð3:4Þ
ACDeck rehab ¼ BL £DW £ CDR ð3:5Þ

Where, ACT
Deck replacement deck replacement cost for traditional

carbon steel deck; ACAlt
Deck replacement is deck replacement cost

for a given reinforcement material type;CDP is the unit cost of
deck replacement, in $/ft2; and CDR is the unit cost of deck
rehabilitation, in $/ft2.

The historical data utilized were the as-built costs of
Indiana bridge contracts where the main motivation was
deck replacement or rehabilitation; and the preservation
costs used in this study are reflective of the current practices
in Indiana. It is noted that the initial costs and preservation
costs can differ across regions and specific bridges due to
different climate, loading, or other factors; in probabilistic
analysis, such cost uncertainty are addressed.

Figure 3.3 presents the bridge rehabilitation treatments in
the life-cycle activity profiles and the costs (as well as the cost

ranges for purposes of probabilistic analysis) (Schnell &
Bergmann, 2008). For our case study, a Portland cement
concrete overlay was used because (1) it is considered an
appropriate treatment to rejuvenate the wearing surface and
to repair any cracking or spalling damage, and (2) it is
generally difficult to predict, from a general planning
perspective, the frequency or severity of areas needing
patching for analysis and forecasting procedures. It was also
assumed that the treatment life of these rehabilitation
treatments is similar across the different alternatives.

3.2.4 User Costs

User costs are commonly due to the reduced safety and
increased travel time of road users arising from structurally
deficient or functionally obsolete bridges, and the detours or
work zones associated with construction or rehabilitation
activities. For the purposes of this study, it was assumed that
the bridge under investigation has no functional or structural
problems so any difference in user costs are only the delay
costs due to the work zones associated with their different
life-cycle profiles. User costs also include direct and indirect
costs such as loss of time and additional fuel if the bridge
preservation involves a detour or work zone. The sum of the
costs incurred due to additional travel time and additional
fuel consumption yields an estimate of the user costs due to
delay. The equations used for calculating the costs of
additional travel time and fuel due to bridge work zones are
as follows (Chitturi, Benekohal, & Kaja-Mohideen, 2008):

UCworkzone
TTC ¼ BL

Speedworkzone

2
BL

Speednormal

� �
£ ADT

£ T £UnitVOT ð3:6Þ

UCdetour
TTC ¼ DL

SpeedDL

� �
£ ADT £ T £UnitVOT ð3:7Þ

UCdetour
VOC ¼ DL £ ADT £ T £UnitVOC ð3:8Þ

UnitVOT ¼ Vehicle occupancy

£Minimum hourly wages ð3:9Þ

UnitVOC ¼ Fuel Costð$Þ
Fuel Economy ðmiles per galÞ ð3:10Þ

Where, DL is the detour length; ADT is the average daily
traffic; T is the project duration in days; UnitVOT is the unit
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Figure 3.3 Rehabilitation cost comparison (in 2012 dollars).
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value of travel time ($/hr); UnitVOC is the unit vehicle
operating cost ($/vehicle-mile); SpeedDL is the travel speed in
the detour zone; Speedworkzone is the travel speed in the work
zone; and Speednormal is the travel speed in a normal
operation period (that is, when the bridge is not undergoing
any repair).

The daily user cost due to a bridge work zone is calculated
as the sum of the constituent costs of delay and VOC. It is
assumed that the placement efforts (man-power and time)
for the different reinforcement materials do not differ
significantly from each other and thus the work duration for
a specific instance of construction or deck replacement is
same across the alternatives. Therefore, the life-cycle user
cost will differ across the alternatives only in terms of the
number of work zones over the service life (in other words,
the frequency of deck replacement over the service life); this
means that more frequent work zones lead to longer user
delays and, subsequently, higher user costs.

As we have explained earlier in this chapter, in life-cycle
cost analysis, the calculated user cost typically far exceeds
the agency cost, and implicit or explicit relative weighting
between the two criteria is carried out to avoid bias in the
LCCA outcome. However, identifying the relative weight
remains a critical issue. There seems to be no consensus in
the literature regarding the actual relative weight between
agency cost and user cost, and this weighting therefore is
often based on expert opinion. Weighting is influenced by
various circumstances, such as different work scenarios,
locations, and past experiences. As such, in various past
studies, researchers were unable to address the relative
weight issue. In this study, AHP was used to help establish
the relative weights.

After establishing the activity profiles and the input
variables and their respective probability distribution
functions, this study proceeded to carry out Monte Carlo
simulation to generate the cumulative distribution functions
of the life-cycle cost (in terms of the EUAC) for each
reinforcement material type. The EUAC was calculated
from the NPV (the value of all the present and future cash
flows and discount amounts at the base year of the analysis).
The NPV provided some initial indication of the capital
needed for construction and rehabilitation over the bridge
lifetime. The intensity of annual routine maintenance was
considered independent of the bridge reinforcement material
type and thus was not considered in the life-cycle costing.
Also, it was assumed that for salvage value or disposal costs
are equal across the material alternatives.

