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Abstract 

A new electrical capacitance tomography (ECT) image reconstruction method, termed Sensitivity 

Factor Regularization (SFR), is developed. The SFR method provides an explicit formulation for 

solving the image reconstruction problem that performs better than other explicit methods, such as 

linear back-projection and Tikhonov regularization, while providing the same computational 

efficiency. The computational ease of the SFR method renders it an attractive option for ECT 

where real-time imaging is required and theoretical statistical evaluation of proposed electrode 

configurations may readily be performed. A statistical study is conducted using SFR image 

reconstructions for investigating the impact of electrode density on image quality for a symmetric 

ECT system characterizing a square cross-section. A larger number of smaller electrodes allows 

more data to be gathered for use in image reconstruction, but degrades signal-to-noise ratio in the 

measurements. The statistical study using SFR clearly identifies a theoretical optimum electrode 

density that minimizes reconstructed image error for a given level of measurement noise. 

 

Keywords: image reconstruction, Sensitivity Factor Regularization (SFR), capacitance tomography, ECT 

design, electrode optimization 
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1. Introduction  

 Diagnostic imaging of phase distributions in pipe flows is useful in various industrial settings.  

Although intrusive techniques may be employed [1, 2], electrical capacitance tomography (ECT) provides 

a physically simple and nonintrusive method for imaging dielectric media.  In ECT, electrodes are 

arranged around a domain of interest which contains an unknown distribution of multiple dielectric 

materials or material phases with significant contrast in electrical permittivity.  A maximum of M = K(K -

1)/2 independent capacitance measurements are taken using unique electrode pairs, where K is the 

number of electrodes used.  Each measurement represents an integrated value determined by the unique 

pattern of spatial sensitivity to the distribution of permittivity in the domain.  The inverse problem of 

reconstructing the permittivity field (and thus, the distribution of materials or phases) is then solved using 

a suitable algorithm for mapping a vector of M known measurements to a vector of N unknown pixel 

values.  

 A canonical ECT problem is the reconstruction of a binary image representing a two-phase 

material distribution within a cross-section of a pipe, usually using between 8 and 16 electrodes [3, 4, 5, 

6, 7, 8, 9, 10].  Many options are available for solving the inverse problem, all characterized by a tradeoff 

between image quality and computation time, as will be quantitatively demonstrated in this work.  A 

tradeoff also exists with respect to system design: Increasing the number of electrodes provides increased 

information from which to construct the image; however, the simultaneous decrease required of the 

electrode size results in poorer signal-to-noise ratio, making measurements more uncertain [11]. 

 This work develops a new explicit image reconstruction method for capacitance tomography that 

yields solutions that are more accurate than other explicit approaches, but without increasing the 

computational cost.  The image reconstruction method, termed Sensitivity Factor Regularization (SFR), 

suppresses false artifacts near electrode surfaces and provides improved image segmentation over the 

linear back-projection and Tikhonov formulations, making it an attractive option for ECT where real-time 

imaging is required.  The accuracy and computational ease of the method makes it an ideal reconstruction 

algorithm for performing statistical evaluation and optimization of theoretical ECT systems.  In this work, 



A New Explicit Image Reconstruction Method for ECT 

3 

 

the SFR method is used to conduct a theoretical study of electrode design for a square, 2D domain of 

interest.  As the electrode size is progressively reduced to accommodate a larger number of electrodes in 

the ECT system,  the merit of the system is evaluated statistically via SFR reconstructions of a set of test 

images.  It is shown that for an ECT system with finite measurement noise level, the optimum electrode 

size (and thus, electrode density) may be identified with respect to an L2 norm image error.

