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Stratified Online Sampling for Sound Approximation in MapReduce

Nitin , Mithuna Thottethodi, T. N. Vijaykumar, and Milind Kulkarni

School of Electrical and Computer Engineering, Purdue University
{nnitin,mithuna,vijay,milind}@ecn.purdue.edu

Abstract

In the era of big data, many applications perform approx-
imate computations to achieve performance improvements
by producing less-precise, yet reasonable, results. Hadoop
MapReduce is a widely-used big data framework that pro-
cesses large amounts of data. A recent work, ApproxHadoop,
extends Hadoop with a runtime abstraction to produce approxi-
mate results with statistical error bounds. ApproxHadoop uses
a carefully-designed multistage sampling strategy to guide its
approximation without exceeding target error bounds. How-
ever, ApproxHadoop suffers from a major limitation: It per-
forms global uniform sampling across the entire key space
of input data (modulo the effects of multistage sampling).
Such uniform sampling not only oversamples popular keys
but also perniciously undersamples rare keys, potentially skip-
ping computations for the latter entirely. We present MaRSOS
(MapReduce with Stratified, Online Sampling), to provide ap-
proximation with bounded errors across all keys. MaRSOS
makes two key contributions to achieve this target: (1) A novel
telescoping-based online sampling strategy that performs per-
key sampling without missing rare keys; (2) A feedback sys-
tem that allows efficient collaboration among distributed map
tasks to minimize oversampling. Across a range of MapReduce
benchmarks, we demonstrate that MaRSOS can deliver per-
formance improvements while (statistically) bounding per-key
errors. MaRSOS is guaranteed to never miss rare keys and
varies the sampling rate based on key popularity to achieve
better per-key errors than a global sampling approach that
samples at the same overall rate.

1. Introduction

Many applications enjoy an intriguing mismatch between the
requirements of the problem being solved and the results that
the program delivers. The problem specification may require
relatively coarse results (e.g., what is the average temperature
in each city in the US on a given day, to the nearest degree)
while the program implementation may deliver unnecessarily
precise results (e.g., averaging hundreds of temperature read-
ings per city to give results to 3 decimal places). By producing
overly accurate results, this mismatch between specification
and implementation incurs unnecessary overheads in energy
and time.

Sampling can address this mismatch: instead of computing
precise answers using all of the data in an input data set, a
program can instead perform computation over a subset of the
data to produce a less-precise, but still reasonable, answer to
the problem. So, for example, rather than using all the tem-
perature readings for a given day, a sampling-based program

will instead average a subset of the readings to yield a sample
mean with reasonable accuracy.1

Problems where imprecise, or approximate, answers are
acceptable are common in decision support settings, and as
a result, there are a number of database systems that support
approximate queries over data sets, allowing programmers to
design queries that give results with specified error bars [1, 3,
5]. Interestingly, these kinds of problems are also common in
the kinds of aggregation, selection and analysis tasks that are
commonly implemented using MapReduce [6]. Exact answers
are typically not required, or even expected, when performing
analysis tasks such as “which of my customers spend the most
money?” These types of problems are immensely amenable
to sampling.

ApproxHadoop is an extension of Hadoop that provides a
set of reduction operators amenable to sampling [7]. When a
program is written using these special reduction operators, Ap-
proxHadoop samples the input data using multistage sampling
to compute an approximate version of the desired reduction.
By carefully designing the sampling process, ApproxHadoop
is able to give global error bounds on approximate MapReduce
computations.

Unfortunately, ApproxHadoop suffers from one critical
drawback. It samples globally—the entire input stream is
sampled at the same rate (modulo the effects of multistage
sampling). Although it may seem as though this is not neces-
sarily a problem, global sampling of this form is not always
a good match for MapReduce computations. While MapRe-
duce problems look like single queries, in reality, they are
computing values across an entire key space, and the goal of
the program is to compute values for each key, rather than
across the entire data set. As a result, uniform sampling will
oversample popular keys, producing more precision than is
required, and, more perniciously, will undersample rare keys,
potentially skipping the computation for those keys entirely. In
other words, while ApproxHadoop provides global bounds on
error, these bounds encompass unnecessarily low error bounds
for popular keys and unacceptably high error bounds for rare
keys—and only apply to the keys that have been observed. In
other words, the situation for keys that are missed entirely is
even worse: ApproxHadoop provides no error bounds—indeed,
provides no results at all—for keys that are missed.

For some applications, this drawback to uniform sampling
may be irrelevant. For example, consider an input set that con-
tains data detailing customer transactions, specifying customer
ID and transaction value. To find the customers that have con-

1To be precise, the sample mean will have an associated 95% confidence
interval, and this confidence interval can be made small by using a larger
sample size.



ducted the most transactions, it is unnecessary to accurately
capture customers that have only conducted one or two trans-
actions. However, for other problems, it is not permissible to
miss rare keys, or to have large errors for such keys. For exam-
ple, to find high-value customers in the same data set—those
that have spent the most in aggregate—completely missing
rare keys can be disastrous. A customer with one or two expen-
sive transactions can be high value, but a uniform sampling
system like ApproxHadoop is likely to completely miss the
correct result, as the key (customer ID) appears only rarely in
the data set. Indeed, the ApproxHadoop authors acknowledge
this issue, stating, “[O]ur online sampling approach is not
appropriate if it is important to discover all intermediate keys,
including the rarely occurring ones” [7]. Section 2.2 discusses
more scenarios where it is important to capture rare keys.

For problems where uniform sampling is inappropriate, we
need an approximation strategy that tailors its sampling to
each key. We must ensure that we do not miss rare keys,
while simultaneously aggressively sampling popular keys to
minimize computation. This type of sampling, with per key
sampling rates, is an instance of stratified sampling [10].

The notion of stratified sampling to control per-key error, as
opposed to global error, is not a new one. In the realm of DSS
(decision support systems), stratified sampling is the standard
technique used to ensure that uncommon keys are sufficiently
sampled [1, 2, 3, 5]. However, these prior systems typically
perform sampling by constructing sampled data sets offline,
and then running approximate queries over the reduced data.
This offline step means that the entire tuple space must be read
to construct the samples prior to performing the computation.
In MapReduce problems, which are often concerned with
large-scale analytics of a data set rather than repeated queries
over the same data, the cost of constructing the samples offline
cannot be amortized, so these approaches are not appropriate.