EUAC was used instead of NPV for the life-cycle cost
analysis because EUAC is useful for comparing alternatives
with different service lives and allows a direct comparison
between the annualized costs of bridge decks reinforced with
alternative reinforcement materials.

EUACRM ¼
X

j;k;l
/ ðACÞ þ bðTTCÞ þ gðVOCÞ

h i

£ r £ ð1þ rÞn
ð1þ rÞn 2 1

� �
ð3:11Þ

Where, RM is reinforcement material alternative; AC is the
sum of the present worth of the agency cost of initial

construction, rehabilitation, and deck replacement; TTC
and VOC are the sum of the present worth of the travel time
cost and vehicle operating cost of detours or work zones for
initial construction, rehabilitation, and deck replacement;
/ , b, and � are the weight factors assigned to AC, TTC, and
VOC, respectively; j, k, and l are the initial construction,
rehabilitation, and deck replacement activities occurring in
bridge service life respectively; r is the discount rate; and n is
the bridge service life (years).

Monte Carlo simulation allows for the probabilistic
description of EUAC on the basis of several different
random combinations of input variables that have individual
probability distributions. In our case study, the uncertainty
of the input variables was governed by normal distributions,
and the final EUAC computation was generated on the
cumulative distribution profiles that were generated for the
alternative reinforcement material types. Figure 3.1 shows
the flow diagram for the analysis steps.

3.2.5 Analytical Hierarchical Process Methodology

The methodology presented in this study uses AHP to
determine the relative weights between the agency and user
costs. The AHP procedure is explained as follows (Saaty,
2008):

Step 1: Determine the problem and goals. Develop a
hierarchical structure [goals-criteria-sub-criteria-alternatives].
Assuming there are n criteria (factors) to consider, the
construct of a pair-wise comparison weight matrix, if the
relative weights are already known:

A ¼ ðaijÞn£n ¼
a11 . . . a1n

..

. . .
. ..

.

an1 . . . ann

0
BBB@

1
CCCA

here; aii ¼ 1; aij ¼ 1

aji
; ði; j ¼ 1; 2; . . . ; nÞ

ð3:12Þ

Use this matrix form to determine eigenvalues:

Av ¼ lv

So v is an eigenvector of matrix A corresponding to
eigenvalue l.

Step 2:Multiply the elements of every row and take the nth

power to compute the geometric mean:

b11

..

.

bnn

0
BBB@

1
CCCA here; b1j ¼ 11ja1j . . . a1n wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiYn
j¼1

aij
n

vuut

ðwhere; i ¼ 1; 2; . . . ; nÞ

ð3:13Þ

Step 3: Now the normalized weights are as shown:

wi ¼ wiPn
i¼1 wi

ð3:14Þ

On the basis of AHP, Figure 3.4 demonstrates the goal,
criteria, and alternative selections. The overall goal is
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minimizing the total EUAC, and the criteria are the agency
and user costs (travel time and vehicle operating costs). The
presented methodology does not directly evaluate alterna-
tives based on AHP and stops the AHP process only at the
point where it identifies the normalized weights for the
criteria shown in Figure 3.4. These weights further are used
with the output of Monte Carlo simulation and analyzed for
their stochastic dominance.

3.3 Values of the Input Variables

The next set of input variables contains the project
duration for construction and the preservation activities.
Project duration has a direct impact on user costs. The longer
the duration, the longer the delay, resulting in higher user
costs associated with the project. The traffic volume (vehicles
per day) is also an important variable. The detours and work
zones associated with a bridge project either provide
alternative longer routes or reduce the traffic flow and
speed through the work zone, resulting in higher user travel
time anddelay costs. The other input variables to compute the
initial construction cost include the bridge dimensions (e.g.,
length and width). The unit price of the reinforcement
alternatives and their service lives in years are other input
variables. Changes inmaterial prices could influence the cost-
effectiveness of the materials. Table 3.2 presents the input
variables and the mean values for each variable.

Economic factors also influence the life-cycle cost of deck
reinforcement materials. This study identified five main
economic input variables as significant contributors to the
life-cycle cost of bridge construction and preservation. The
factors and their default values are identified in Table 3.3.
Based on FHWA recommendations, a 4% mean discount

rate value was selected (Walls & Smith, 1998). The vehicle
occupancy, minimum hourly wage, average fuel economy,
and cost of fuel are also used in the user cost calculation. The
mean values of the variables are shown in Table 3.3 (Chitturi
et al., 2008; U.S. Department of Energy, 2009). The mean
values included in Table 3.3 can be considered close to the
average values in Indiana under present market scenarios.

3.4 Distribution Functions

For the Monte Carlo simulation of the life-cycle cost of
each material alternative, it is necessary to specify the
probability distribution of each input variable. In this
research study, the uncertainties in the input variables were
characterized using any one of four distributions: uniform,
normal, lognormal, and triangular.

In order to generate the distribution profiles of the
variables and to enable precise and quick analysis, random
numbers with the known probability distribution functions
(PDF) were generated from the transformation of the
standard uniformly distributed random numbers. Table 3.4
presents the mathematical forms of the PDFs. The
cumulative distribution functions were obtained by integrat-
ing the probability distribution functions. To generate the
outcome distribution profiles, a minimum of two inputs are
required. For the uniform and triangular distributions, a
range of variables was required; and for the normal and
lognormal distributions, the mean and standard deviations
were required.