Nomenclature 

C capacitance 

C* normalized capacitance, * / oC C Lε  

D diagonal matrix 

E image error 

E electric field 

E* normalized electric field, 

* /( )high lowL V V E E  

I identity matrix 

K number of electrodes 

L system length 

M number of measurements/electrode pairs 

N number of mesh cells/pixels 

n unit normal vector 

S sensitivity matrix 

Ŝ  augmented sensitivity matrix 

t computation time 

u* normalized noise uncertainty 

V voltage 

v volume 

*v  normalized volume, 3* /v v L  

x x direction 

x vector of sensitivity factors 

y y direction 

Greek Symbols 

β vector of scaling coefficients 

δ regularization parameter 

ε permittivity 

εo permittivity of free space 

εr relative permittivity, /r oε ε ε  

χ normalized x, /χ x L  

η normalized y, /η y L  

φ normalized electric potential, 

( )/( )low high lowφ V V V V    

 normalized measurement vector 
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σ normalized length 

ξ image vector 

ω local subdomain 

Subscripts 

low with εr at low value 

high with εr at high value 

clip with min of 0 and max of 1 

img image 

map vector mapping 

Superscripts 

* normalized 

^ pertaining to the SFR method

 

Individual matrix and vector entries are written with the matrix or vector name in non-bold type with 

identifying subscripts, e.g., Sm,n indicates the m,n component of S. 

2.  ECT System Modeling 

2.1 Simulation Model 

 A two-dimensional ECT system is considered, where the material under test (MUT) with a 

nominally high dielectric permittivity resides in a square domain of side length, L, with electrodes 

distributed around the perimeter.  Either 4, 8, 12, or 16 electrodes may be included in the system as 

indicated in Figure 1.  In each case, electrode size is chosen to be as large as possible while leaving two 

cell lengths of space between each electrode along the boundary.  A finite-element model is used to solve 

for electric field in the square domain of the capacitance tomography system, and is composed of a 

regular mesh of 48 × 48 cells. 
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Figure 1. Domain and mesh for candidate tomography systems with (a) 4 electrodes, (b) 8 electrodes, (c) 

12 electrodes, and (d) 16 electrodes. 

 

 The electrostatic field generated when obtaining capacitance measurements is governed by the 

divergence of the electric displacement field, 

 ( ) 0rε φ    . (1) 

When a measurement is simulated, a sender electrode is assigned a high constant potential, φ = 1, while 

all other electrodes are assigned a low potential, φ = 0.  The portions of the boundaries of the domain that 

lie between electrodes have a zero flux condition.  Displacement flux into any electrode assigned a low 

potential (receiver) may be used to determine the capacitance between that electrode and the high-

potential electrode according to 

 *
r

receiver

ε φ dσC    n . (2) 

In this way, a single simulation for electrode potential may be used to obtain K-1 capacitance 

measurements.  It can be shown that capacitance of a given electrode pair is independent of which 

electrode plays the role of sender, the permittivity field ε(x,y), and the presence of other fixed-potential 
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bodies.  Thus, a maximum of (K-1)K/2 independent measurements exist for any system, which may be 

characterized via K electric field solutions. 

 In this work, binary permittivity fields are considered, with regions of low permittivity set against 

a background of high permittivity.  This corresponds to the common application of imaging voided 

regions, such as bubbles or voided cavities, existing in a highly dielectric MUT.   

2.2 Linearized Model 

 Image reconstruction is performed using a linear model which approximates the causal 

relationship between a change in the permittivity of a mesh cell and a change in the capacitance of an 

electrode pair.  The set of such relationships for all mesh cells is defined as the sensitivity distribution of 

the pair.  The most common methodology for constructing the set of sensitivity distributions for all 

electrode pairs is to simulate perturbations in the electric field in an exhaustive fashion.  A total of N 

complete measurement sets are simulated, where the n
th
 case uses the same value for εr in all mesh cells 

except for cell n, which is perturbed by Δεr.  The relative impact of each cell on a simulated measurement 

is recorded under either a parallel assumption [3, 12], a series assumption [5], or a combination of both [8, 

13].  While the computational expense of this technique is feasible for 2D systems, it is prohibitive for 

large 3D meshes [14].  Successful alternatives for calculating the sensitivity distribution have been 

developed based on electric field lines [10, 14, 15]. 