Online sampling is difficult, however. Because popular keys
must be sampled at low rates while rare keys are sampled fre-
quently, the correct sampling strategy is to ensure that we end
up with roughly the same number of samples for each key [1].
The challenge in performing online stratified sampling, then,
is that we must sample the tuple space of a MapReduce prob-
lem so that each key generates the same number of samples,
uniformly chosen from the set of tuples with that key, even
though we do not know how many tuples have a given key.
Moreover, because MapReduce systems have multiple Map-
pers processing input simultaneously, we must perform this
online stratified sampling in a distributed manner. This prob-
lem has not been addressed by existing DSS systems.

In this paper we present MaRSOS (MapReduce with
Stratified, Online Sampling), a MapReduce system that tackles
these challenges. Like ApproxHadoop, it presents a MapRe-
duce abstraction that allows programmers to readily develop
approximate MapReduce applications. Unlike ApproxHadoop,
it does not use uniform sampling; MaRSOS provides a runtime
system that performs online, distributed, stratified sampling,
ensuring that we achieve a roughly similar number of samples

for each key through a novel telescoping sampling algorithm
and feedback system.

Contributions

The primary contribution of MaRSOS is that it can solve
approximate MapReduce problems without losing rare keys,
while providing a strong approximation guarantee: each key
can have statistically-bounded error. To achieve this contribu-
tion, MaRSOS employs two key novelties:
• An online, distributed sampling strategy that performs per-

key uniform sampling to generate a desired number of sam-
ples for each key. Thus, rare keys are automatically sampled
frequently while popular keys are sampled infrequently.

• A feedback system that efficiently allows distributed Map
tasks in a MapReduce system to collaborate to achieve
their per-key uniform sampling without wasting effort in
oversampling.

Note that neither of these mechanisms are present in DSS
systems, which have not tackled the challenge of online, dis-
tributed stratified sampling.

Across a range of MapReduce problems, we demonstrate
(i) our system is able to deliver performance improvements
from sampling while (statistically) bounding per-key errors;
(ii) our system never misses rare keys; and (iii) by varying the
sampling rate based on key popularity, our system generates
better per-key errors than a global sampling approach that
samples at the same overall rate.

2. Background

2.1. Hadoop Architecture

The MapReduce programming model focuses on ‘maps’ that
process the input data to generate key/value tuples and ‘re-
duce’ tasks that perform a reduction on collections of records
that share the same key. In addition to the map and reduce
computation, the underlying execution model consists of addi-
tional phases of execution such as (pre-map) input partitioning,
(optional) combining with each map, (post-map) shuffle, (pre-
reduce) sorting, and final (post-reduce) output.

Logically these execution phases may be thought of as
stages with barriers between them, although the barriers can
be relaxed in practice as we describe later. Initially, the data-
set which resides on a distributed filesystem like HDFS [14],
is partitioned in to chunks that independent map tasks may
process in parallel. Map tasks then process their respective
input data chunks and emit intermediate key/value tuples. To
ensure that all tuples with the same key are consolidated at the
same reduce task, a shuffle communication phase partitions
the intermediate data based on keys and pulls the relevant
intermediate data buckets to the corresponding reduce tasks.
Further, to consolidate tuples with the same keys from various
map tasks, each reduce task sorts the intermediate data. Finally,
the reduce tasks performs the reduction operation on all the
tuples with the same key and emits the final output file to the
HDFS.
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Figure 1: Yarn Resource Manager Schematic

In practice, there are several optimizations to the above
execution model. For example, each map task may sorts its
intermediate data locally to achieve ‘combining’ – a partial
reduction of its intermediate data. Such combining also fa-
cilitates the sorting stage as the problem reduces to one of
merging sorted lists. Similarly, shuffle is performed greedily
without waiting for all map tasks to conclude to achieve better
computation/communication overlap. Finally, even the reduce
operation can be initiated in a barrierless fashion to compute
partial reductions before all maps are complete.

Hadoop’s architecture provides yarn, a cluster resource man-
agement layer, that hosts the MapReduce runtime environ-
ment. Yarn consists of a centralized ResourceManager that
co-ordinates with per node NodeManagers to provide Contain-
ers (compute and memory resources) to its hosts. MapReduce
runs as an yarn application inside an ApplicationMaster (AM)
and obtains resources from the ResourceManager. Once re-
sources are allocated, the MapReduce AM becomes the sole
caretaker of its map and reduce tasks. Figure 1 shows the
high level schematic of the yarn framework. While yarn man-
ages efficient utilization of cluster resources, the MapReduce
AM is responsible for tracking the progress of its tasks and
relaunching them if they fail.

2.2. Uniform vs. Stratified Sampling

The key distinguishing feature of MaRSOS is that it performs
stratified sampling to provide per-key statistical guarantees
for approximate MapReduce programs. This section outlines
the differences between uniform and stratified sampling, and
discusses the circumstances in which the latter is required.

Uniform sampling (simple random sampling) in MapRe-
duce is easily characterized. Consider the set of tuples, T ,
that is generated by applying the map function to the input
data. Given a probability p, each tuple in T will appear in the
sample, S, with equal probability, p. The reduction is then per-
formed over S, instead of T . Note that ApproxHadoop actually
performs multi-stage sampling, where T is first divided into
clusters, and a subset of those clusters are sampled with equal
probability, p [7], so that processing of entire clusters can be

skipped (including reading the input itself). The following
discussion on the issues with uniform sampling still applies,
so we consider simple random sampling hereafter.

The primary drawback of uniform sampling is that every
tuple in T has an equal probability of being selected. A tuple
t in T is actually a key-value pair, < k,v >. If we consider
the set of sampled tuples, S, each key k1,k2, ... will appear in
tuples in S in the same proportion as they do in T , modulo
the variability introduced by sampling. Hence, tuples with
popular keys will be prevalent in S, while tuples with rare keys
will be uncommon, or, thanks to the variability of sampling,
simply not present.

The proportionality of the key distribution in the sample set
has an obvious drawback when the reduction being performed
by the MapReduce task is per key, rather than across all the
tuples: because the statistical error of most values of interest
computed from samples is inversely proportional to the square
root of the number of samples [10], the error in any per key
value computed on the sample set will be low if the key is
popular, but potentially quite high if the key is rare. Or, worse,
the key might be missed entirely, providing no results at all,
let alone reasonable error bounds, for that key.