The inverse transformation method was used to generate
random numbers between 0 and 1 for the uniform and
triangular distributions while the Box-Muller transformation
and the inverse of Box-Muller were used for the normal and
lognormal distributions. The inverse transformation method
uses the inverse of the PDF and converts a random number
between 0 and 1 to a random value for the input distribution.
The process can be mathematically described as follows:

For a continuous random variant X, following a
probability distribution function f, let F be the cumulative
probability distribution function (CDF) for the variant X,
which is continuous and strictly increasing in (0,1). Let F{1

denote the inverse of the function F, which is often called the
inverse CDF function. Then, a randomly generated number
U 5 (0,1) will used to generate a random number
X 5 F{1(U) from the PDF f.

Due to the complexity of decision making, the stochastic
nature of the inputs, and the large number of data utilized in

Figure 3.4 Hierarchy for alternative reinforcement selection for
bridge deck.

TABLE 3.2
Material-related variables and mean values

Reinforcing Material

Mean

Cost ($/lb)

Mean Service

Life (yr)

Epoxy-coated steel $1.20 40

Clad stainless steel $3.02 100

Solid stainless steel $3.60 100

Sources: NXI (2008) and Yunovich et al. (2001) in 2012 constant dollars.

TABLE 3.3
Economic-related variables and mean values

Economic Input Variable Mean Value

Discount rate 4%

Number of passengers per vehicle 1.8

Minimum hourly wage $13.43

Average fuel economy 23 mpg

Cost of fuel $3.75/gal

Sources: Chitturi et al. (2008), U.S. Department of Energy (2009).
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the simulations, it is important to choose the number of
samples/iterations required to provide a nearly accurate
solution or to increase the probability of doing so.
An increase in the sample size or the number of iterations
will result in a more accurate estimate, but this approach
is not feasible for an entire range of data. For given
distribution parameters, it has been observed that 10,000 or
above iterations can provide a good estimate of the outcome
(life-cycle cost) for a given reinforcement material type.

3.4.1 The Probability Distributions of the Input Variables

Figure 3.5 presents the various input variables for the life-
cycle analysis. As mentioned in an earlier section of this
chapter, these variables are related to the reinforcement
material type, the bridge activity profile, traffic features,
detour characteristics, and economic factors. The reinforce-

ment material variables include the material price and the
expected service life associated with it. The deck-related
variables include the deck physical dimensions, and the
traffic-related variables include the traffic volume. The
economic variables include the discount rate and the gas
price. Other variables include the rehabilitation and
maintenance costs and contract durations. Table 3.5 presents
the assumed nature of the probability distribution function
for each input variable. The input variables can be placed in
two categories: generic and material-specific variables.
Material-specific variables are the variables that depend on
each reinforcement material alternative, such as the material
price; on the other hand, the generic variables are external
factors that are independent of the material alternatives, for
example, detour length. The probability distribution func-
tions of these input variables were the key inputs for the
Monte Carlo simulations to develop the life-cycle cost
distributions for each alternative reinforcement material.

3.5 Stochastic Dominance for Alternative Selection

To evaluate the alternative reinforcement materials on the
basis of the life-cycle simulation outcomes (that is, the
resulting probability distributions of the life-cycle cost for
each material type), the theory of stochastic dominance was
used. For a given material type scenario in the case study, the
level of input attributes were varied with a given range of
interaction to calculate the ‘‘simulated’’ outcome (that is, the
life-cycle cost). Also, the output for this analysis includes the
individual cumulative distribution functions of the life-cycle
agency cost, life-cycle user cost, and total life-cycle costs, for
each reinforcement material type. The stochastic dominance
concept can help the decision-maker assess the relative
superiority of alternative reinforcement material types on the
basis of the cumulative distribution of their simulated life-
cycle costs.

TABLE 3.4
Probability distribution function formulations

Distribution Probability Distribution Functions Comments

Uniform

f X ðxÞ ¼
1

b2a
a # x # b

0 otherwise

( X uniformly distributed in [a, b]

Triangular f X ðxÞ ¼

2 £ ðx2 aÞ
ðm2 aÞ £ ðb2 aÞ ; a # x # m

2 £ ðx2 bÞ
ðm2 bÞ £ ðb2 aÞ m # x # b

0 otherwise

8>>>>><
>>>>>:

X with a triangular distribution of T [a, m, b], where

a & b 5 minimum and maximum value of X respectively,

m 5 the mode value of X

Normal f X ðxÞ ¼ 1
s
ffiffiffiffi
2p

p exp 2ðx2mÞ2
2s 2

� �
; 21 # x # 1 X with mean m and standard deviation s

Log Normal f X ðxÞ ¼
1

s
ffiffiffiffiffiffi
2py

p exp 2ðlny2mÞ2
2s 2

� �
0 # y # 1

0 otherwise

8><
>: Y 5 eX, where X is a normal distributed random variable

with mean m and standard deviation s

Reinforcement 

Reinforcement Type

Reinforcement Weight, lbs

Cost

Rehabilitation/Replacement cycle

Deck Parameters

Deck Dimensions

Project Timings

Project Costs

Traffic

Economic Parameters

Fuel Cost

Fuel Economy

Vehicle Occupancy

Hourly Wages

Discount Rate

Bridge 

LCCA

Figure 3.5 Input variables for the Monte Carlo simulation of life-
cycle cost.
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Figure 3.6 exhibits four hypothetical scenarios of the
cumulative distribution function of the costs of two alternatives
(in our case, two material types) F and G. These are herein
considered to explain the stochastic dominance concept in the
four scenarios: (a) equal dominance of F andG; (b) dominance
of F overG; (c) identifiable dominance, where there is switching
of dominance between F andG; and (d) non-dominance, which
is an advanced case of (c) where multiple switching occurrences
make it difficult to identify which alternative is dominant.

Decision-makers seek to maximize their expected prob-
ability (EEUAC) to choose between alternatives F and G.
Equation 3.15 shows that F is definitely dominant over G.

EEUAC½pðEUACF Þ�2 EEUAC½pðEUACGÞ� $ 0 ð3:15Þ
with pðEUACF Þ2 pðEUACGÞ $ 0 ð3:16Þ

Alternative F is uniformly preferred to alternative G under
increasing EUAC preference (F dominates G) under first-
order stochastic dominance. This can be written as Equation
3.17 and is explained graphically in Figure 3.7.

FGðpÞ2 FF ðpÞ $ 0 for all p with Eq:3:8 holds true

ð3:17Þ
Typically, where the decision criterion is the outcome of

simulation, there are several levels of the outcome that may
occur for each alternative. As such, the decisions to select
one of several alternatives are not easy to make and involve
complexity because one alternative may be superior at some
level of the outcome but inferior at another level of the
outcome. In our study, the outcome is the EUAC.
To address this issue, the second-order stochastic dominance
method can be used. This is referred to as the risk aversion

method for alternative selection. Second-order stochastic
dominance can be written as Equation 3.18 and is explained
graphically in Figure 3.8.ðp

min F and G

½FGðpÞ2 FF ðpÞ�dp $ 0

for all p with Eq:3:8 holds true

ð3:18Þ

Figure 3.8 depicts the two cumulative distribution
functions that intersect and, consequently, result in a
situation where neither alternative is uniformly superior at
every level of EUAC. Figure 3.8 (a) exhibits the superiority
of alternative F for a certain range of EUAC. Figure 3.8 (b)
shows that the expected savings in selecting alternative F is
depicted by the sum of the positive and negative areas
bounded by the cumulative distribution functions of F andG.

To assess the superiority of alternative F over alternative
G, the area bounded by the cumulative distribution
functions is measured. The trapezoidal method was applied
to compute the area bounded by two distributions curves, as
shown in Figure 3.9 and represented in Equation 3.19.
Figure 3.9 exhibits the coordinates of one trapezoid among
all n numbers of trapezoids considered for evaluating the
area bounded by the functions of F and G.

Area ¼ 1

2

Xn21

i¼1
ðXiþ1 2 XiÞ £ ½fF ðXiþ1Þ

2 GðXiþ1Þ}þ fF ðXiÞ2 GðXiÞ}� ð3:19Þ

Where,X represents the EUAC values, functions F andG are
the upper and lower bound functions, and n is the total
number of trapezoids considered to estimate the area.

TABLE 3.5
Characteristics of the input variables for the Monte Carlo simulation of life-cycle costs

Input Variables

Type of Variable

(material specific (M)

or generic (G))

Nature of Probability

Distribution Units

Cost of alternative reinforcement M Normal $

Weight of reinforcement per square foot M Normal lb/ft2

Unit bridge deck rehabilitation cost M Normal $/ft2

Unit deck replacement cost M Normal $/ft2

First rehabilitation year M Normal # of years

Second rehabilitation year M Normal # of years

Deck replacement year M Normal # of years

End of service life M Normal # of years

Discount rate G Uniform %

Vehicle occupancy G Uniform Pass./vehicle

Fuel cost G Uniform $/gal

Hourly wage G Uniform $/hour

Fuel economy G Uniform miles/gal

Construction duration M Normal Days

Rehabilitation duration M Normal Days

Deck replacement duration M Normal Days

Average annual daily traffic (AADT) G Uniform #

Detour length G Uniform Miles

Detour speed G Uniform Mph

Work zone length G Uniform Miles

Work zone speed G Uniform Mph

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2014/17 29



3.6 Chapter Summary

This chapter outlined the basic LCCA procedure in this
study. After identifying the alternatives for analysis, the
appropriate activity profiles (which are indicators of the

frequency of rehabilitation in bridge deck life) and their
associated probability distribution functions, were estab-
lished. Mathematical formulations to measure stochastic
dominance were developed and explained. This chapter also
provided the methodology and mathematical framework for

Figure 3.6 Stochastic dominance interpretation for two hypothetical cumulative distributions (Heathcote et al., 2010).