 Lucas et al. [16] showed that the first-order sensitivity of a capacitance measurement of an i-j 

electrode pair to a change in capacitance of some sub-volume ω, residing in the electric field may be 

expressed as 

  , , ,

* * * *Δ Δi j r i j j i

ω

C ε dv  E E  (3) 

where the subscript ‘i,j’ represents electrode i as sender and electrode j as receiver, with E* and v* are 

normalized electric field and volume, respectively.  Equation 3 may be adapted to the finite element grid 

to define the sensitivity distributions.  The raw discretized approximation of the change in measurement 

m, yielded by electrode pair i-j, due to a permittivity change in cell n is defined as, 
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  , , , ,

* * * *Δ Δm n r n i j j i n
n

C ε v E E . (4) 

Considerable computation may be saved by using Equation 4 instead of the exhaustive technique, 

allowing for the sensitivity distribution to be calculated with data from K simulations instead of N(K -1) 

simulations.  In this work, the sensitivity matrix is generated using Equation 4, with electric fields solved 

using a uniform value of εhigh.  Traditionally, capacitance measurements are normalized between 0 and 1 

[11].  However, in this work, simulated measurements are referenced to individual datum values as 

    * *
m m m

low
μ C C  . (5) 

Using Equation 4, the referenced capacitance change of a pair may be represented approximately as 

   , , , ,

1

* * *
N

m n r high r low i j j i n
n

n

μ ξ ε ε v


   E E , (6) 

where ξn takes on a value of 0 corresponding to εlow and a value of 1 corresponding to εhigh based on the 

permittivity distribution in the domain.  Figure 2 shows the difference between direct simulation 

(Equation 5) and the approximation (Equation 6) with measurements sorted by magnitude. 

 

Figure 2. Referenced capacitance values obtained for the 8-electrode system obtained by direct simulation 

and by the linear approximation before the use of scaling factors, β.  Electric fields in Equation 6 

calculated at εhigh. 
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The approximation is most accurate for measurements with small capacitance changes from the εlow case 

to the εhigh case.  In this work, scaling coefficients β are proposed, which ensure that the linearized model 

produces the same values of μ obtained through the simulation model for the case when ε(x,y,z) = εhigh.  

The scaling factors are calculated as 

 
   

  , , , ,

1

* *

* * *

m m

m N

r high r low i j j i n
n

n

high low
C C

β

ε ε v






  E E

. (7) 

The scaled approximate change in measurement m, yielded by electrode pair i-j, due to a permittivity 

change in cell n is defined as 

 , ,

*S Δm n m m nβ C . (8) 

The m × n matrix S is known as the sensitivity matrix, representing a mapping between the vector spaces 

R
m

 and R
n
.  Each row of S contains a discretized sensitivity distribution. Selected sensitivity distributions 

are illustrated in Figure 3.  Each sensitivity distribution may be described as a tunnel of positive 

sensitivity between the two electrodes of the pair in a background of low-magnitude negative sensitivity.  

Note that measurements are far more sensitive to regions near electrodes than the central region of the 

domain.  The linearized forward model is written as 

 ξ μS , (9) 

with the image vector ξ representing pixel values.  The inverse problem is to determine ξ from a known S 

and μ. 
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Figure 3. Selected sensitivity distributions from the 16-electrode design. Tunnels of positive sensitivity 

(red) reside within a background of negative sensitivity (blue). 

 

3. Reconstruction using Sensitivity Factor Regularization 

3.1 Review of Image Reconstruction Algorithms 

 Many methods have been investigated for obtaining the image vector, ξ, from Equation 9.  