As a result of the differing error rates for each key, setting
the sampling probability p is challenging. If p is chosen to
ensure that rare keys have acceptable errors, then p will have
to be very high (indeed, if it is unacceptable to miss keys, p
will have to be 1). Since the performance and energy wins of
sampling are inversely proportional to p, protecting against
this worst-case outcome foregoes any benefits of sampling. If,
instead, p is chosen to target the error bounds of the popular
keys, or an overall error bound across all the tuples, rare keys
will necessarily have very high errors.

Stratified sampling addresses this problem by partitioning
T into per-key sets [10]. Each key ki has an associated subset
of T , Ti, and a probability, pi. The sampling process gener-
ates a separate sample set Si for each subset of T , uniformly
selecting tuples from Ti with probability pi. Because each key
is sampled at its own probability, stratified sampling can avoid
oversampling popular keys or undersampling rare keys. So,
for example, if a particular subset is small, its sampling prob-
ability can be set to 1, while letting larger subsets use lower
sampling probabilities to preserve the energy and performance
gains. The obvious challenge is how to implement stratified
sampling efficiently. How can we set the sampling probability
for a given subset, especially since we do not know a priori
which subsets will be small and which will be large? How
can we coordinate numerous, distributed map tasks to perform
stratified sampling without introducing excessive communi-
cation? These are precisely the questions that the design of
MaRSOS answers.
Use cases A natural question to ask is under what circum-
stances uniform sampling is appropriate, and under what cir-
cumstances stratified sampling should be used instead. First,
we note that stratified sampling can be made equivalent to
uniform sampling by ensuring that each partition of T is sam-
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pled at the same rate. But there may still be advantages to
uniform sampling. In particular, stratified sampling neces-
sarily requires examining each tuple of T to determine its
key. Hence, stratified sampling is not amenable to the mul-
tistage techniques of ApproxHadoop, which can drop entire
map tasks, avoiding the overhead of reading in input data.
Stratified sampling thus offers less potential performance and
energy savings than uniform or multistage sampling. However,
it is not meaningful to compare the two sampling schemes, as
they are functionally different (the former gives per-key error
bounds, while the latter does not). Our intention is not to argue
that uniform sampling, a la ApproxHadoop, should never be
done; rather we identify a set of criteria where MaRSOS is
more appropriate, or even necessary.

The problem being solved must involve per-key data. If
the problem concerns aggregates across all of T , independent
of key, then there is no penalty for under- or over-sampling
a particular key, so uniform sampling would be fine. If the
problem, on the other hand, involves calculating different
values for each key, then it is possible that stratified sampling
is required.

The above criterion is not enough, however. The problem’s
solution must be sensitive to adding or removing a small num-
ber of tuples, relative to the size of T . If adding a small number
of tuples, with keys chosen by an adversary, can significantly
change the results, then uniform sampling is not appropriate.
Note that this criterion encompasses all problems where it
is important to capture every key—if an adversary inserts a
new key, we must guarantee that it is seen. Similarly, if the
problem concerns anomaly detection, or is specifically looking
for rare keys, then uniform sampling can be easily thrown off.
In contrast, if the problem requires finding popular keys, then
adding a small number of tuples is unlikely to change the re-
sults, so uniform sampling may still be sufficient. Essentially,
if the problem is sensitive to the behavior of rare keys, then
stratified sampling is required.

Some use cases that meet the above two criteria include:
• Identifying high value customers from a database of transac-

tions. As described in the introduction, because high value
customers do not necessarily conduct a large number of
transactions, we cannot undersample rare keys (customers).

• Identifying when words enter use. This problem can be
solved by running word-count-like MapReduce problems on
corpora from different years. As it is important to identify
when a word arises, rare words cannot be missed.
• Identifying anomalous behaviors in log files. If entries

in log files are keyed by the program that generates the
message, we cannot afford to miss entries from programs
that generate very few messages.

3. Distributed Online Stratified Sampling
The needs of stratified sampling demands that MaRSOS set its
sampling probabilities on a per-key basis: popular keys should
be sampled infrequently, while rare keys should be sampled
frequently. While this seems simple enough in theory, the

problem in practice is that it is impossible to know a priori
which keys will be popular, and which will be rare. Hence,
sampling rates cannot be set ahead of time, and must instead
be determined online, as the input data is processed.

To understand the issue, consider the single-key case (gener-
alization to multiple keys is straightforward). We can consider
the problem of online sampling as one of processing a stream
of data items of unknown length. When each item is inspected,
it is preserved in the sample with some probability. Our chal-
lenge is to design a sampling scheme that meets two criteria:
1. Each item in the data stream has an equal chance of appear-

ing in the sample.
2. If the data stream is short, we want to sample frequently,

while if it’s long, we want to sample rarely
The first criterion is important, as there is no guarantee

that the items in the input stream are not structured in some
way, such that oversampling one portion of the stream could
bias the results. Consider the scenario of using sampling to
compute the average value of the data items when the input
stream is sorted (e.g., in a chained MapReduce problem, where
one MapReduce task produces sorted data that is fed to a
second); oversampling the beginning of the stream will bias
the computed average.

The second criterion, that the sampling rate be inversely
proportional to the stream length, is easier to reason about
from a different angle. Fundamentally, what we require is that
the number of samples be roughly constant. If we can pick
n samples from the input stream, regardless of the stream’s
length, then the second criterion is immediately satisfied. We
make two observations: (i) if the stream has fewer than n
items, then we will not perform sampling at all, an acceptable
outcome for such a small data set; (ii) in the multi-key case,
this is tantamount to saying that we should sample the same
number of items for each key, an outcome consistent with
practices in DSS database systems [1, 3].

3.1. Reservoir Sampling

One naïve way to generate an n-item sample would be to
merely choose the first n items from the stream. But that
violates our first sampling criterion, as it does not account for
any structure in the input stream. The process of choosing n
items from a stream of data while ensuring that each item in
the stream appears with equal probability is called reservoir
sampling [16]. The basic algorithm for reservoir sampling
is as follows. For each item i in a stream of N items labeled
0 . . .N− 1: if i < n, place the item in the reservoir (sample
set). Otherwise, with probability n/(i+ 1), randomly eject
one item from the reservoir, and place item i in the sample set.