Figure 3.7 First-order stochastic dominance: condition for alternative selection.
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the LCCA analysis and how the best material was identified
on the basis of stochastic dominance.

4. CASE STUDY AND DATA ANALYSIS

4.1 Introduction

Themethodology presented in this study enables a decision
to be made in certainty or uncertainty situations where the
input variables are probabilistic. This chapter examines the
impacts of the considered reinforcement alternatives on the
life-cycle cost of individual projects. This analysis was
conducted for new construction; however, it is noted that
mid-service life strategy implementation for existing bridges
can also be carried out using the same framework.

In this case study, three different reinforcement alterna-
tives were analyzed: epoxy-coated steel (CS), clad stainless
steel (CSS), and solid stainless steel (SS). The deterministic

results of the analysis are presented in the Exhibit section of
this Appendix. For the stochastic analysis, greater discussion
is necessary to facilitate comprehension; thus, most of this
chapter is devoted to explaining the results of the stochastic
analysis that compare the probabilistic life-cycle costs of
alternative deck reinforcement material types.

For the deterministic analysis, graphs were provided to
show the analysis results involving the two bridges for the
variation of EUAC (agency cost) to the discount rate, the
price ratio of the material relative to traditional steel, bridge
deck replacement project duration, and the bridge size
(see Figures E.1–E.8 in the Exhibit). Also, multiple case
studies were analyzed and used to develop a set of decision
support graphs or nomograms (see Figures E.9–E.12 in the
Exhibit) that could be used by the agency for identifying the
optimal reinforcement material type under a given set of
conditions related to the bridge, traffic, economy, and other
factors.

4.2 Bridge Selection and Input Parameters

Two bridges were identified to demonstrate the developed
methodology: (i) a large high-volume bridge and (ii) a small
low-volume bridge (see Table 4.1). Bridge construction can
either have specified detour routes or require its users to
travel through the work zone at a reduced speed; the two
bridges in this study used detours instead of partial lane
closures.

As discussed in previous chapters, the input variables for
estimating bridge life-cycle costs are typically deterministic
but typically occur within certain ranges andmay follow some
probability distributions. There are a large number of possible
influential input variables, and all of those considered for
uncertainty analysis in this study are listed in Table 4.1; for
such input variables, it is assumed that the variance in the
normal distributionwas 10%of themean value.Deterministic
and stochastic analyses were carried out and their results are
presented in subsequent sections of this chapter.

Figure 3.8 Second-order stochastic dominance for (a) any given EUAC and (b) entire range of EUAC.

90 1 2 3 4 5 6 7 8

1

0

0.2

0.4

0.6

0.8

EUAC

P
ro

ba
bi

lit
y

G

F

(Xi+1, F(Xi+1))

(Xi+1, G(Xi+1))

(Xi, G(Xi))

(Xi, F(Xi))

Figure 3.9 Evaluating stochastic dominance using the area
bounded by the cumulative distribution functions.
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4.3 EUAC Results

Based on the input variables, the life-cycle agency and
user EUAC values were computed for each of the two
bridges. The results of the deterministic analysis show that
the EUAC is the lowest for solid stainless steel, followed by
clad stainless steel, and, lastly, traditional carbon steel.

Figure 4.1 represents the cumulative distributions of the
EUACof the agency costs, user costs, and total costs for each of
the two bridges. Figures 4.1(a) and 4.1(c) show the influence
of bridge size in determining the evaluation outcome
whereas Figures 4.1(b) and 4.1(d) show the influence of the
relative weights (between agency and user cost) in
determining the evaluation outcome. Figure 4.1 suggests
that for small-size bridges, the agency cost alone can be
used to effectively decide on the choice of reinforcement
material type; however, for large bridges, both the agency
and user costs are needed to make such a decision.

The concept of stochastic dominance is used to identify and
assess the extent of the superiority of one alternative over
others. The concept involves a comparison of the probability
distributions of the costs or benefits of two alternatives
(Clemen, 1996). For instance, if an alternative A stochasti-
cally dominates another alternative B, then, even though not
all of the possible values of A are better than any value of B,
for a certain given level, the probability that A is better than
the given level is equal or greater than the probability that B

is greater than the given level. Then, obviously, A is better
than B. In the context of this research, the cumulative
probability distribution for EUAC is used to assess stochastic
dominance. It is seen that, for a given EUAC, the probability
exists that stainless steel achieves an EUAC that is equal to or
greater than that for clad stainless steel and traditional steel.
These results suggest that, at each cost level, the probability
that the cost is less than a given value for the stainless steel
alternative is equal to or greater than that for clad stainless
steel and traditional steel alternatives. Thus, from the
perspective of superiority in terms of the life-cycle cost
(EUAC), the stainless steel alternative stochastically dom-
inates the other two alternatives. In cases where clear
dominance is not obviously visual, then the area bounded by
the cumulative distribution functions can be used to measure
the superiority of the reinforcement alternatives. The
trapezoidal rule was applied to measure the bounded area.
For the given two bridge cases, the use of Equations 3.10 and
3.11 yielded a positive sign, which is indicative of the
superiority of both clad stainless and stainless steel
reinforcement over traditional steel for bridges #1 and #2.