Iterative image reconstruction algorithms are widely used in the literature.  The Landwebber iteration is 

chosen when computation time may be spent reconstructing image frames offline [8, 12, 17].  Basic 

Landwebber iteration is equivalent to a method of steepest descent using N variables and a fixed, small 

step size instead of a minimizing line search.  Both convergence and binarization are enhanced by 

clipping the solution after each step, i.e. redefining any values greater than 1 as 1 and values less than 0 as 

0 [11].  Other gradient-based methods include the algebraic reconstruction technique (ART) and the 

simultaneous iterative reconstruction technique (SIRT) [11].  Alternatively, the problem may be cast as a 

conditioned optimization problem, with examples including a least-squares regularization [18] or a total 

variation regularization (TV) [19, 20].  Total variation regularization produces reconstructions 

characterized by coarse image segmentation, making it an attractive option when solutions are known to 

be binary.  When using iterative algorithms, the sensitivity matrix may be updated at intervals by 
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simulating measurements of the current estimated image [10], but at significant computational cost.  Even 

if a constant sensitivity matrix is used, many iterations are usually required to converge to the final image. 

 When fast reconstruction is required for real-time monitoring, explicit or single-step algorithms 

are usually needed.  Linear back projection (LBP) is a very computationally simple method, requiring 

only matrix multiplication of a renormalized, transposed version of the sensitivity matrix with the 

measurement vector μ [12].  Other explicit image reconstruction methods include singular value 

decomposition (SVD) and Tikhonov regularization, which is equivalent to a filtered version of SVD [11]. 

Tikhonov regularization requires solving the system as 

  δ


ξ μ
1

T T
S S + I S , (10) 

where δ is empirically chosen to ensure invertibility.  In general, explicit techniques utilize a pseudo-

inverse matrix which may be stored a priori, trading some fidelity for large gains in computational 

efficiency. 

 In the present work, a new explicit image reconstruction technique, Sensitivity Factor 

Regularization (SFR), is proposed for fast image reconstruction which delivers better results than linear 

back projection or Tikhonov regularization.  

3.2 Unconditioned Sensitivity Factor Regularization (USFR) 

 The concept underlying sensitivity factor regularization is that a vector x of M unknown 

sensitivity factors is defined, with each sensitivity factor corresponding to the sensitivity distribution of an 

electrode pair.  These M unknown variables allow for N new constraints to be imposed on the system. 

The constraints take the form 

 

,

1

,

1

S

S

M

m m n

m

n M

m n

m

x

ξ









. (11) 

Equation 11 requires that the pixel value of each cell be expressed as a weighted average of the sensitivity 

factors of all sensitivity distributions, with weighting determined by the magnitudes of the sensitivity 
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distributions at the particular cell.  With the new constraints, the system contains M+N variables and 

M+N constraints, resulting in a fully constrained problem.  The new system resulting from the application 

of Equation 11 may be expressed as an augmented matrix Ŝ , and augmented vectors ξ̂ and μ̂ , as 

 ˆ ˆˆ ˆˆ ˆ, , ,with
     

       
    

x
ξ μ ξ μ

ξ μ

T

S
0S -D

S = S
0 S

. (12) 

The matrix DS is an N × N diagonal matrix with nonzero entries composed of the column sums of S.  

Equation 12 may be solved directly, which we refer to as unconditioned sensitivity factor regularization 

(USFR). 

 When all rows of S are independent, then the first M columns of Ŝ constitute a linearly 

independent set. If each column of S contains at least one nonzero entry, then the diagonal entries of DS 

are all nonzero, which guarantees that columns M+1 through M+N of Ŝ form a linearly independent set.  

Finally, because each of the columns M+1 through M+N of Ŝ  contain at least one nonzero entry within 

rows N+1 through N+M, (where all entries of columns 1 through M of Ŝ  are zero), each column vector 

in columns M+1 through M+N of Ŝ  is independent of columns 1 through M.  Thus, all column vectors 

are independent, and the system, Ŝ , is guaranteed to be of full rank M+N.   