Reservoir sampling seems to neatly solve our problem, pro-
viding a sampling scheme that meets both criteria. However,
reservoir sampling relies on global knowledge of the sampling
state; it uses a global enumeration of items to determine sam-
pling probabilities. As a result, it is not at all obvious how to
apply reservoir sampling in a distributed setting, where mul-
tiple Mappers are charged with sampling their subset of the
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Algorithm 1 Telescoping sampling algorithm
p← 1 . Probability of taking a sample
R←{} . Reservoir
n← Target # samples

Add x to R with probability p
function TAKESAMPLE(x)

if rand() ≤ p then
R← R∪{x}

while |R| ≥ 2n do
R← R with half of its items removed
p← p/2

input stream.2

One might think that a scheme whereby each Mapper keeps
its own local sample set that is periodically reconciled into a
global sample set might work. However, note that if each Map-
per has a different notion of how many items are in the stream
in total, each sample set will have been sampled at a different
rate. Reconciling these local sample sets is non-trivial. MaR-
SOS instead adopts a different, telescoping sampling strategy
that uses fixed intervals of sampling probabilities to facilitate
the reconciliation of local sample sets.

3.2. Telescoping Sample Sets

MaRSOS uses a telescoping sampling algorithm to construct
its samples. This algorithm has two properties: (i) it only
samples at fixed probabilities (in particular, 1, .5, .25, etc.),
and (ii) it ultimately generates between n and 2n samples at a
given probability. Note that the imprecision in point (ii) is due
to the fixed sampling probabilities in point (i). The amount of
oversampling this incurs is slight, and does not lead to much
performance or energy overhead. Essentially, the sampling
algorithm we devise settles upon the sampling rate p of the
form 1/2l that will generate between n and 2n samples. The
key challenge is to find p in an online manner while sampling
an incoming stream of items.

MaRSOS’s sampling algorithm, in the non-distributed case,
is presented in Algorithm 1 (we discuss how to extend it to a
distributed setting next). We call it a “telescoping” algorithm
because it successively drops the sampling rate by a factor of
2 while downsampling the existing sampled set to correspond
to the new sampling rate.

One way to understand this algorithm is to view it as a
variant of reservoir sampling where we delay the phase of
reservoir sampling that “kicks out” existing samples from the
reservoir. Instead, the reservoir continually fluctuates between
n and 2n items. When the reservoir fills to 2n items at sampling
rate p, we discard half the items in the reservoir (essentially,
batch removing the items that would have been kicked out
had we done so continuously). The reservoir now contains n
items, sampled at rate p/2. We then sample incoming items at

2Note that although several DSS schemes use reservoir sampling to build
their offline sampled data sets, they do not do so in a distributed manner [1, 5].

Algorithm 2 Reconciling multiple reservoirs into a single
reservoir

Input:
{R1, . . . ,RM} . Reservoirs from Mappers 1 . . .M
{p1, . . . , pM} . Sampling probabilities
n . Target # of samples

Output:
RF . Combined reservoir
pF . Final sampling rate

procedure RECONCILE

RF ←{}
pF ←min(p1, . . . , pM)
for i ∈ [1,M] do

while pi 6= pF do
Ri← Ri with half of its items removed
pi← pi/2

RF ← RF ∪Ri

while |RF | ≥ 2n do
RF ← RF with half of its items removed
pF ← pF/2

p/2, re-filling the reservoir to 2n items, and so on. Hence, the
algorithm maintains the following invariant:

Claim 1. If MaRSOS has seen N elements of a given key, with
N > n, it will have generated between n and 2n samples of
that key, uniformly sampled at a rate

p =
1

2blg(N/n)c

Crucially, unlike reservoir sampling, our telescoping sampling
algorithm does not require knowing how many total items have
been seen. Sampling merely requires knowing the current
sampling rate, which is always an inverse power of two.

3.3. Distributed Telescoping Sampling

The algorithm presented above is not distributed: it assumes
that there is a single actor performing the sampling. In reality,
in a MapReduce program, there are multiple Mappers, each
of which is independently sampling its portion of the input
data set. Hence, we design a variant of this algorithm that
allows multiple actors to be sampling, each constructing its
own reservoir of samples, which are then reconciled into a
single reservoir that still satisfies the invariant that the final
reservoir have a single, uniform sampling rate.

The distributed algorithm turns out to be a simple extension
of Algorithm 1. First, note that each of M Mappers could
implement Algorithm 1 completely independently, assembling
its reservoir of samples out of the subset of the input it sees.
We are thus left with a set of reservoirs, R1, . . . ,RM , each with
an associated sampling rate p1, . . . , pM . These reservoirs can
be combined into a single reservoir satisfying the necessary
invariant according to Algorithm 2.

The algorithm proceeds as follows: it first downsamples all
of the individual reservoirs to the sampling rate of the “largest”
reservoir—the reservoir that was assembled from the largest
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subset of the input, and hence has the lowest sampling rate. At
this point, all of the reservoirs contain samples generated from
their respective input subsets at the same sampling rate, and
hence can be merged together. If the merged reservoir is larger
than the target number of samples, it is downsampled until it
contains between n and 2n samples, satisfying the invariant.

Note that although Algorithm 2 generates a new reservoir
that satisfies the invariant, each Mapper, because it generates
its local reservoir independently, may dramatically oversample
its input space; a Mapper only drops its sampling rate if it
has locally seen enough items to do so. Although eventually
the final reservoir is downsampled to the appropriate rate,
this individual oversampling means that Mappers perform
unnecessary work that is irrelevant to the final result, leaving
potential performance improvements on the table.

We make two observations: (i) the reconciliation algorithm
tolerates individual Mappers sampling too frequently; and
(ii) each Mapper’s local sampling rate is never lower (i.e.,
sampling less frequently) than the final sampling rate. These
observations lead to a more efficient algorithm.
1. During execution, local Mappers can periodically, and in-

dependently, reconcile their local reservoir into the global
reservoir. This is sound because each reservoir has always
uniformly sampled the input data used to generate the reser-
voir. Reconciling two or more reservoirs using Algorithm 2
yields a new reservoir that has uniformly sampled the input
sets that generated its constituent reservoirs. Hence, recon-
ciliation can happen continuously and asynchronously.