4.4 Sensitivity Analysis

Sensitivity analysis with weighted user costs and discount
rates was carried out to determine how these variables

TABLE 4.1
Input variables and their probability distributions

Input Variables Bridge #1 Bridge #2

Bridge type Prestressed concrete beam Prestressed concrete beam

Bridge length (ft) 168 3507

Total deck width (ft) 22 89.67

Traditional steel price ($/lb) N (1.15, 0.12)

Clad stainless steel price ($/lb) N (2.90, 0.29)

Stainless steel price ($/lb) N (3.46, 0.35)

Rehabilitation unit cost ($/SF) (for traditional steel deck) N (19.02, 1.90)

Deck replacement unit cost ($/SF) (for traditional steel deck) N (54.51, 5.45)

Service life of bridge with traditional steel deck N (75, 7.5)

Service life of bridge with clad stainless steel deck N (100, 10)

Service life of bridge with stainless steel deck N (100, 10)

First rehabilitation for bridge deck with traditional steel N (20, 2)

Second rehabilitation for bridge deck with traditional steel N (40, 4)

Deck replacement for bridge deck with traditional steel N (60, 6)

First rehabilitation for bridge deck with clad stainless steel N (45, 4.5)

Deck replacement for bridge deck with clad stainless steel N (75, 7.5)

First rehabilitation for bridge deck with stainless steel N (45, 4.5)

Second rehabilitation for bridge deck with stainless steel N (75, 7.5)

Discount rate 4%

AADT 141 113410

Reinforcement per square feet of deck area (lb/sq-ft) N (8.5, 0.9)

Detour length 3 3

Detour speed (mph) N (45, 5) N (45, 5)

Minimum hourly wages ($) 13.43

Vehicle occupancy 1.8

Fuel cost ($/gal) 3.75

Fuel economy (miles/gal) 23

Note: All monetary values in the table are in 2012 US dollars.

Where N (a, b), N represents the normal distribution, a is the certainty value of the input parameter, and b is the variance associated with a.
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influenced the alternative reinforcement selection. First,
agencies do not follow any clear-cut policy or guideline
regarding the relative weights of user cost and agency cost.
Therefore, different scenarios of weight ratios for user cost
were analyzed in order to examine the influences of the
relative weights on the evaluation outcome. Second, the
discount rate can influence decision making that is based on
life-cycle costing because LCCA output hinges on the time
value of money.

4.4.1 Sensitivity of EUAC to User Cost

As discussed earlier in this report, the user costs directly
reflect the inconvenience experienced by road users due to
repeated bridge rehabilitation and construction. Past
research has established that work zones are the second

largest contributor to non-recurring delay on freeways and
principal arterials (Yunovich et al., 2001). This study uses
both the agency and user costs to evaluate the reinforcement
materials. The user costs were further classified into the cost
for additional travel time (TC) and the vehicle operating
cost (VOC). AHP was used to assess the weights for
deterministic scenarios for these two costs to give a final
total life-cycle cost value. The AHP analysis matrix provides
the weights to each criteria, the formulation of which is
shown in Equation 4.1.

Total Cost ¼ a £ ðACÞ þ b £ ðTCÞ þ g £ ðVOCÞ ð4:1Þ

where; aþ bþ g ¼ 1 ð4:2Þ
To assess stochastically the impact of the relative weight

on the evaluation outcome, random numbers were
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Figure 4.1 Cumulative cost distribution analysis for bridges #1 and #2 with equal weights of agency to user cost.
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generated for a, b, and g with the constraint of Equation
4.2. The results (in terms of the life-cycle costs in terms of
EUAC) for each bridge are shown in Figure 4.2.

First-order stochastic dominance can be used to evaluate
the superiority of stainless steel over clad stainless steel and
traditional steel for bridge #1 as shown in Figure 4.2(a).
The second-order stochastic dominance was estimated by

calculating the area bounded by the curves in Figures 4.2(c)
and (e); the result is suggestive of the superiority of clad
stainless steel and stainless steel over traditional steel.
Figure 4.2(c) also suggests that, within a certain some range
of the evaluation outcome (EUAC), traditional steel is a
better choice compared to stainless steel; plausibly because
those simulation runs that assigned a high weight to the
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Figure 4.2 Cumulative cost distribution analysis for bridges #1 and #2 with stochastically varied ratio of agency cost to user cost weights.
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agency cost relative to the user cost. Figure 4.2(e) shows
that clad stainless steel is always a preferable choice to
traditional steel, irrespective of the relative weights between
agency cost and user costs. Within a certain some range of
the expected evaluation outcome, clad stainless steel is a
superior alternative to stainless steel as depicted in
Figure 4.2(g). However, from the perspective of second-
order stochastic dominance, stainless steel is clearly a
preferable choice to clad stainless steel, albeit with a margin
that is small compared to the superiority of stainless steel
over traditional steel.