 The full rank nature of Ŝ  suggests that no additional conditioning is required for solving the 

image reconstruction problem, making USFR an independently viable solution technique.   Because 

USFR requires no design-specific, empirically determined conditioning parameters, significant 

computation may be saved when performing statistical studies of theoretical performance of many 

potential electrode designs.  Image reconstructions with -1 ˆˆ ˆ μ ξS  for the 8-electrode system are shown in 

Figure 4.  The USFR method captures gross features of the images, although spurious artifacts far from 

electrode walls may still appear (Figure 4b) and small features may be lost (Figure 4e). 
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Figure 4. Image reconstructions for the 8-electrode system using the USFR method, -1 ˆˆ ˆ μ ξS . 

 

3.3 Generalized sensitivity factor regularization (SFR)  

 Although Ŝ  may be of full rank M+N in principle, it may be poorly conditioned.  The Ŝ  matrix 

corresponding to the 16-electrode system is observed to be too ill-conditioned to invert effectively.  When 

this is the case, Tikhonov conditioning may be applied, yielding 

  ˆ ˆˆ ˆ ˆ ˆδ


ξ μ
1

T T
S S + I S . (13) 

We refer to Equation 13 as the generalized SFR method, with USFR corresponding to the case where δ̂  

= 0.  Tikhonov conditioning may also suppress noise artifacts and thus improve accuracy of the 

reconstructions.  For consistency in the present study, all image reconstructions (with the exception of 

Figure 4) are performed with a value of δ̂  which is optimized separately for each candidate ECT system 

(see Section 4.1).  The value of δ used in Equation 10 for standard Tikhonov regularization is similarly 

optimized for purposes of comparison. 

3.4 Benchmark comparisons with SFR 

 In Figure 5, the SFR method is compared to well-known image reconstruction methods for ECT, 

both explicit and iterative. Values for L2 norm image error, given by 



A New Explicit Image Reconstruction Method for ECT 

13 

 

 

,

2

1 1

0 1

0 0

n

low
img clip clip n n n

high low

n

ξ
ε

E with ξ ξ ξ
ε ε

ξ


  

          

ε
ξ

, (14) 

are provided in Figure 5 along with computation time t on a Core
TM

 i7 2 GHz processor and 12 GB of 

memory using Wolfram Mathematica  [21].  Computation times are below the runtime resolution limit for 

all of the explicit methods.  Computation times for the iterative methods should be interpreted as 

qualitative, as these strongly depend on user choices for parameters such as step sizes and convergence 

criteria. In the case of TV regularization, several algorithms exist to accomplish the same regularization 

objective.  The continuation algorithm [22] was used for TV in Figure 5, while other options include a 

Broyden Fletcher Goldfarb Shanno (BFGS)-based technique [22] and the alternating direction method of 

multipliers (ADMM) algorithm [23].  Image binarization is better for the iterative algorithms than for the 

explicit algorithms.  Among the explicit algorithms, linear back projection performs very poorly at image 

segmentation.  Tikhonov regularization provides sufficient resolution to recognize the number of objects 

in the image, but suffers from spurious artifacts near walls.  The SFR method suppresses the false artifacts 

and provides discernible improvement in image binarization; suppressing artifacts is the primary reason 

for the dramatic reduction of overall image error compared to the other explicit methods.  Although 

binarization of the SFR reconstructions is inferior to that of the iterative algorithms, overall image error is 

comparable.  As seen in Figure 5, this accuracy is provided at a small fraction of the computation time 

required for any of the iterative algorithms. 
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Figure 5. Comparative study of image reconstructions using various explicit and iterative methods for the 

16-electrode system, including computation time, t, and image error Eimg. Explicit methods include linear 

back projection (LBP), Tikhonov regularization, and Tikhonov-conditioned sensitivity factor 

regularization (SFR). Iterative methods include algebraic reconstruction technique (ART), Landwebber 

iteration, and total variation regularization (TV). 