2. Moreover, local Mappers can periodically update their lo-
cal sampling rate based on the global reservoir’s current
sampling rate without having seen sufficient data locally.
This is sound because ultimately all the local reservoirs are
sampled together. Hence, to satisfy the invariant, all that
is necessary is that the initial sampling rate for the unified
reservoir be high enough to generate at least n samples.
Because the current global reservoir always has at least n
samples (or has a sample rate of 1), its sampling rate is
always high enough that after reconciliation there will be
sufficient samples.

In other words, Mappers can lazily update the global reser-
voir and can lazily update their local sampling rate based on
that global reservoir. The following section describes how this
algorithm is implemented in MaRSOS.

3.4. Distributed Sampling Implementation

Recall from Section 2.1 that a MapReduce application con-
sists of a map phase and a reduce phase. The latter is further
divided into a shuffle phase, where data is fetched from indi-
vidual Mappers, a merge phase, where data from all of the
Mappers is merged, and finally the actual reduction phase.
However, of the three phases, only the shuffle can occur be-
fore all of the Mappers have completed. In order to perform
our distributed telescoping sampling algorithm, we need a
global reservoir that reconciles the sampling rates observed by
individual Mappers. Because each key has its own associated

Figure 2: Top-level schematic of Shuffle Feedback

Shuffle phase, which fetches each completed Mapper’s output
data for that key and thus has a global view, we implement the
telescoping sampling algorithm inside the Shuffle.

Figure 2 shows a top level schematic of the feedback mech-
anism’s implementation. The left section of the figure shows
the actions that take place at the Map end while the right
section shows the ones at the Shuffle end.

The default action of an individual Mapper is to sample
all of its keys. We modify the Mapper function to look for
any feedback generated by any Shuffle during the Mapper’s
setup phase. The Mapper reads the feedback and loads a local
hash-table with keys and their corresponding downsampling
rates. Next, during the run phase, upon encountering a key,
the Mapper queries the local hash-table to find the sampling
probability p at which the key is to be sampled. We then toss a
random biased-coin, with heads probability p, and sample the
key if head occurs. If the key is not found in the hash-table,
the Mapper sets p for that key to 1 (i.e., the sample is always
taken). Additionally, the Mapper maintains a count of sampled
keys along with their sampling rates and dumps this metadata
during its cleanup phase.

After a Mapper finishes its task, the Shuffle periodically
fetches each Mapper’s output data (note that this is part of
the baseline Hadoop architecture). We modify the Shuffle
to piggyback on this fetch to gather the metadata as well.
The Shuffle maintains a hash-table that maintains the current
global sampling rates (pF in Algorithm 2) for all of the keys
the Shuffle is responsible for. The metadata from the Mappers
is used to update this hash-table and reconcile the Mappers’
data into the Shuffle’s global reservoirs for its keys. The
contents of this hash-table are then output (via HDFS) so that
the Mappers can read this information as their feedback.

All of the above actions that are specific to MaRSOS, can
be turned on or off through a simple configuration switch from
MapReduce applications.
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3.5. Choosing Target Number of Samples

The final implementation decision in MaRSOS is to choose n,
the target number of samples for each key. This target should
be chosen to balance reducing error (which requires a larger
n) and increasing performance (which requires a smaller n).
While we do not present a specific method for choosing n in
this paper, we elucidate some of the considerations governing
its selection. Section 5 presents a series of sensitivity studies
that examine the effects of different choices of n.

Impact on performance Obviously, choosing a smaller n
means that sampling will be more aggressive. This is true on
two fronts: first, it means that more keys will be subject to
sampling—we only sample keys for which we have seen at
least 2n items (cf. Algorithm 1). Second, it means that the
keys that are sampled will be sampled more aggressively, as
we must see fewer items before dropping the sampling rate.

Unlike with uniform sampling, there is not a direct connec-
tion between sampling rate and performance, as the amount of
sampling that is performed depends on the distribution of rare
and popular keys, and is hence highly input dependent. How-
ever, in our experience, most problems’ inputs are dominated
by popular keys, and hence whether relatively unpopular keys
are sampled or not does not affect performance much. While
it might seem that keeping n low also means that popular keys
will get sampled more aggressively, decreasing the sampling
rate of popular keys by one step requires halving n. Con-
versely, increasing n will not affect popular keys’ sampling
rates until it is doubled. Hence, there is not much penalty to
choosing a larger n.

Impact on error Error exerts a countervailing force to per-
formance: a larger n results in lower error. However, there are
diminishing returns to increasing n. For most sampling statis-
tics of interest, standard error (or relative error) is inversely
proportional to

√
n. Hence, when n is small, increasing n

rapidly decreases error, but when n is large, it requires large
increases in n to materially affect error.

We note that error in many cases is also related to the vari-
ance of the distribution being sampled—so, for example, the
standard error of the mean is proportional to the sample stan-
dard deviation. This is clearly an input-dependent property,
which makes it difficult to choose an n to target a specific
error. ApproxHadoop uses a feedback mechanism to vary the
sampling rate based on observed variance [7], and a similar
technique could be applied in MaRSOS. However, we note
that this mechanism relies on an i.i.d. assumption that may
not hold for many inputs.

Overall concerns Putting these two considerations together,
we see that there is not much performance impact in choosing
a larger n (as popular keys will still be aggressively sampled),
but also not much reason to choose an extremely large n (it
will have little affect on error rates). In our experience, setting
n to 1000 yields a good balance of error and performance
across our benchmarks.

4. Experimental Methodology
We evaluate MaRSOS by extending Apache Hadoop 2.6.0.
The MapReduce framework (MapReduce 2.0) runs as a YARN
application. YARN is a cluster resource management layer
build on top of HDFS. It consists of a ResourceManager that
allocates resources to its applications.

We run our experiments on a 26 node cluster. Each cluster
node runs Linux 2.6.32 on a 4-core AMD Opteron (tm) Pro-
cessor 6320 with 8 GB of memory and 500 GB of SATA disk
allocated for the MapReduce system. We configure one of the
nodes to be the NameNode while another node is chosen to
act as the ResourceManager and also the JobHistory server.
The remainder (24) of the nodes act as datanodes and run an
instance each of NodeManager and DataNode. The maximum
memory allocated for a map task and a reduce task are set to 1
GB and 2.5 GB respectively.