From the EUAC analysis results shown in Figure 4.1, it is
observed that for bridge #1(small bridge and low traffic
volume), the agency cost was far more influential compared
to the user cost. The opposite was observed for bridge #2
(large bridge and high traffic volume). Thus, for bridge
#1, the agency cost alone could be used to determine the
choice of the alternative reinforcement materials; a clear first
order dominance was exhibited by bridge #1. However the
concept of agency to user weights becomes important for
large high-volume bridges such as bridge #2. Figure 4.3
shows the total EUAC analysis results for the weighted user
costs for bridges #1 and #2.

4.4.2 Sensitivity of EUAC to Discount Rate

Due to the uncertainty associated with the discount rate,
it is useful to study the impact of varying the discount rate on
the analysis outcome. Thus, the sensitivity of the EUAC to
the discount rate varying from 2–10% was analyzed. The
stochastic EUAC results were determined with only the

agency cost in consideration for both bridges #1 and #2. The
stochastic dominance charts in Figures 4.4 and 4.5 suggest
that for each of the discount rates considered, stainless steel
is a preferable option to clad stainless steel and traditional
steel. Nevertheless, the band of cumulative distribution of
the EUAC of the total costs for clad stainless steel shrinks
with an increase in the discount rate. In other words, for
higher discount rates, the relative attractiveness of clad
stainless steel decreases, whereas stainless steel still remains
an attractive option.

4.5 Results of the Deterministic Analysis

As discussed in earlier sections of this chapter, decision-
making for selecting an appropriate reinforcement material
can be carried out using deterministic or stochastic analysis.
In deterministic analysis, it is possible to assess the changes in
the evaluationoutcome in response to changes using sensitivity
analysis. Thus, in this study, graphs were provided in the
Exhibit at the end of this Appendix to show the analysis results
involving the two bridges for the variation of EUAC (agency
cost) to the discount rate, the price ratio of thematerial relative
to traditional steel, bridge deck replacement project duration,
and the bridge size (see Figures E.1–E.8 in the Exhibit).

Also, multiple case studies were analyzed and used
to develop a set of decision support graphs (see Figures E.9–
E.12 in the Exhibit) that could be used by the agency for
choosing the best reinforcement material type under a given
set of conditions related to the bridge, traffic, economy, and
other factors. Figure E.9(a) presents the DSS chart for traffic
volume and detour length and Figure E.9(a) presents the DSS
chart for the detour length and bridge length. From Figure
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Figure 4.3 Variation of EUAC-total cost for bridges #1 and #2 with relative weight between agency and user costs.
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E.9, it can be seen that with a fixed bridge length, (1) under
high traffic volumes, solid stainless steel causes least life-cycle
cost; (2) under moderate traffic volumes, clad stainless steel
causes least life-cycle cost; (3) under small traffic volumes,
carbon steel causes least life-cycle cost; (4) under long detour

lengths, clad stainless steel causes least life-cycle cost; (5) under
short detour lengths, carbon steel causes least life-cycle cost.

Figure E.10(a) presents the DSS Chart for the
discount rate and bridge length and Figure E.10 (B)
presents the DSS chart for the price ratio (ratio of
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material price in $/lb to traditional steel price) and
bridge length. From Figure E.10, it can be seen that:
(1) with short bridge lengths and high discount rates,
clad stainless steel causes least life-cycle cost; (2) with
low discount rates, solid stainless steel causes least life-
cycle cost; (3) with high discount rates, carbon stainless
steel causes least life-cycle cost; (4) under very high user
cost ratios, solid stainless steel causes least life-cycle cost;
(5) under moderate user cost ratios, clad stainless steel
causes least life-cycle cost; (6) under small user cost
ratios, carbon steel causes least life-cycle cost.

Figure E.11 presents the DSS chart for fuel price and
bridge length. From the figure, it can be seen that for a fixed
bridge length, (1) under high fuel prices, clad stainless steel
causes least life-cycle cost; (2) under low fuel prices, carbon
steel causes least life-cycle cost.

4.6 Chapter Summary

This chapter demonstrated the methodology presented in
this study to assess the deterministic and probabilistic life-
cycle costing analysis for assessing different bridge deck
reinforcement material alternatives. In the probabilistic
part, the analysis was carried out to account for the
stochastic nature of all the input variables and their
concerted effect on the attractiveness across the material
types. The concepts of first-order and second-order
stochastic dominance were measured to assess the cost-
effectiveness of alternative reinforcements. For the specific
bridges chosen as case studies, the analysis outcomes
suggest that generally, the most economically efficient
reinforcement option is solid stainless steel, followed by
clad stainless steel, and the least economically efficient
option is traditional carbon steel.

5. SUMMARY, DISCUSSION, AND
RECOMMENDATIONS

5.1 Summary and Conclusion

Bridge decks deteriorate due to loading and climatic
severity, and state highway agencies continue to invest a
significant portion of their funding in bridge infrastructure
preservation in response to deterioration of the bridge deck
and other bridge elements. Such deterioration has increased
drastically in the last few decades as an increasing number
of highway bridges in the United States approach the end of
their service lives. Annually, billions of dollars’ worth of
work is carried out not only as preventive measures but also
to address a variety of bridge deck problems including
cracking, delamination, and scaling. In extreme cases, deck
repair or even replacement is necessary. New and more
efficient (corrosion resistant) materials are becoming
available for bridge construction. Even though they have
higher initial costs, these materials often lead to drastic
reductions in life-cycle cost, particularly when user costs are
considered in the analysis. It has been hypothesized that the
use of corrosion resistant reinforcement materials can
significantly reduce the number of times that a bridge deck

is replaced and thus helps reduce or even avoid the agency
and user costs associated with bridge deck replacement.