4. Optimized System Design 

 The design of any real ECT system involves a basic tradeoff.  While large electrodes provide 

greater signal-to-noise ratio, they represent integral measurements spread over a larger volume of the 

domain.  Peng et.al. [24] suggested that in a pipe flow the axial length of electrodes should be equal to the 

pipe diameter to preserve the 2D approximation often made in calculating the sensitivity distributions.  

However, the most critical design parameter for a system is the circumferential electrode density.  A 

system may be designed with many electrodes around the domain of interest, resulting in smaller 

electrodes and therefore lowered signal-to-noise ratios.  Alternatively, it may be designed with fewer and 
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larger electrodes, resulting in increased signal-to-noise ratio.  Measured capacitance for a pair of 

electrodes on the far ends of the domain may be orders of magnitude smaller than for a pair of adjacent 

electrodes.  Thus, signal-to-noise ratio deteriorates rapidly with increasing numbers of electrodes.  Noisy 

measurements introduce false artifacts in reconstructed images.  This section demonstrates a statistical 

investigation, identifying the optimum number of electrodes for a given domain that minimize the 

expected image error.  The accuracy and computational ease of SFR make it an ideal method for 

repeatedly solving the image reconstruction problem during such an investigation.  Overall image error 

may be analyzed as a composite of mapping error, which arises from sources other than measurement 

noise, and noise error due to measurement noise. 

4.1 Mapping Error 

 Even without the presence of noise in the measurements, reconstructed images are subject to 

several factors that result in a mapping error when mapping a measurement in R
m

 to an image vector in 

R
n
. These factors are:  

1. The sensitivity matrix represents a linearized system and therefore is an approximation of the 

true sensitivity functions.  

2. The sensitivity matrix bears a large null space in R
n
 containing many potential solutions. 

3. The reconstruction algorithm may contain artificial constraints (such as regularization 

parameters) that are intended to compensate for other sources of error, but allow the 

algorithm to deliver solutions outside the null space of the sensitivity matrix. 

The contribution of #1 may only be reduced by conducting simulations of the electric field throughout the 

image reconstruction process in order to update S and account for soft-field effects, which are not 

considered in this work.  The contribution of #2 is reduced by increasing electrode number. 

 The regularization parameter, δ̂ , for the SFR method is obtained by using the reconstruction 

method without measurement noise and optimizing for the value that minimizes cumulative image error 

for a test set of images.  The test set for this exercise consisted of 20 images of random ellipsoidal regions 
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occupying image fractions between 7% and 43% of the domain.  Examples are shown in the left column 

of Figure 6.  Image reconstructions conducted without any simulated measurement noise are classified as 

being subject only to mapping error, arising from the combined effects of the three aforementioned 

influencing factors. 

 

Figure 6. Image reconstructions using the SFR method subject only to mapping error for candidate 

tomography designs. 

 

4.2 Noise Error 

 The second source of error is due to noise in the measurements.  When noisy measurements are 

used, the errors in measurement values are transformed into spurious artifacts in the reconstructed image.  

Noise error may be isolated by comparing image reconstructions of artificially noisy measurements to 

reconstructions that are subject only to mapping error.  Noise uncertainty of u* is simulated by adding a 

vector of random values between -u* and u* to the measurement vector μ.  Image error due to noise is 

calculated as 

 , , 2img map clip map clipE  ξ ξ , (15) 

where ξclip,map represents the image vector obtained when subject only to mapping error. 
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 Figure 7 shows mean image error over the set of 20 images due to noise.  Susceptibility to noise 

error increases with electrode number.  In Figure 8, the effects of different noise levels are shown for 

selected images of the test set for the 16-electrode system. Increasing noise levels are manifested in the 

image as false artifacts which eventually overwhelm the distinguishability of the original objects. 

 

Figure 7. Mean image error over a set of 20 test images for different levels of measurement noise for the 

four candidate ECT designs. 