Our benchmark suite consists of several benchmarks chosen
from PUMA [4]. Two of the benchmarks, husers and huseravg,
are straightforwardly extended from PUMA. The benchmarks
along with their description are listed in Table 1. The data
size used for each of the benchmarks is 100 GB. The number
of reducers is equal to that of datanodes.

5. Results
We evaluate MaRSOS in three ways. Section 5.1 evaluates
MaRSOS’s performance: how much does dropping tuples
help? Section 5.2 evaluates MaRSOS’s accuracy: how much
error does stratified sampling introduce? How does its ac-
curacy compare to uniform sampling (a la ApproxHadoop)?
Finally, Section 5.3 studies MaRSOS’s sensitivity to different
choices of n (the target number of samples per key).

5.1. Performance

Figure 3 shows the speedups of MaRSOS over baseline, un-
modified Hadoop for each of our benchmarks. For all bench-
marks, we set n = 1000. In addition, to understand the
overheads introduced by the feedback implementation (Sec-
tion 3.4), we compare to a variant of MaRSOS that tracks

Figure 3: Speedup relative to Hadoop
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Table 1: Benchmark Details

Name Data
Source

Description

wcount Wikipedia Counts words in documents. Mappers read input documents and emit 〈word, 1〉 tuples while reducers
accumulate all tuples per word. With approximation, Mappers can immediately drop words after
reading them.

hmovies Netflix Generates histogram for #movies per rating. Mappers read input movie data in the form of
〈movie,reviews〉, where each review is a 〈userid,rating〉 tuple. Mappers process input to calculate
average rating per movie and emit 〈rating, 1〉 tuples. Reducers accumulate all tuples of a rating. With
approximation, Mappers can only drop tuples after map processing is complete.

hratings Netflix Generates histogram for #reviews per rating. Mappers read input movie data, 〈movie,reviews〉, and
emit 〈rating, 1〉 tuples. Reducers accumulate all tuples of a rating. With approximation, Mappers can
drop tuples immediately after reading input data.

huseravg Netflix Generates a histogram for average rating per user. Mappers read input movie data, 〈movie,reviews〉,
and emit 〈userid, rating〉 tuples. Reducers perform average rating per userid. With approximation,
Mappers can drop tuples immediately after reading 〈userid,rating〉 tuple.

husers Netflix Generates histogram for #reviews per user. Mappers read input movie data, 〈movie,reviews〉, and emit
〈userid, 1〉 tuples. Reducers accumulate all tuples of a rating. With approximation, Mappers can drop
tuples immediately after reading 〈userid,rating〉 tuple.

invindex Wikipedia Generates pairs of word-to-document tuples from documents. Mappers read input documents and emit
〈word, documentid〉 tuples while reducers accumulate all occurences of unique documentid’s per word.
With approximation, Mappers can immediately drop words after reading them once.

classifi-
cation

Netflix Classifies movies, based on cosine similarity, into a set of pre-determined number of clusters (32) and
generates a count per cluster Mappers read input movie data, perform clustering and emit 〈clusterid,1〉
tuples. Reducers accumulate all tuples of a clusterid. With approximation, Mappers can only drop
tuples following the cluster processing.

kmeans Netflix A popular data mining algorithm that classifies movies into a set of k-clusters (32). Mappers read input
movie data, and cluster movies into k-clusters and emit 〈clusterid, (movie,reviews)〉 tuples. Reducers
accumulate all tuples of a clusterid and calculate new centroids. With approximation, Mappers can
only drop tuples following the cluster processing. But large shuffle and reduce computations follow.

reservoirs and sends feedback between the Shuffles and the
Mappers, but does not perform any sampling (i.e., regardless
of the sampling probability, all tuples are output by the Map-
pers). This variant is labeled hadoop-with-overhead. We note
that the overheads of MaRSOS are minimal, with an average
speedup reduction of only 7%. This low overhead means that
MaRSOS can begin to see performance improvements even
with relatively high sampling rates.

Across the entire range of benchmarks, MaRSOS gives 39%
speedup, on average, over Hadoop. Several of the benchmarks
give speedups over 60%. Two of the benchmarks, hmovies and
classification, show little speedup over Hadoop. This is be-

Figure 4: Fraction of tuples skipped by MaRSOS

cause MaRSOS achieves its improvements through two mech-
anisms: (i) once the key for a tuple is determined, sampling
can be performed and the map computation can be terminated;
(ii) dropped tuples are not output by the Mapper, reducing
Shuffle traffic and Reduce computation. For these two bench-
marks, MaRSOS can only determine the key for the tuple late
in the Map computation, so there is no computation to save in
Map. Furthermore, both benchmarks have light Shuffle and
Reduce phases, offering little opportunity.

The difference between classification (no speedup) and
kmeans (72% speedup) is illustrative. In both cases, there is
little opportunity in Map: both use the same computation to
determine which cluster a tuple belongs to. However, classifi-
cation merely counts the number of tuples per cluster, leading
to nominal Shuffle and Reduce phases. In contrast, kmeans
sends the entire volume of the movie dataset to the Shuffle, so
that the Reduce phase can re-compute cluster centroids. As
a result, kmeans has very heavy Shuffle and Reduce phases,
leading to substantial performance gains from sampling.

Distribution of downsampled keys Figure 4 shows the
fraction of tuples that are dropped due to sampling in each
of our benchmarks. Even though all of our benchmarks use
the same target number of samples, the effective overall sam-
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(a) wcount (b) hmovies (c) hratings (d) husers

(e) huseravg (f) invindex (g) classification (h) kmeans

Figure 5: Downsampled tuple distribution for benchmarks

pling rate is dependent on the distribution of keys in the input,
since only keys with more than n tuples will be sampled at all,
and only keys with substantially more than n tuples will be
sampled aggressively. We observe that across the benchmarks,
MaRSOS is able to drop a significant fraction of tuples, with
many benchmarks dropping more than half of their tuples. The
percentage of tuples kept translates straightforwardly into an
effective sampling rate; hence many benchmarks have global
sampling rates of < 50%.