This study addresses this issue. The methodology presented
in this study provides a platform to assess the life-cycle costs
of different types of bridge deck reinforcement materials
based on their corrosion resistance as well as their economic
efficiency. The analytical framework developed in this study
can help bridge engineers and practitioners to understand and
identify a superior reinforcement alternative based on the
prevailing conditions of bridge size, traffic volume, and other
factors related to the economy. The reinforcement alternatives
were compared by their first-order and second-order
stochastic dominance over traditional reinforcement.

A case study was presented to showcase the developed
methodology. Two bridges from Indiana (one small in size,
low-volume and the other large in size, high-volume) were
used for the case study to assess the relative stochastic
superiority of stainless steel, clad stainless steel, or traditional
steel using a multi-criteria approach. Based on all of the
analysis, it was determined that solid stainless steel was a
superior alternative to clad stainless steel and traditional
carbon steel for two extreme bridge cases. It is envisioned that
as the benefits of reinforcement alternatives are tested and
become recognized, their demand will increase, leading to
higher production and lower unit prices as a result.

5.2 Industry Outreach for RM-LCCA

There are a number of electronic tools that carry out life-
cycle cost analysis for bridge projects, for example, STA-
DIUM concrete analysis and Life-365. Because they were
built basically to support concrete and relevant treatment
such as installing a barrier or a water membrane, these tools
address issues of corrosion initiation, propagation, and
subsequent cracking based on chloride-induced corrosion and
predict service life fairly well on the basis of the chloride
diffusion principle. However, these tools are less successful in
carrying out detailed economic analysis of bridge reinforce-
ment materials. RM-LCCA, which was developed as part of
this research study, provides an automated platform where
different alternative reinforcement materials can be evaluated
on the basis of their life-cycle costs and benefits.

5.3 Recommendations and Future Work

The study developed a systematic framework for
evaluating these alternative reinforcing materials on the
basis of their life-cycle cost. The RM-LCCA (Reinforcement
Material-Life-Cycle Cost Analysis) was developed to
automate implantation of the framework. Case studies
involving different scenarios of bridge and operating
characteristics were used to demonstrate the methodological
framework and to develop nomograms for decision support.
From the results of the analysis and the case studies, it is
recommended that deck reinforcement material for any
future INDOT bridge deck design should be selected only
after a carrying out life-cycle cost analysis among other
considerations; such analysis should be preceded by
establishment of the decision contexts and consequently,
values of the identified input parameters for the life-cycle
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cost analysis. From a general perspective, it is recommended
that INDOT considers for inclusion in its bridge design or
rehabilitation manual, the decision support nomograms that
specify the conditions at which each material is optimal from
a life-cycle perspective.

Nevertheless, there exist avenues that could be addressed or
explored further to fine-tune the selection process for
appropriate deck reinforcement material alternative for any
specific bridge project. First, mathematical models describing
the time-dependent chloride-induced corrosion deterioration
processes could be incorporated to provide more precise
estimates of the life-cycle activity profiles for eachmaterial type.

Secondly, the laboratory experiments carried out as part of
this research (see Volume I of the report) could be followed by

full-scale field studies. For this, it is recommended that a few
bridge reconstruction or deck replacement projects should be
selected from INDOT’s long-range plan or bridge program
through an experimental design; for these bridges or decks,
INDOT should apply the three material types in a controlled
experimental setting. The costs (initial construction and
subsequent maintenance), work durations, and the physical
condition and service lives of the bridges or decks having each
alternativematerial should be closelymonitored and recorded
over several decades. Doing this can help validate or refine
the assumptions made in this study. The experimental
design could be designed carefully to include climatic region
(northern and southern Indiana), highway classes, traffic
volume, and bridge size.
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EXHIBIT TO APPENDIX A
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Figure E.1 Variation of EUAC-agency cost for bridge #1 discount
rate.
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Figure E.2 Variation of EUAC-agency cost for bridge #2 discount
rate.
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Figure E.6 Sensitivity in reduction in project duration for bridge
#2.
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Figure E.3 Unit price analysis for bridge #1.
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Figure E.9 Example DSS chart for (a) traffic volume and detour length (b) detour length and bridge length.
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Figure E.10 Example DSS chart for (a) discount rate and bridge length (b) price ratio and bridge length.
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Figure E.12 Other input data used in developing the example DSS
charts shown in Figures E.9–E.11

Figure E.11 Example dss chart for fuel price and bridge length.
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APPENDIX B: RM-LCCA USER MANUAL

Appendix B is available for download at http://dx.doi.org/10.5703/1288284315517.
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