 

 

Figure 8. Image reconstructions using the SFR method for different levels of measurement noise using the 

16-electrode ECT system. 
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4.3 Overall Error Minimization 

 The mean overall image error over the test set is identified as the expected image error for a 

particular electrode design.  The design may be chosen such that the expected image error is minimized.  

Figure 9 shows mean mapping error, noise error, and overall error for the 20-image test set as electrode 

number increases.  Reductions in mapping error exhibit diminishing returns with more than two 

electrodes per side, indicating that beyond this point, mapping error is dominated by error due to 

linearization of the system (factor #1 in Section 5.1). Noise error is negligible for all systems at u* = 0.01, 

but outweighs mapping error for most systems at u* = 0.20.  The overall image error is calculated from 

Equation 14 using image vectors solved with noisy measurements.  It is observed that a RMS sum of 

mapping error and noise error is a very accurate predictor of total image error.  When measurement noise 

is very low, the 16-electrode case performs best because mapping error is also the lowest (Figure 9a).  A 

noise level may be identified at which the competing effects of noise and mapping error result in an 

optimum electrode quantity of 8 (Figure 9b).  At a noise level of 0.20, performance of the system with 

one electrode per side is still governed primarily by mapping error, while the other systems suffer 

considerably from the noise (Figure 9c). 



A New Explicit Image Reconstruction Method for ECT 

19 

 

 

Figure 9. Mean total image error over the set of 20 test images, with contributions due to mapping error 

and noise error for different measurement noise levels, as a function of ECT design. 

 

 In order to validate the image error predictions of the different systems, a new set of five images 

is used as a validation set, which may be seen in the left column of Figure 10.  Images in the set exhibit 

sharp features difficult for capacitance tomography systems to reconstruct accurately.  It is expected that 
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the mean image error values observed for the original set of test images will apply directly to the new set 

of validation images.  Strong agreement between expected image error and mean overall image error for 

the validation set of five images is observed, as shown in Table 1.  Image reconstructions for the 

validation image set are presented in Figure 10.  In Figure 10, the image reconstructions using the optimal 

number of electrodes is used with each measurement noise level.  When measurement noise is high, larger 

electrodes provide more accurate images than smaller electrodes, despite the lower number of 

measurements.  However, dramatic improvements in image quality are gained when noise levels are 

reduced, enabling electrode size to be reduced and their number to be increased. 

Table 1. Mean image error obtained for the set of validation images, compared to mean image error 

values predicted by the set of 20 test images. 

Noise  Electrode Number 

Level  K = 4 K = 8 K = 12 K = 16 

0.01 
Expected 17.5 13.2 12.6 12.5 

Observed 17.5 13.1 12.6 12.5 

      

0.06 
Expected 17.6 14.1 14.3 15.8 

Observed 17.5 14.2 14.6 15.5 

      

0.20 
Expected 18.0 19.5 22.0 23.7 

Observed 17.9 19.8 21.3 23.6 
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Figure 10. Image reconstructions using the SFR method for best-performing ECT design candidates at 

signal noise levels of 0.20, 0.06 and 0.01. 

 

5. Conclusion 

 The sensitivity factor method (SFR) has been developed as a new, explicit reconstruction 

algorithm and shown to perform better than other explicit algorithms such as linear back projection and 

Tikhonov regularization.  The SFR solution provides an attractive alternative for applications where the 

need for fast image reconstruction precludes the use of iterative image reconstruction methods.  The SFR 

method is an ideal image reconstruction technique for performing theoretical statistical investigations into 

design of ECT systems.  As an example, a study has been presented in which the optimal number of 

electrodes in an ECT system is determined using SFR reconstructions of a set of test images.  Error 

contributions due to noisy measurements and those due to approximations in mapping to the image vector 
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space present competing effects that result in the existence of an optimum number of electrodes for a 

given level of measurement noise.  
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