Figure 5 examines the distribution of tuples. For the tuples
that are subject to downsampling (i.e., that have keys popular
enough to be sampled), we determine the rate at which that
tuple’s key is sampled. We then plot the distribution of these
sampling rates, with the x-axis of Figure 5 showing the log of
the inverse sampling rate (e.g., if a given tuple is subject to
a sampling rate of 1/128, it will be placed in the bin labeled
7). Essentially, tuples placed in farther-right bins have more
popular keys. We observe that in many of our benchmarks, the
bulk of the tuples are to the right of distribution, an indicator
of the skewness of the inputs.

5.2. Errors in Approximation

This section studies the error behavior of MaRSOS. Figure 6
shows the distribution of errors for each of our benchmarks.
The plots show histograms of per-key relative error rates.
Benchmarks kmeans, classification, hratings, and hmovies
all have a small number of keys, so we present histograms av-
eraged over ten runs. Note that in all of our benchmarks, 95%
of the keys have relative errors of less than ±2%. MaRSOS is
extremely effective at providing low per-key errors.

We next compare to a variant of MaRSOS that performs
uniform sampling, rather than stratified sampling: all tuples
are sampled at the same rate, rather than at different per-key
rates. We call this variant UniformHadoop. We set Uni-
formHadoop’s global sampling rate such that the number of
tuples dropped by UniformHadoop is equal to the total num-

ber of tuples dropped by MaRSOS (as in Figure 4). Hence,
UniformHadoop and MaRSOS shuffle and reduce the same
volume of data. Note that unlike ApproxHadoop, which per-
forms multi-stage sampling [7], UniformHadoop performs
simple random sampling. Hence, we would expect Approx-
Hadoop to have an error at least as high as UniformHadoop
at the same overall sampling rate. Figure 7 shows the per-key
error histograms of UniformHadoop.

The figures clearly show that while MaRSOS is to able to re-
strict most errors to ≤1%, UniformHadoop suffers from large
variance in its error bounds. In general, most benchmarks have
a large number of keys with ≥ 10% error. Worse, benchmarks
run on UniformHadoop have several keys with ±100% errors,
because those keys are missed entirely during sampling. In
contrast, MaRSOS, by design, never misses any keys. This
is particularly well highlighted through invindex. Figures 7(f)
and 6(f) show the benchmark’s error with UniformHadoop and
MaRSOS respectively. While UniformHadoop shows high er-
rors, due to entirely dropping infrequent words in documents,
MaRSOS does not miss any of the word-to-document associ-
ations and produces zero error. As mentioned in Section 2.2,
such a design choice is highly desirable for applications where
rare keys are objects of interest.

However, better error bounds come at the cost of limited
performance gains. MaRSOS needs to look at every key be-
fore dropping it, and hence cannot randomly skip keys (as
in UniformHadoop) or entire map tasks altogether (as in Ap-
proxHadoop [7]). Accordingly, for applications that desire
popular key metrics, the latter two can provide better perfor-
mance. Nevertheless, we reemphasize that MaRSOS’s per-
formance cannot be directly compared to the performance
of UniformHadoop or ApproxHadoop, as the first provides
per-key guarantees, while the latter two do not.

9



(a) wcount (b) hmovies (c) hratings (d) husers

(e) huseravg (f) invindex (g) classification (h) kmeans

Figure 6: MaRSOS Errors for different benchmarks

(a) wcount (b) hmovies (c) hratings (d) husers

(e) huseravg (f) invindex (g) classification (h) kmeans

Figure 7: UniformHadoop Errors for different benchmarks

5.3. Impact of n on Performance and Error

Finally, we examine the sensitivity of MaRSOS’s performance
and accuracy to different choices of n, the target number of
samples. Figure 8 shows the speedups over the baseline for
different choices of n. As expected, lower ns have higher
speedups, but, with the exception of huseravg and husers,
there is not a substantial performance penalty to increasing n,
as hypothesized in Section 3.5. The behavior of the two outlier
benchmarks can be explained by their much broader distribu-
tion of key popularity, as seen in Figure 5—small changes in n
can move large numbers of keys between sampling thresholds.

Figure 9 shows that the impact on error due to a change in n
is more pronounced. The y-axis here shows the 95th percentile
error for each benchmark and choice of n (i.e., only 5% of
the keys have higher error).3 Again, as expected, increasing n
decreases the error, but there are diminishing returns.

3The benchmark invindex is not shown, as it has zero error for n > 1

6. Related Work

ApproxHadoop The closest related work to MaRSOS is Ap-
proxHadoop [7], which was the first system to provide general
sampling facilities in MapReduce. We first note that the two
systems are not truly comparable, as they are designed for dif-
ferent application use cases. ApproxHadoop provides global
sampling of the input space, and is best suited for problems
where the metrics of interest are not key-specific; in contrast,
MaRSOS provides per-key sampling to ensure that rare keys
are not missed completely. Due to these different focuses, the
results of the two systems are not comparable: ApproxHadoop
is able to use multistage sampling to drop entire map tasks,
providing potentially very large speedups, but at the cost of
missing some keys entirely, and only providing global, not
per-key, error bounds. MaRSOS, on the other hand, is bound
by the dictates of stratified sampling to inspect each input tuple
to at least determine its key; this necessarily limits the amount

10



Figure 8: Performance vs n (downsampling threshold)

Figure 9: Error vs n (downsampling threshold)

of speedup that a MaRSOS program can achieve through sam-
pling compared to an ApproxHadoop program, but MaRSOS
provides much stronger quantitative (per-key error bounds)
and qualitative (no missed keys) accuracy guarantees.

Unlike ApproxHadoop, MaRSOS does not provide the abil-
ity to adjust sampling rates in response to observed variance
during execution. This is not a fundamental limitation. The
techniques proposed in ApproxHadoop to modify sampling
rates based on input characteristics can be applied in MaRSOS
by changing the target reservoir size for a given key. As noted
in Section 3.5, this type of feedback may not be valid for some
problems or inputs. Indeed, many aspects of ApproxHadoop’s
design—for example, it drops all remaining map tasks if it de-
termines that the error bound has been achieved—are based on
strong assumptions about the input (in particular, an assump-
tion that the data are independent and identically distributed)
that may not hold in many real world situations.

Stratified sampling Database systems have provided strat-
ified sampling-based queries for decades [1, 3, 5]. These
systems inspired the design of MaRSOS, especially our sam-
pling design, which targets a specific number of samples for
each key, rather than worrying about particular sampling rates.

In particular, Acharya et al. provide a proof that for a given
number of total samples, the correct distribution of those sam-
ples across a set of keys to minimize the worst-case error of
any key is to assign each key the same number of samples,
regardless of the number of elements with that key [1]. Im-
portantly, these systems rely on offline processing of inputs
to build the samples, which are then used to perform queries.
The challenges of building an online, distributed stratified sam-
pling system were not addressed. Hellerstein et al. present an
on-the-fly aggregation system [8] that performs the equivalent
of online sampling for DSS. However, its sampling strategy
requires randomly reading the input data (to account for, e.g.,
sorted data), which is far more expensive than the sequential
reads of data performed by Hadoop and used by MaRSOS.

Other approximation techniques There has been a surge
of interest in approximate computing over the last decade.
There are a wide variety of ways of providing approxima-
tions, ranging from computing over uncertain inputs, to using
approximate memories, to using approximate arithmetic. Per-
haps the most closely related approximation techniques to
MaRSOS are those that center on task-dropping: dropping all
but a subset of tasks during execution [9, 11, 12, 13, 15]. The
most common technique is loop perforation, which randomly
(or systematically) skips iterations of loops [12]. Loop perfo-
ration implicitly has the effect of sampling, though it does not
explicitly perform sampling. Indeed, the most common perfo-
ration techniques perform periodic sampling [11, 15], keeping
every nth iteration, which does not have appropriate statisti-
cal properties in many cases. Zhu et al. look at analogous
transformations that specifically target sampling the inputs to
reductions, a very close match to the type of sampling that
MaRSOS targets [17]. Because these techniques are applied
as program transformations, they do not consider the online,
distributed sampling problem that we solve.

7. Conclusions

This paper presented MaRSOS, the first MapReduce system
that implements stratified sampling to provide disciplined,
sound approximation. Unlike prior work in database systems
for stratified sampling, MaRSOS implements a novel telescop-
ing sampling algorithm performs stratified sampling online
and in a distributed manner, making it suitable for large-scale
MapReduce jobs. Unlike ApproxHadoop, earlier work on
applying sampling in MapReduce, MaRSOS’s use of stratified
sampling guarantees that it will not miss keys, and can provide
per-key, rather than global, error bounds, making it sound for
computations that are sensitive to uncommon keys. MaRSOS
is able to deliver substantial performance improvements across
a wide variety of benchmarks, with little accuracy loss. More-
over, because its stratified sampling tailors sampling rates to
each key, MaRSOS gives substantially less error than uniform
sampling at the same rate.

11



References
[1] Swarup Acharya, Phillip B. Gibbons, and Viswanath

Poosala. Congressional samples for approximate answer-
ing of group-by queries. In Proceedings of the 2000
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’00, pages 487–498, New York,
NY, USA, 2000. ACM.

[2] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala,
and Sridhar Ramaswamy. The aqua approximate query
answering system. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’99, pages 574–576, New York, NY,
USA, 1999. ACM.

[3] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry
Milner, Samuel Madden, and Ion Stoica. Blinkdb:
Queries with bounded errors and bounded response times
on very large data. In Proceedings of the 8th ACM Eu-
ropean Conference on Computer Systems, EuroSys ’13,
pages 29–42, New York, NY, USA, 2013. ACM.

[4] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, and
TN Vijaykumar. Puma: Purdue mapreduce benchmarks
suite. Technical Report TR-ECE-12-11, Purdue, 2012.

[5] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya.
Optimized stratified sampling for approximate query pro-
cessing. ACM Trans. Database Syst., 32(2), June 2007.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simpli-
fied data processing on large clusters. In Proceedings of
the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[7] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte,
and Thu D. Nguyen. Approxhadoop: Bringing approx-
imations to mapreduce frameworks. In Proceedings of
the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, ASPLOS ’15, pages 383–397, New York, NY,
USA, 2015. ACM.

[8] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang.
Online aggregation. In Proceedings of the 1997 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’97, pages 171–182, New York, NY,
USA, 1997. ACM.

[9] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin,
Sasa Misailovic, Anant Agarwal, and Martin Rinard.
Dynamic knobs for responsive power-aware computing.
In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 199–212,
New York, NY, USA, 2011. ACM.

[10] Sharon L. Lohr. Sampling: Design and Analysis.
Duxbury Press, 2009.

[11] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann,
and Martin Rinard. Quality of service profiling. In
Proceedings of the 32Nd ACM/IEEE International Con-
ference on Software Engineering - Volume 1, ICSE ’10,
pages 25–34, New York, NY, USA, 2010. ACM.

[12] Martin Rinard. Probabilistic accuracy bounds for fault-
tolerant computations that discard tasks. In Proceedings
of the 20th Annual International Conference on Super-
computing, ICS ’06, pages 324–334, New York, NY,
USA, 2006. ACM.

[13] Martin Rinard. Probabilistic accuracy bounds for perfo-
rated programs: A new foundation for program analysis
and transformation. In Proceedings of the 20th ACM
SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM ’11, pages 79–80, New York, NY,
USA, 2011. ACM.

[14] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), MSST
’10, pages 1–10, Washington, DC, USA, 2010. IEEE
Computer Society.

[15] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry
Hoffmann, and Martin Rinard. Managing performance
vs. accuracy trade-offs with loop perforation. In Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 124–134, New York,
NY, USA, 2011. ACM.

[16] Jeffrey S. Vitter. Random sampling with a reservoir.
ACM Trans. Math. Softw., 11(1):37–57, March 1985.

[17] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner,
and Martin Rinard. Randomized accuracy-aware pro-
gram transformations for efficient approximate computa-
tions. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’12, pages 441–454, New York, NY, USA,
2012. ACM.

12


	Purdue University
	Purdue e-Pubs
	11-5-2015

	Stratified Online Sampling for Sound Approximation in MapReduce
	Nitin .
	Mithuna Thottethodi
	T.N. Vijaykumar
	Milind Kulkarni

	Introduction
	Background
	Hadoop Architecture
	Uniform vs. Stratified Sampling

	Distributed Online Stratified Sampling
	Reservoir Sampling
	Telescoping Sample Sets
	Distributed Telescoping Sampling
	Distributed Sampling Implementation
	Choosing Target Number of Samples

	Experimental Methodology
	Results
	Performance
	Errors in Approximation
	Impact of n on Performance and Error

	Related Work
	Conclusions

